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Abstract 
 
The crystal structures of NaCl, LiF, Si, and GaAs  are studied with a Bragg Diffractometer utilizing 
a Mo anode X-ray tube operating at about 30 kV together with a Geiger counter-scaler combination 
to measure the scattering rate as a function of the Bragg scattering angle. The lattice constants of 
the crystals are determined by an analysis of  the angular dependence of the scattering peaks. The 
scattering peaks are characterized by the assignment of the appropriate Miller indices.   
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                                        CRYSTAL X-RAY DIFFRACTION                                                 
  
The 1915 Nobel prize in Physics was awarded jointly to Sir William Henry Bragg, and his 
son, Sir William Lawrence Bragg. both of Great Britain for their services in the analysis of 
crystal structures by means of X-rays. 
 
 
APPARATUS 
 
Leybold X-ray diffractometer system which indudes: 

     Scaler 
Geiger-Mueller (G-M) tube 
X-ray tube with molybdenum anode 
Target Sample Goniometer 
Various metal foils  
Single crystal samples 
 
 
OBJECTIVES 
 
To obtain and analyze x-ray Bragg reflections from single alkali-halide crystals of known 
orientation. 
To become acquainted with some aspects of crystal symmetry, particularly as applied to the 
cubic lattices. 
To understand the physical basis of the Bragg reflections from crystal planes as predicted 
by the Bragg condition and a consideration of the structure factor. 
 
 
KEY CONCEPTS 
 
 Bragg diffraction (scattering) Structure factor 
 Bravais lattice Form factor 
 Primitive cell Bremsstrahlung 
 Basis Characteristic radiation 
 Miller indices Absorption edge 
 Fourier analysis Powder (Debye-Scherrer) method 
 Reciprocal lattice vector 
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 INTRODUCTION 
 
 When electromagnetic radiation is incident upon a periodic array of  scattering centers as 
in Figure 10.la, there are certain discrete directions for the incident ray that result in strong 
reflections; this is because of constructive interference of the radiation scattered from each 
of the centers. The directions for which these strong reflections occur are related through 
the Bragg law, described in the discussion that follows, to the geometry of the arrangement. 
Measurements of the angular positions and intensities of these Bragg reflections can be 
used to deduce the arrangement and spacings of the scatterers. If the scatterers are the atoms 
or molecules of a crystal of unknown geometry and the radiation is a monochromatic x-ray 
beam of known wavelength, measurements of the angular distribution and intensities of the 
reflected beams can be used to determine the crystallographic symmetry and interatomic 
spacings. Conversely, a crystal with a known structure may be used to spectrally analyze an 
x-ray beam or as an x-ray monochromator. X-ray scattering, sometimes referred                    
to as Bragg diffraction, is widely used in research laboratories around the world. One recent 
estimate puts the number of x-ray diffraction users worldwide at about 25,000, one-third of 
which are in the United States. In addition to basic crystallographic structure analysis, 
diffraction techniques are also currently useful in such applications as the qualitative and 
quantitative analysis of material composition, the analysis of stress/strain conditions within 
a given polycrystalline material, and the study of phase transitions at elevated temperatures. 
X-ray scattering is also currently being used in the study of macromolecular systems of 
interest to molecular biologists. Researchers have, for example, studied diffraction patterns 
from magnetically oriented solutions of macro-molecular assemblies that yield subcellular 
structural information; “movies” of proteins in motion have been produced using high-
intensity nanosecond pulses of x rays; the three-dimensional internal structure of complex 
organic molecules is also currently being probed with x rays. 
The analysis of the x-ray diffraction patterns to be observed in this experiment is based on 
the Bragg law of equation 2, which follows. We derive this law first from a simplified, 
heuristic, two-dimensional viewpoint, following which is a more general (and somewhat 
more complex) three-dimensional treatment. 
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Fig. 10.1   (a) Periodic array of scatterers.  (b) Periodic array with atoms "misaligned". 

 

The Bragg Law in Two Dimensions 

The Bragg law may be derived in a simple way by considering the reflection (or scattering) 
of X-rays from the planes of atoms indicated in Figure l0.la. If the x rays are treated 
classically as monochromatic electromagnetic waves of wavelength λ, then the reflections 
from successive planes of atoms will interfere constructively if the total difference δ in 
optical path lengths for waves reflected from planes 1 and 2 is an integral number of 
wavelengths. If the spacing between the indicated planes is d and the incident beam makes 
an angle θ with these planes, then the path length difference δ is given by: 
 

                                                                    δ = d(sinθ + sinθ )′                                                               (1)                             
 
If we assume that θ = θ', as is the case for specular reflection of visible radiation from 
dielectric or metallic surfaces, then the condition for constructive interference is:  
 
                                                     2d sinθ = nλ                                                                     (2) 
 
where n is a positive integer. Thus, we expect reflections from this family of planes 
whenever θ = θ' and the Bragg law of equation 2 is satisfied. 

Note that although we assumed θ = θ', this condition emerges as a natural consequence 
of the requirement that, for a Bragg reflection, atoms within a given plane, as well as atoms 
in different planes, must scatter constructively. It should also be noted that the Bragg law is 
a consequence only of the spatial periodicity of the scatterers in a direction perpendicular to 
the reflecting planes and does not depend on the alignment of the atoms of plane 1 with 
those of plane 2. 
 

Three-Dimensional Description: Bravais Lattices and Miller Indices 

The crystalline lattices discussed above contain several families of parallel planes in 
addition to the ones pictured in Figure l0.la, each with its own orientation and spacing (e.g., 
those parallel to planes 3 and 4 in Figure l0.lb), which have the potential to produce Bragg 
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reflections if equation 2 is satisfied. Additionally, if these lattices are considered as 
representing an arrangement of scatterers that exhibits periodicity in each of three dimen-
sions, the enumeration of all the possible reflections from every family of planes is a 
formidable task that requires an understanding of the geometry of crystals in three 
dimensions. 

The structure of a crystalline arrangement of atoms or molecules is described by 
specifying a basic repetitive unit of the lattice, the unit cell. The fourteen fundamental types 
of three-dimensional crystal lattices, the so-called Bravais lattices, are divided into seven 
crystal systems according to the geometry of the unit cell; these are listed in Table 10.1. 
Figure 10.2a shows the cell geometry and location of the lattice points for each cell. The 
choice of unit cell for each type of lattice is not unique; the cells shown here are the 
conventional ones rather than the “primitive” cells of minimum volume. Each cell is 
described conveniently in terms of a set of axes and three translation vectors a1, a2, and a3, 
as pictured in Figure l0.2b. The restrictions on the angles α, β, and γ are given in the third 
column of Table 10.1. The relationship between the translation vectors, the unit cell, and 
the structure of the crystal is illustrated by Figure 10.2c. As can be seen here, a cell can be 
translated into any other cell in the lattice by a displacement of the form la1 + ma2 + na3, 
where l, m, and n are integers. To complete the specification of the crystal structure it is 
necessary to specify a basis, that is, a group of atoms or molecules to be associated with 
each point of the lattice. 

Of particular interest in this experiment is the cubic system with its three lattice types 
shown in the top row of Figure 10.2: simple cubic (sc), body-centered cubic (bcc), and face-
centered cubic (fcc). The unit cell for all three structures is a cube, but the location of the 
lattice points within the cube differs for each structure. The NaCl crystal, an important 
example of a crystal structure with an fcc lattice, can be described by choosing a basis 
consisting of one Na+ ion and one Cl− ion. If an Na+ ion is considered to be located at each 
fcc lattice point, then a Cl− ion is found displaced by a vector 1/2 a1 + 1/2 a2 + 1/2 a3  with  
respect to each Na+, where |a1| = |a2| = |a3| = a, the length of the side of the unit cube. This 
arrangement is shown in Figure 10.3.    
 

                                              
                           TABLE 10.1 THE SEVEN CRYSTAL SYSTEMS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

System Number
of 

Lattices

Restrictions on 
Conventional Cell Axes and Angles 

Triclinic 1 a1 ≠ a2 ≠ a3 
α  ≠  β ≠  γ 

Orthorhombic 4 a1 ≠ a2 ≠ a3 
α  = β = γ  = 90o 

Tetragonal 2 a1 = a2 ≠ a3 
α  = β = γ  = 90o 

Cubic 3 α  = β = γ  = 90o 
α  = β = γ  = 90o 

Trigonal 1 α  = β = γ  = 90o 
α  = β = γ  < 120ο   ≠ 90o 

Hexagonal 1 a1 = a2 ≠ a3 
α  = β = 90o 
γ  = 120o 
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 Fig. 10.2  (a) Cell geometry for the Bravais lattices. (b) Translation vectors for the unit 
cell. (c) relationship between the unit cell, the translation vectors, and the crystal structure.  

                    
            

The standard way to specify the three-dimensional orientation of the planes of scatterers 
associated with each possible Bragg reflection is by use of Miller indices. The Miller 
indices specifying a plane such as the one depicted in Figure 10.4a is a set of three numbers 
(hkl) determined from the intercepts of the plane on the three crystal axes. To find the 
indices for a plane: (1) find the intercepts along each axis, expressed in units of the 
translation vector parallel to that axis; (2) take the reciprocal of each of these three 
numbers; (3) multiply each of the three numbers by the smallest integer necessary to clear 
the fractions. For the plane of Figure 10.4a, the intercepts are expressed in ordered triplet 

form as (322), from which the reciprocals are 1 1 1, ,
3 2 2

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Clearing fractions gives (233) as 
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the Miller indices of this family of  planes. 
 

Bragg Diffraction In Three Dimensions; Reciprocal Lattice Vectors 
 
To predict the directions in which x rays will be Bragg reflected from a crystal of given 
geometry, consider the situation of Figure 10.5, in which the x-ray source emits a plane 
wave with wave vector k (k = 2π/λ) of the form: 
 
         j(  ωt)

i 0ie
⋅ −= k rE E                                                         (3)                             

 
which is incident upon the volume element of crystal dV located at r with respect to an 
origin 0. The electrons within this element respond to the wave by scattering radiation 
which, at the detector, has an amplitude proportional to: 
 
                                  Dj[ ( )]

iE e n( )dV′⋅ −k r r r                                                      4)      
                                                                                                                                                     
where n(r) is the electron density in dV and k' is the wave vector of the scattered wave. 
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            Ignoring both the time dependence and the constant phase ′ ⋅ Dk r , the behavior of the     
            amplitude of the  scattered wave E, at the detector is given by: 

 
                                                    j[( - ) ]n( )e dV′ ⋅∝ k k r

sE r .                                                        (5) 
 
 
The amplitude of the radiation at the detector due to scattering by the entire crystal is 
proportional to a quantity obtained by performing a volume integral of equation 5 over the 
electron distribution of the crystal. The result is the scattering amplitude F: 
 
                                                      j( )F= dV n( )e− ⋅∫ ∆k rr                                                     (6) 
 
where ′∆ ≡ −k k k   is called the scattering vector. To obtain from equation 6 the values of  
∆k for which there will be strong Bragg reflections, it is necessary to Fourier analyze the 
electron density function n(r). This is done by writing n(r) as a sum: 
 
                                                   j( )n( )= n e ⋅∑ G r

G
G

r                                                      (7) 

 
                  where the nG values are possibly complex and the summation ranges over all possible               
                  reciprocal lattice  vectors G, which we now define as: 
 

                                                     hkl 1 2 3= h + k + lG b b b  .                                                    (8) 
 
Each combination of integers (hkl) specifies a different G. The vectors b1, b2, and b3 
constitute a basis for the reciprocal lattice and are defined in terms of the crystal translation 
vectors: 
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                     2 3 3 1 1
1 2

1 2 3 1 2 3 1 2 3

2π    2π    2π
× × ×

= = =
⋅ × ⋅ × ⋅ ×

2
3

a a a a a ab b b
a a a a a a a a a

                          (9)           

 
 

We can invert the sum in equation 7 by the standard procedures of Fourier analysis to 
obtain an expression for nG,  the Fourier coefficient corresponding to G:  

 
                           1 j( )

C
cell

n V dV n( )e− − ⋅= ∫ G r
G r                                                    (10) 

 
                  where VC is the volume of the unit cell over which the integral is to be done. 
 

Using the expansion of equation 7 for n(r) in the expression for the scattering amplitude F 
of equation 6 gives us a useful form for F: 
 

                                                        j[( k) ]

G crystal

F dV n e −∆ ⋅= ∑ ∫ G r
G   .                                          (11) 

 
Each term in the above sum contains an exponential  which, if its argument is nonzero, 

oscillates in such a way that integrating over the crystal volume gives zero for that term. 
Thus, the only way F can be nonzero, so that a reflection can occur, is if the scattering 
vector ∆k happens to equal one of the G values, making the exponential equal to unity for 
one term of the sum. Hence, a necessary condition on ∆k = (k'− k) for the occurrence of a 
Bragg reflection is: 

 
                            ∆k = G                              12) 
 
where G is any of the reciprocal lattice vectors defined by equation 8. If we limit our 
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consideration to elastic (coherent) scattering in which the wavelength is unaltered, we have 
the additional restriction: 
 
                                                         k' = k  .                                                    (13) 
 
An example of a Bragg reflection satisfying the conditions of equations 12 and 13 is 
illustrated in Figure 10.6, where G, the scattering vector for this reflection, is drawn 
perpendicular to the reflecting plane (hkl). 
 
It is straightforward to show that the conditions expressed by equations 12 and 13 for Bragg 
reflections imply the two-dimensional form of the specular reflection law of equation 2. 
Rewriting equation 12 as: 
 
                                                           k' = k + G                                                            (14) 
 
and taking the squared magnitude of both sides gives: 
 
                                                 2 2 2k k G 2′ = + + ⋅k G .                                          15) 
 
Applying the condition of equation 13 and writing (with reference to Figure 10.6)  ⋅k  G as  
−kG sinθ  gives: 
 
                                                         2k sinθ = G .                                         16) 
 
Recall that G depends upon the Miller indices (hkl) and so G = Ghkl and is  perpendicular to 
the plane (hkl) doing the reflecting.  It is possible to show that the spacing between planes 
(hkl) is given by dhkl  = 2π/|Ghkl|. Thus  
 

                                                                hkl
hkl

2π G
d

=                                           17) 

 
for the relationship between dhkl and G. Using this to eliminate G in equation 16 and 
inserting the definition of the wave vector k yields the Bragg law: 
 
                                                      2 dhkl sin θ = λ                                         18) 
 
as in equation 2 above.  In  this form the diffraction order index n no longer appears if the 
full sequence of Miller indices is employed since, for example, a first-order line 
corresponding to (222) spacing is the same as a second order (n = 2) line from the (111) 
planes.  The spacing dhkl between parallel planes denoted by a particular set of indices (hkl) 
is found by calculating the length of a perpendicular from the origin to the nearest plane of 
the set. Standard geometry leads to the general result for cubic lattices: 
 

                                                         hkl 2 2 2

ad =
h +k +l
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where a is the lattice constant.  
 
The preceding discussion of the space and reciprocal lattices and their relationship to the 
scattering amplitude not only yields a more general interpretation of the Bragg law, as 
derived in a simple way from Figure 10.1, but also gives us information with regard to the 
expected intensities of the reflections from different sets of planes (hkl). In particular, the 
conditions cited above for Bragg reflections are necessary but not sufficient, and some of 
the reflections permitted by equation 18 will be absent because of the possibility of 
destructive interference between waves scattered by atoms in the same cell. The discussion 
of this feature of Bragg reflection requires a further examination of the scattering amplitude 
of equation 11 and a brief discussion of form and structure factors. 
 
 
 
Structure Factor and Form Factor 
 
If equation 12 is satisfied so that for some G, ∆k = G, then the exponential appearing in the 
expression for the scattering amplitude F in equation 11 is just unity, and F (denoted by FG 
for this particular G) is then given by: 
 
                                                                G GF n dV= ∫                                                         (19) 
 
where the integration is performed over the entire volume of the crystal. Substituting for nG, 
the Fourier coefficient of n(r) given by equation 10, gives an expression for the scattering 
amplitude in terms of the electron distribution within a single cell: 
 

                                                     j( )
GF =N dV n( )e

cell

− ⋅⎡ ⎤
⎢ ⎥
⎣ ⎦
∫ r G r                                               (20) 

 
where N is the number of cells in the crystal and the expression within the square brackets 
is called the structure factor SG. The electron density function n(r) is often most con-
veniently broken up into chunks associated with each of the atoms contained within the 
cell, which is the region of integration in equation 20. If this is done, then this integral can 
be expressed as a simple sum: 
 

                                                       i-j( )
G G iF =NS =N f e

i

⋅⎡ ⎤
⎢ ⎥⎣ ⎦
∑ G r                                          21) 

 
in which the fi are known as form factors for the atoms and the sum is over all atoms in the 
cell located at positions ri ; each fi is effectively a portion of the integral in equation 20 over 
the charge distribution associated with the ith atom. The value of FG for any G(hkl), 
determines whether there will be a reflection corresponding to the atomic plane (hkl) and, 
hence, to ∆k = G(hkl). 
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Production of X Rays 
 
In this experiment Bragg diffraction of  x rays  from periodic structures will be studied. 
Figure 10.7 is schematic representation of an x-ray tube. Electrons are emitted 
thermionically from the heated cathode, which is maintained at a large potential difference 
V with respect to the anode target. As these electrons impact the anode, x rays are emitted 
with a spectral intensity distribution similar to the one shown in Figure 10.7b. This 
spectrum exhibits two main features: 
 
(1) There is a broad continuous spectrum of radiation, referred to as bremsstrahlung, 
caused by the sudden deceleration of the electrons as they impact the anode. (The word is 
derived from the German words brems (braking) and strahlung (radiation).) This radiation 
extends spectrally out to long wavelengths (low photon energies) with decreasing intensity 
and down to a minimum wavelength λ0 = hc/Ve, which is the wavelength of a photon that 
carries away all the kinetic energy of an electron incident on the anode. From the point of 
view of x-ray diffraction, this component of the tube emission is often considered as 
background. 
  

                        
    
FIGURE 10.7 (a) Production of x rays. (b) Typical spectral intensity distribution of the 
output of an x-ray tube. (c) Atomic transitions associated with the production of 
characteristic radiation. (d) Energy-level diagram for a vacancy (hole) and the allowed x-
ray transitions. 
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 (2) Superimposed on the bremsstrahlung continuum is the nearly monochromatic set of x-
ray lines that reflect the atomic structure of the atoms of the anode. The mechanism for the 
production of this characteristic radiation is suggested by Figure 10.7c. A high-energy 
electron impacts the anode and knocks out an inner shell electron from an anode atom. An 
x-ray photon is emitted when the vacancy thus created is filled by means of a downward 
transition made by an electron in one of the higher energy shells. The process can be 
represented on an energy diagram like that of Figure 10.7d, which represents the energy of 
an atom with a vacancy in a particular shell along with transitions allowed by the selection 
rules. The nomenclature for the various lines is derived from the initial and final states of 
the transition, as is suggested by Figure 10.7c. Note that the spin-orbit interaction, along 
with other relativistic effects, creates a splitting of the energy levels of the various shells 
according to the quantum number l, which indexes the total angular momentum. The line 
Kα , for example, is really a multiplet consisting of two lines (Kα1, Kα2), which are seldom 
resolved in x-ray diffraction work. 
 
Because of its monochromatic nature, the characteristic radiation described above is quite 
useful for x-ray diffraction. In this experiment the apparatus has an anode made of Mo, for 
which the important emission lines are Kα (λ =0.07107 nm) and Kβ (λ = 0.063225 nm). The 
wavelength given for the Kα  radiation is a weighted average for the doublet Kα1,2. The Kβ  
radiation from Mo is about three times weaker than the Kα so that diffraction patterns can 
be made easier to interpret if the Kβ is selectively filtered out. This can be done 
conveniently for Mo K radiation by means of a foil made of Zr, which has an absorption 
edge (due to photoelectric absorption) at λ = 0.068877 nm, so that wavelengths shorter than 
this are selectively absorbed. A Zr foil with a thickness of 0.05mm, for example, when used 
as a filter for Mo K, will produce a beam with a Kα  component that is about 16 times more 
intense than the Kβ . See Appendix B for Kα and Kβ emission lines and K edges for 
different elements. 
 
 
EXPERIMENT 
 

                   
     
FIGURE 10.9    Arrangement for measurement of single-crystal diffraction. 
X-Ray Bragg Diffraction 
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Note: As with all ionizing radiation, caution should be exercised to avoid unnecessary 
bodily exposure. The glass panels for the x-ray apparatus are made from lead glass and 
there is no excess radiation outside of the apparatus.  
(a) Single Crystal. Mount the NaCI single crystal in the crystal mount of the diffractometer 
arrangement so that the (100) face is parallel to the back of mount, as shown schematically 
in Figure 10.9. Use an accelerating voltage of 35 kV for the x-ray tube and a current 
consistent with its power rating to produce a collimated beam of x rays that strikes the 
crystal face as shown. The diffractometer should be in θ−2θ mode, that is, the G-M detector 
arm should move through an angle 2θ whenever the crystal holder turns through θ so that 
the angles of incidence and reflection remain equal as the angle θ is scanned. 
 
1) For values of θ within the range of motion of the diffractometer, record the detected 

intensity versus θ .  
  
2) Plot the data.  Repeat the scan with a filter that has an appropriate absorption edge for 

selectively attenuating the Kβ but not the Kα line.  
 
3) Identify each observed peak with the appropriate Miller indices in the Bragg equation of 

Eq. 18 and with respect to the wavelength of the radiation. Tabulate the angular 
positions of the peaks and, from the known wavelengths involved, calculate values for 
the lattice constant a. You will have to assign values of (hkl) for the observed lines. The 
structure factor Fhkl, for the fcc lattice, will be non-zero only if h, k, and l are either all 
even or all odd (See Appendix A). In general, reflections from a plane (hkl) that are 
permitted by the Bragg law, but for which the structure factor corresponding to Fhkl is 
zero, will not be detected.  

 
4)   For NaCl the edge of the unit cube of Fig. 10.3 has an accepted length of a = 0.563 nm.     
      How does this compare with the best value derived from your data.   
 
5) Repeat the measurements and analysis for the (100) face of a LiF crystal, for which the    
      accepted value of a is 0.402 nm. 
 
6) Repeat the procedure and analysis for GaAs and  Si crystals. GaAs has a Zinc Blende 

structure based on four symmetric covalent bonds per atom and has structure factor 
selection rules that are different from those of the fcc crystal. As indicated in Appendix 
A, the structure factors are only non-zero for the cases  h + k + l =  4n, and hkl all odd. 
(See Appendix A). The accepted value of the lattice constant of GaAs is a = 0.565 nm. 
Si has the diamond cubic structure with a = 0.543 nm. Both the Zinc Blende and 
diamond structures can be considered as two interpenetrating FCC lattices with two 
atoms associated with one lattice point. These structures are therefore based on a face 
centered cubic lattice with eight atoms per unit cell.  The GaAs sample has a (100) face 
and the two silicon samples have (100) and (111) faces. However, both the GaAs and 
(111) Si samples are cut several degrees off the crystal planes and use of the apparatus 
in Bragg mode will require that a sample rocking curve first be done in order to align 
the sample holder along the appropriate crystal plane. The instructor will show you the 
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direction of the cut and how to store the new calibration constants in the apparatus 
microprocessor.  

 
                                 Appendix A:  Structure Functions  
 
The structure function  i-j( )

G G iF =NS =N f e
i

⋅⎡ ⎤
⎢ ⎥⎣ ⎦
∑ G r  from Eq. 21 depends on the atomic 

scattering form factors fi and the Miller indices h, k, l describing the scattering planes. 
The observed X-Ray intensity will be proportional to 2

G|F | . To keep track of the 
dependence on the Miller indices write FG as Fhkl  and look at the results for some 
particular crystal structures. For a NaCl type face centered cubic crystal the structure 
factors are given by: 
  
                                      hkl all even     Fhkl  =  4(fCl + fNa)  

                                            hkl all odd       Fhkl  =  4(fCl - fNa) 
                                            hkl mixed        Fhkl   =  0  
 
      Note that the all odd case will give almost zero since the scattering form factors for Na 

and Cl are almost identical. Thus the selection rules indicate that only the hkl all even 
Bragg peaks will be observed for the face centered cubic crystal.  

 
      Silicon and Gallium Arsenide have the zinc blende (ZnS) structure which also has a 

face centered cubic basis cell, but different locations for the second constituent.  The 
structure functions take the four forms: 

 
                                            h + k + l = 4n                 F2

hkl  = 16(fZn + fS)2 
                                            h +k + l  =  2(2n + 1)       F2

hkl  = 16(fZn − fS)2 
                                            hkl all odd                      F2

hkl  = 16(f2
Zn + f2

S) 
                                            hkl mixed                       F2

hkl  = 0 
     For silicon, the Zn and S species are identical, so only the first  and third conditions will     
     give observable Bragg peaks. The same will be almost exactly true for GaAs since Ga     
     and As have almost identical scattering form factors.      
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