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Quantum mysteries revisited again

P. K. Aravind®
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This paper describes a device, consisting of a central source and two widely separated detectors with
six switch settings each, that provides a simgedankendemonstration of the nonclassical
correlations that are the subject of Bell’'s theorem without relying on either statistical effects or the
occurrence of rare events. The mechanism underlying the operation of the device is revealed for
readers with a knowledge of quantum mechanics.2084 American Association of Physics Teachers.
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[. INTRODUCTION IIl. THE GEDANKEN EXPERIMENT

This paper presents gedankenexperiment inv0|ving a A SourceSe_mitS four partiCleS, two of Wthh ﬂy off to the
source and two widely separated detectors/observers thift toward Alice and the other two to the right toward Bob
conveys the essence of the nonclassical correlations that at&€€ Fig. 1 Each pair of particles enters a detector which
the subject of Bell's theorehto a lay audience without re- performs a measure_ment on it and displays the results.on a
lying on either statistical correlations or the occurrence ofSCT€€n segmented into nine square panels arranged in the
rare events. The device on which this demonstration is basd@™™m ©f & 3<3 array, as shown in Fig. 1. The measurement
was suggested by the work of David Mermin and Asherthat is performed depends on, the $W|tch settings chosen by
Peres(see Sec. IV for a more detailed statement of credits Alice and Bob. Each detector’s switch can be set to one of

The present demonstration is set within the same gener§[X POSitions, each of which causes an entire row or column
framework as several of Mermin's earlier nontechnicalOf panels on it to light up in response to the incoming par-

demonstratior’s® of Bell's theorem. In Mermin's demon- ticles. Each panel that lights up upon receipt of the particles

strations, a central source emits several particles that fly o{t)rghtS up either red or gree(Figures in the online edition of

toward an equal number of widely separated detectors e journal are in color; in the print edition red and green

observers. Each particle enters a detector, whose switch C%'ggmggpor? Séabclﬁ%ketzr:tjorg\:v?ﬁ/ ’b;eggﬁgig);zqe F\f’éx ;rmgé

be set to one of a small number of positions, and causes #e three rows of panels, from top to bottpand C1, C2
light next to the chosen switch position to flash red or green, 4 C3(for the three columns of panels, from left to rigﬁt

A complete demonstration with such a setup consists of &igyre 1 shows the results of a run of this experiment in
large number of repetitions of the following two basic steps:ynich Alice chooses the detector setting R1 and Bob the
(1) a button is pressed on the source, releasing a set of pagatting C2, and their panels light up as shown.
ticles that speed off toward their respective detectorsi@nd A complete demonstration with the above device consists
an observer at each detector randomly sets its switch to ong 3 Jarge number of repetitions of the following two steps:
of the allowed positions and notes the color of the light thai(1) a putton is pressed on the source, releasing four particles,
flaShes When the partiC|e enters hiS/her deteCtOI’. At the end %0 of which proceed toward Alice and the other two toward
all these runs the observers get together to compare thefioh, and(2) Alice and Bob each independently and ran-
records of detector settings and light flashings. It is then thagomly set their detectors to one of its six possible settings
they discover that they have come face to face with thexnd note the colors of the panels that light up upon entry of
spookiness of quantum entanglement, which amounts to aghe particles. A very important feature of this demonstration
informal appreciation of the central point of Bell's theorem. js that the switch settings and measurements at the two de-
Table | lists the salient features of Mermin’s three earliertectors in any run are always made within a very short time
demonstrations of Bell's theorem, with the correspondinginterval, which is too short to allow the transfer of any infor-
features of the present scheme listed underneath. One comation from one detector to the other; in other words, the
spicuous difference between the present scheme and the ear-
lier ones is that two particles now go to each detector, rather
than just one. However the more significant differences are
the numbers in the third and fourth columns. The presentable I. Salient features of several nontechnical demonstrations of Bell's
scheme involves only two detectofa simplification com-  theorem.
pared to the GHZ—Mermin schepbut each detector now

has six switch settingga complication relative to all the , No. detectors  No. detector
other schem@sAn advantage of the present scheme over the"®™e No. particles or observers settings
Bell-Mermin scheme is that it does not rely on statisticalBell-Mermir? 2 2 3
features of the data to demonstrate its nonclassical effect§Hz—Mermir? 3 3 2
while an advantage over the Hardy—Mermin scheme is that ittardy—Mermiri 2 2 2
does not rely on the occurrence of rare events. However Bresent scheme 4 2 6

disadvantage compare_d to the earlier schemes is thgt 8 cterences 1 and 2.
technology needed to implement the present scheme in theeferences 3 and 5.
laboratory is more complex. “References 4 and 6.
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ALICE BOB mon sense notions would seem to be that the particles carry

.:. “instruction sets” to their detectors telling them how to re-
— > spond for each of their switch settings. Indeed, in the absence
- > of any exchange of signals between the detectors, it is diffi-
D D cult to see how else the common panels on both detectors

can always light up the same colors no matter what switch
Fig_. 1. Thegedankerexperiment. A sourc& emits four p_articles, two (_)f settings are chosen by Alice and Bob. The instruction sets
which move off to the left and the other two to the right. Each pair of )5t clearly be such thds) identical instructions are pro-
particles enters a detect®, adjusted to one of six switch settings, and _ . - . . h
causes an entire row or column of panels on it to light up. In the run abov \,“d_ed to b_Oth detectors in eve_ry rL_l(m)ther\lee 'dem'ca_l
Alice chooses the setting R1 on her detector and causes the panels in tR¥Vitch settings would lead to violations of the correlation
first row to light up red, green, redrom left to right, while Bob chooses ~ rule), and(b) any panel on either detector always lights up
the setting C2 and causes all the panels in the second column to light ughe same color no matter whether a row or column switch
green. setting is used to activate (btherwise one of these settings
would lead to a violation of the correlation rié\n alterna-
tive way of phrasing the conclusion i) is to say that the
conditions are such that neither detector can influence thproperties of the particles revealed by the detector measure-
outcome of the other in any run as a result of either its switchments are “elements of reality’in the sense that they can be
setting or its registered response. determined without disturbing the particles, or the detectors
After a large number of such runs, Alice and Bob getwith which they interact, in any way. To understand this
together to compare their records of detector settings anpoint, suppose that one wishes, in a particular run, to deter-
light flashings. When they do this they find that all their mine the property of Bob’s particles revealed by the color of
observations, without exception, can be summarized in théhe panel at the top left corner of his detector. One can do
form of the following two rules. this by having Alice use either the setting R1 or C1 and
Rule 1 (the “parity” rule): For any of the detector settings observe the color of the top left panel on her detector, and
R1, R2, R3, C1 or C2, an even number of panels lights ughen conclude, from the correlation rule, that Bob’s panel too
red and an odd number lights up green. However for thenust have that color in this ruRecall, from the conditions
setting C3 an odd number of panels lights up red and an eveuf the experiment, that enlisting Alice’s cooperation in this
number lights up green. Further, the four possible outcomeway causes no disturbance to Bob’s partiglédne can in
for each detector setting occur randoniiye., each occurs a fact extrapolate from this example and assert that the prop-
fourth of the time. Figure 2 illustrates this rule by showing erties of Bob’s particles revealed by all nine of his detector
the four ways in which the panels can light up for each of thepanels must be elements of reality in every run, because
six detector settings. there is no telling which of them could be forced to reveal
Rule 2 (the “correlation” rule): In those runs in which themselves as a result of Alice’s and Bob’s random choices.
Alice’s and Bob’s detector settings cause one or more comAnd it follows, by symmetry, that the same statement must
mon (i.e., similarly placeg panels on their detectors to light hold true of Alice’s particles as well.
up, the common panels always light up the same colors. To summarize, the idea that the particles carry “instruction
This rule is illustrated in Fig. 3, which shows Alice’s and sets” to their detectofsor that they possess “elements of
Bob’s detector responses alongside each other for a numbegality” that can be determined without disturbing them in
of runs. If one looks at the first, second, and fourth of theany way appears to be an unavoidable consequence of the
runs listed, one sees that the common panels that light up aexistence of the correlation rule.
both detectors always have the same colors. However no The solution to our puzzle therefore reduces to the task of
common panels light up in the third run, and Rule 2 does notlesigning instruction sets for both detectors in every run in
apply in this case. Note that Rule 1 is always obeyed by botlsuch a way that both the parity and correlation rules are
the detectors in every run. satisfied. As already mentioned, the correlation rule can be
The above demonstration presents us with an interestintaken care of by ensuring that a common instruction set is
puzzle: how can the source and detectors be constructed poovided to both detectors in every run. Keeping propésiy
that, if the experiment is carried out as described, only reof two paragraphs earlier in mind, the task of designing an
sults in conformity with both the “parity” and “correlation” instruction set reduces to the following: assign a definite
rules are ever observed? color, red or green, to each detector panel in such a way that
Let us begin by focusing on the correlation rule. The onlythe parity rule is always satisfied. However this is immedi-
reasonable explanation for this rule in accordance with comately seen to be impossible in even a single instance if one
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Fig. 2. lllustrating Rule 1(the “par-
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ity” rule ). The four possible outcomes

R2 ﬁ Ei; for each of the six detector settings
R1, R2, R3, C1, C2, and C3 are
shown.
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RUN 1: R1 @ C1 E
i

I®o, | 0,81 ]| 0,90,

RUN 2: C2

R3 ﬁ Fig. 4. The Mermin—Peres “magic squaréRefs. 8 and 8 Each entry in

the square is an observable for a pair of qubits, withrl, o,, ando,
being the identity and Pauli operators. The observables in each row or col-
umn of the square form a mutually commuting set. When a particular switch
setting on a detector is selected, the detector carries out a measurement of
- the observables in the corresponding row or column of the square on the
RUN 4: R3 E C3 —:H qubits entering it and displays the eigenvalues in the form of colored lights
(+1=green,—1=red on its panels. In the context of Ef{), the first and

) . ) . ) . econd halves of each observable in the square refer to qubits 1 and 3 of
Fig. 3. lllustrating Rules 1 and 2 in a series of runs carried out by Alice andi\lice o to qubits 2 and 4 of Bob.

Bob. Each row shows the responses of the detectors when their switches are
set to the positions shown. Note that the outcome of each run always con-
forms to both the “parity” and “correlation” rules.

RUN 3: R2

enquires about the total number of red panels on a detectopther words, the source emits a pair of “Bell” states, with
on the one hand, Rule 1 requires this number to be ¢ifen one member of each Bell state going to Alice and the other to
one sums the red panels over the rpWst, on the other, it Bob.
requires it to be oddif one sums the red panels over the Figure 4 shows nine observables for a pair of qubits ar-
columng. This contradiction shows that there is no solutionranged in the form of a 83 array, with the observables in
to our puzzle based on instruction sets. A willingness to aceach row or column forming a mutually commuting set.
cept the notion of instruction seter “elements of reality’) Each observable has only the eigenvaltiésand, further,
to begin with, followed by the recognition that they cannotthe product of the observables in any row or column-is
provide a solution to our puzzle, amounts to an informalwith the exception of the last column for which the product
appreciation of the central point of Bell's theorem. is —1 (I being the identity operatr

What, then, is the “real” solution to our puzzle? In other  \when any of the settings R1, R2,..., or C3 is chosen on a
WOI‘dS, what is the inner mechanism of the source and dete@'etector' the detector carries out a measurement C(tth’a_
tors in our demonstration, and how can we understand thguting observables in that row or column of Fig. 4 on its

that it involves “entanglement” between the source part|cles|ightS on its panels according to the convention thatl is

that travel toward Alice and Bob. Entanglement is a pecullara green andé— 1 a red(it should be mentioned, in this con-

property of the quantum w_orld that has no class[cal analogext, that the first and second parts of each observable in Fig.
and cannot be understood in everyday terms. Bell's theore refer to qubits 1 and 3 of Alice or to qubits 2 and 4 of Bob

more than anything elsg, has led 1o a widespread appreci@z-ule 1 then follows as an immediate consequence of the
tion of the truly paradoxical features that lie at the heart Offacls that if several mutually commuting observables obey a

ﬁg?ﬂg:ﬁg’ar:r'u;”\:\?hgeﬁggratlzgrﬂgghzliyggci'gﬁg Vt\)”rtgsﬂuvii%u?ﬁ_ertain functional relationship, their measured eigenvalues in

; . . : [ Iso obey a similar relationship; in the
tanglement, may wish to pause at this point to try and fi uré arbitrary state also '
outgthe inner mgchanismpof the devicepin Fig. 1yand hog\]/v itp_resent case this implies that the product of the observed

; ; e thic ; elgenvalues of the observables in each row or column of Fig.
m n|
ip')serﬁt\)/r nSirI]tSt;rlCrT.()\(/\t/aSrn(I:rt'lighthIS IS really hard!The solution 4 is +1, with the excepti()n of the last column for which this

product is—1. The last statement, when translated into the
Il HOW THE TRICK IS DONE Li?eguage of the red and green lights, is nothing but the parity
When the button is pressed on the source, it emits four The origin of Rule 2 can be understood as follows. Let
spin-1/2 particleg“qubits”) in the state |4y (i=1,...,4) be an arbitrary set of orthonormal states in
the joint space of qubits 1 and 3 and suppose that they can be

_1 1 expanded as |¢;)=2a;[0)1|0)3+b;|0)1|1)5+ci[1)1]0)3
V)= E(|O>llo>2+|1>l|l>2)® E(|O>3|0>4 +d;|1)1]1)5, wherea ,...,d; are complex coefficients. Then
it follows that | ;) =aj"|0),|0)4+b{|0)|1)4+c"[1)2[0)4
+11)al1)a), 1) +d¥|1),|1),(i=1,...,4) is an orthonormal set of states in
where|0); and|1); are eigenstates, with eigenvalueg and  the joint space of qubits 2 and 4. It can be verified that the
—1, of the Pauli operatos, of qubiti (i=1,...,4). Qubits 1  state given in Eq(1) can be expressed in terms of thg)
and 3 of this state go to Alice, and qubits 2 and 4 to Bob. Inand|¢;) as

1305 Am. J. Phys., Vol. 72, No. 10, October 2004 P. K. Aravind 1305



|WY= 3| 1) 1) + | ) o) + | h3)| da) + | had | )] Solution: A straightforward calculation shows that the
y=dlvldy) 2/l ¢2) 3/l #a) @) 2 eigenstates of the observables in the three rd®is R2, and
I?3) and three columngC1, C2, and CBof Fig. 4 are as

When Alice carries out a measurement of one of the sets S jows:

commuting observables in Fig. 4, E@®) shows that if she

projects her qubits into one of the eigenstatgs of this set, R1- (1,0,0,0 (0,0,1,0 (0,1,0,0 (0,0,0,2
she projects Bob’s qubits into the associated giae ltcan  R2: (1,1,1,2 (1,-1,1-1) (1,1-1,-1) (1,-1,-1,1
be shown that the coefficients,...d; are always real for R3: (1,1,1-1) (1,-1,1,) (1,1-1,) (1,-1,-1,-1)
the eigenstatels);) defined by Fig. 4see Exercise 1 in the C1: (1,0,1,0 (1,0-1,0 (0,1,0,2 (0,1,0~1)
Appendix, and hence that eadlp,) is identical in formto  C2: (1,1,0,0 (1,-1,00  (0,0,1,3 (0,0,1-1)
the correspondingy;) when expressed in terms of its own C3: (1,0,03  (1,00-1)  (0,1,1,0 0-110

standard basis. It follows from this that.if Bob measures ON€rhe shorthand notatiora(b,c,d) has been used for then-
?hr more of t_he sarre obser\;]ab:jes as}Allche, he always Obéa"}?ormalized statea|0Y[0)+b|0)|1)+¢|1)|0)+d|1)[1) and
€ same eigenvalues as she coes for these common o Sef¥e eigenstates in each row have been arranged so that they
ables (see Exercise 2 in the Appendjxwhich is just the have the eigenvalue¢+1,+1), (+1,-1), (—1,41), and
correlation rule. Equatiori2) also explains the fact, men- (—1,—1) with respect to the first two observables in the row
tioned at the_ end of Rul_e 1, that all four out(_:_omles for eaChor cblumn that define thertthe eigenvalue of the third ob-
detector setting occur with the same probabi(y 3). servable can be inferred from those of the first two, and so is
omitted. The reality of all the numbers in this table shows
that the state$y;) for Alice derived from these eigenstates
IV. CREDITS FOR THE DEMONSTRATION (by taking|0)|0) to be|0)4|0)3, etc) are identical in form to
fthe associated statdgb;) for Bob. This observation will
prove of use in the next exercise.
Exercise 2:Suppose Alice carries out a measurement of

The “magic square” of Fig. 4, which lies at the heart o
the present demonstration, is due to Merinamd Peres.

Mermin®%used this array of observables to prove the Bell—

Kochen—SpecketBKS) theorem'! a close relative of the the observables in the third row of Fig. 4 and obtains the
more famous Bell's theorem. Petalso used this array to €igenvaluest1, —1, —1 (in that ordey. (8) Show that if Bob

give a related, but different, proof of the BKS theorem. TheCa'Ties out the same measurement as Alice, he obtains the
fact that the Mermin—Peres proof of the BKS theorem could®@Me €igenvalues as she das.Show that if Bob carries

be converted into a proof of Bell's theorem was pointed outPUt @ measurement of the observables in the third column of

by Cabelld® and the authdf who showed, in slightly differ- Fig. 4, he gets the same_eigenvalue as Alice for the one
ent ways, how this could be done by distributing one memObservable they measure in common and also calculate the

ber each of a pair of Bell states to two observers and havinﬁ:obabilities with which he obtains the various outcomes for
them carry out certain measurements. It is the author’s vef€ other two observables. ,

sion of this proof of Bell's theorem “without inequalities”  Solution:The state given in Eq1) can be expanded in the
that has been turned into the nontechnical demonstration prérm of Eq. (2), with |¢;) and |¢;) (i=1....,4) both being
sented here. This very brief survey of the literature makes ngiven by the eigenstates in the third raR3) of Fig. 4. A
attempt at completeness but merely highlight the works thafneasurement by Alice of the observables in the third row
directly influenced this demonstration. that yields the eigenvalues1, —1, —1 projects her qubits

After an earlier version of this paper was posted on thénto the Statql,_l,l,]) and Bob’s qu|tS into this same state
eprint archive, Richard Cleve informed me that David Mer-as well. Thus, a measurement by Bob of the same observ-
min and he had come up with a similar scheme in whichables as Alice leads to the same eigenvalues as she obtains,
each detector had only three switch settings. This is easil}S Was to be shown in paf@). To do part(b), note that the
accomplished, within our framework, by allowing Alice to State Bob is left with after Alice’s measurement, namely
use only the row settings R1, R2, and R3 on her detector and.—1.1,2, can be expressed as an equally weighted super-
Bob to use only the column settings C1, C2, and C3 on hisPosition (with coefficients of 2 each of the states
If, at the same time, a negative sign is affixed to the seconél.0,0,3 and(0,—1,1,0. This shows that if Bob measures the
and third observables in the last row of Fig. 4, Rule 1 can b@bservablesr,o,, o.0,, 0,0, he obtains the eigenvalues
restated in the form that Alice only observes an even numbet-1, +1, —1 with a probability of; and the eigenvalues 1,
of red squares in any of the rows she activates and Bob arr1, —1 with a probability of;; in either case he obtains the
odd number of red squares in any of the columns he actisame eigenvalugnamely, —1) for the single observable
vates. Rule 2 is unchanged, and the impossibility of instruc{namely,o, o) that he measures in common with Alice.
tion sets follows from the same argument as before.
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