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This paper describes a device, consisting of a central source and two widely separated detectors with
six switch settings each, that provides a simplegedankendemonstration of the nonclassical
correlations that are the subject of Bell’s theorem without relying on either statistical effects or the
occurrence of rare events. The mechanism underlying the operation of the device is revealed for
readers with a knowledge of quantum mechanics. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

This paper presents agedankenexperiment involving a
source and two widely separated detectors/observers
conveys the essence of the nonclassical correlations tha
the subject of Bell’s theorem1 to a lay audience without re
lying on either statistical correlations or the occurrence
rare events. The device on which this demonstration is ba
was suggested by the work of David Mermin and Ash
Peres~see Sec. IV for a more detailed statement of credi!.

The present demonstration is set within the same gen
framework as several of Mermin’s earlier nontechnic
demonstrations2–4 of Bell’s theorem. In Mermin’s demon
strations, a central source emits several particles that fly
toward an equal number of widely separated detect
observers. Each particle enters a detector, whose switch
be set to one of a small number of positions, and caus
light next to the chosen switch position to flash red or gre
A complete demonstration with such a setup consists o
large number of repetitions of the following two basic ste
~1! a button is pressed on the source, releasing a set of
ticles that speed off toward their respective detectors; and~2!
an observer at each detector randomly sets its switch to
of the allowed positions and notes the color of the light t
flashes when the particle enters his/her detector. At the en
all these runs the observers get together to compare
records of detector settings and light flashings. It is then
they discover that they have come face to face with
spookiness of quantum entanglement, which amounts to
informal appreciation of the central point of Bell’s theorem

Table I lists the salient features of Mermin’s three earl
demonstrations of Bell’s theorem, with the correspond
features of the present scheme listed underneath. One
spicuous difference between the present scheme and the
lier ones is that two particles now go to each detector, ra
than just one. However the more significant differences
the numbers in the third and fourth columns. The pres
scheme involves only two detectors~a simplification com-
pared to the GHZ–Mermin scheme! but each detector now
has six switch settings~a complication relative to all the
other schemes!. An advantage of the present scheme over
Bell–Mermin scheme is that it does not rely on statisti
features of the data to demonstrate its nonclassical effe
while an advantage over the Hardy–Mermin scheme is th
does not rely on the occurrence of rare events. Howev
disadvantage compared to the earlier schemes is tha
technology needed to implement the present scheme in
laboratory is more complex.
1303 Am. J. Phys.72 ~10!, October 2004 http://aapt.org/a
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II. THE GEDANKEN EXPERIMENT

A sourceSemits four particles, two of which fly off to the
left toward Alice and the other two to the right toward Bo
~see Fig. 1!. Each pair of particles enters a detector whi
performs a measurement on it and displays the results o
screen segmented into nine square panels arranged in
form of a 333 array, as shown in Fig. 1. The measureme
that is performed depends on the switch settings chosen
Alice and Bob. Each detector’s switch can be set to one
six positions, each of which causes an entire row or colu
of panels on it to light up in response to the incoming p
ticles. Each panel that lights up upon receipt of the partic
lights up either red or green.~Figures in the online edition o
the journal are in color; in the print edition red and gre
show up as black and gray, respectively.! The six switch
settings on each detector will be denoted R1, R2, and R3~for
the three rows of panels, from top to bottom! and C1, C2,
and C3~for the three columns of panels, from left to right!.
Figure 1 shows the results of a run of this experiment
which Alice chooses the detector setting R1 and Bob
setting C2, and their panels light up as shown.

A complete demonstration with the above device cons
of a large number of repetitions of the following two step
~1! a button is pressed on the source, releasing four partic
two of which proceed toward Alice and the other two towa
Bob, and ~2! Alice and Bob each independently and ra
domly set their detectors to one of its six possible settin
and note the colors of the panels that light up upon entry
the particles. A very important feature of this demonstrat
is that the switch settings and measurements at the two
tectors in any run are always made within a very short ti
interval, which is too short to allow the transfer of any info
mation from one detector to the other; in other words,

Table I. Salient features of several nontechnical demonstrations of B
theorem.

Scheme No. particles
No. detectors
or observers

No. detector
settings

Bell–Mermina 2 2 3
GHZ–Merminb 3 3 2
Hardy–Merminc 2 2 2
Present scheme 4 2 6

aReferences 1 and 2.
bReferences 3 and 5.
cReferences 4 and 6.
1303jp © 2004 American Association of Physics Teachers
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 This ar
conditions are such that neither detector can influence
outcome of the other in any run as a result of either its sw
setting or its registered response.

After a large number of such runs, Alice and Bob g
together to compare their records of detector settings
light flashings. When they do this they find that all the
observations, without exception, can be summarized in
form of the following two rules.

Rule 1 (the ‘‘parity’’ rule): For any of the detector setting
R1, R2, R3, C1 or C2, an even number of panels lights
red and an odd number lights up green. However for
setting C3 an odd number of panels lights up red and an e
number lights up green. Further, the four possible outcom
for each detector setting occur randomly~i.e., each occurs a
fourth of the time!. Figure 2 illustrates this rule by showin
the four ways in which the panels can light up for each of
six detector settings.

Rule 2 (the ‘‘correlation’’ rule): In those runs in which
Alice’s and Bob’s detector settings cause one or more c
mon ~i.e., similarly placed! panels on their detectors to ligh
up, the common panels always light up the same colors.

This rule is illustrated in Fig. 3, which shows Alice’s an
Bob’s detector responses alongside each other for a num
of runs. If one looks at the first, second, and fourth of t
runs listed, one sees that the common panels that light u
both detectors always have the same colors. Howeve
common panels light up in the third run, and Rule 2 does
apply in this case. Note that Rule 1 is always obeyed by b
the detectors in every run.

The above demonstration presents us with an interes
puzzle: how can the source and detectors be constructe
that, if the experiment is carried out as described, only
sults in conformity with both the ‘‘parity’’ and ‘‘correlation’’
rules are ever observed?

Let us begin by focusing on the correlation rule. The on
reasonable explanation for this rule in accordance with co

Fig. 1. Thegedankenexperiment. A sourceS emits four particles, two of
which move off to the left and the other two to the right. Each pair
particles enters a detectorD, adjusted to one of six switch settings, an
causes an entire row or column of panels on it to light up. In the run ab
Alice chooses the setting R1 on her detector and causes the panels
first row to light up red, green, red~from left to right!, while Bob chooses
the setting C2 and causes all the panels in the second column to ligh
green.
1304 Am. J. Phys., Vol. 72, No. 10, October 2004
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mon sense notions would seem to be that the particles c
‘‘instruction sets’’ to their detectors telling them how to re
spond for each of their switch settings. Indeed, in the abse
of any exchange of signals between the detectors, it is d
cult to see how else the common panels on both detec
can always light up the same colors no matter what sw
settings are chosen by Alice and Bob. The instruction s
must clearly be such that~a! identical instructions are pro
vided to both detectors in every run~otherwise identical
switch settings would lead to violations of the correlati
rule!, and ~b! any panel on either detector always lights
the same color no matter whether a row or column swi
setting is used to activate it~otherwise one of these setting
would lead to a violation of the correlation rule!. An alterna-
tive way of phrasing the conclusion in~b! is to say that the
properties of the particles revealed by the detector meas
ments are ‘‘elements of reality’’7 in the sense that they can b
determined without disturbing the particles, or the detect
with which they interact, in any way. To understand th
point, suppose that one wishes, in a particular run, to de
mine the property of Bob’s particles revealed by the color
the panel at the top left corner of his detector. One can
this by having Alice use either the setting R1 or C1 a
observe the color of the top left panel on her detector, a
then conclude, from the correlation rule, that Bob’s panel
must have that color in this run.~Recall, from the conditions
of the experiment, that enlisting Alice’s cooperation in th
way causes no disturbance to Bob’s particles.! One can in
fact extrapolate from this example and assert that the p
erties of Bob’s particles revealed by all nine of his detec
panels must be elements of reality in every run, beca
there is no telling which of them could be forced to reve
themselves as a result of Alice’s and Bob’s random choic
And it follows, by symmetry, that the same statement m
hold true of Alice’s particles as well.

To summarize, the idea that the particles carry ‘‘instructi
sets’’ to their detectors2 or that they possess ‘‘elements o
reality’’ that can be determined without disturbing them
any way7 appears to be an unavoidable consequence of
existence of the correlation rule.

The solution to our puzzle therefore reduces to the task
designing instruction sets for both detectors in every run
such a way that both the parity and correlation rules
satisfied. As already mentioned, the correlation rule can
taken care of by ensuring that a common instruction se
provided to both detectors in every run. Keeping property~b!
of two paragraphs earlier in mind, the task of designing
instruction set reduces to the following: assign a defin
color, red or green, to each detector panel in such a way
the parity rule is always satisfied. However this is imme
ately seen to be impossible in even a single instance if

e,
the

up
s
e

Fig. 2. Illustrating Rule 1~the ‘‘par-
ity’’ rule !. The four possible outcomes
for each of the six detector setting
R1, R2, R3, C1, C2, and C3 ar
shown.
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enquires about the total number of red panels on a dete
on the one hand, Rule 1 requires this number to be eve~if
one sums the red panels over the rows! but, on the other, it
requires it to be odd~if one sums the red panels over th
columns!. This contradiction shows that there is no soluti
to our puzzle based on instruction sets. A willingness to
cept the notion of instruction sets~or ‘‘elements of reality’’!
to begin with, followed by the recognition that they cann
provide a solution to our puzzle, amounts to an inform
appreciation of the central point of Bell’s theorem.

What, then, is the ‘‘real’’ solution to our puzzle? In oth
words, what is the inner mechanism of the source and de
tors in our demonstration, and how can we understand
results that are obtained? A clue to the inner mechanism
that it involves ‘‘entanglement’’ between the source partic
that travel toward Alice and Bob. Entanglement is a pecu
property of the quantum world that has no classical ana
and cannot be understood in everyday terms. Bell’s theor
more than anything else, has led to a widespread appre
tion of the truly paradoxical features that lie at the heart
entanglement. The reader thoroughly familiar with quant
mechanics, and who has also had a previous brush with
tanglement, may wish to pause at this point to try and fig
out the inner mechanism of the device in Fig. 1 and how
performs its trick.~Warning: this is really hard!! The solution
is given in the next section.

III. HOW THE TRICK IS DONE

When the button is pressed on the source, it emits f
spin-1/2 particles~‘‘qubits’’ ! in the state

uC&5
1

A2
~ u0&1u0&21u1&1u1&2) ^

1

A2
~ u0&3u0&4

1u1&3u1&4), ~1!

whereu0& i andu1& i are eigenstates, with eigenvalues11 and
21, of the Pauli operatorsz of qubit i ( i 51,...,4). Qubits 1
and 3 of this state go to Alice, and qubits 2 and 4 to Bob.

Fig. 3. Illustrating Rules 1 and 2 in a series of runs carried out by Alice
Bob. Each row shows the responses of the detectors when their switche
set to the positions shown. Note that the outcome of each run always
forms to both the ‘‘parity’’ and ‘‘correlation’’ rules.
1305 Am. J. Phys., Vol. 72, No. 10, October 2004
ticle is copyrighted as indicated in the article. Reuse of AAPT content is su
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other words, the source emits a pair of ‘‘Bell’’ states, wi
one member of each Bell state going to Alice and the othe
Bob.

Figure 4 shows nine observables for a pair of qubits
ranged in the form of a 333 array, with the observables i
each row or column forming a mutually commuting se
Each observable has only the eigenvalues61 and, further,
the product of the observables in any row or column is1I ,
with the exception of the last column for which the produ
is 2I ~I being the identity operator!.

When any of the settings R1, R2,..., or C3 is chosen o
detector, the detector carries out a measurement of the~com-
muting! observables in that row or column of Fig. 4 on i
qubits and displays the observed eigenvalues as col
lights on its panels according to the convention thata11 is
a green anda21 a red~it should be mentioned, in this con
text, that the first and second parts of each observable in
4 refer to qubits 1 and 3 of Alice or to qubits 2 and 4 of Bob!.
Rule 1 then follows as an immediate consequence of
fact8 that if several mutually commuting observables obe
certain functional relationship, their measured eigenvalue
an arbitrary state also obey a similar relationship; in
present case this implies that the product of the obser
eigenvalues of the observables in each row or column of F
4 is 11, with the exception of the last column for which th
product is21. The last statement, when translated into
language of the red and green lights, is nothing but the pa
rule.

The origin of Rule 2 can be understood as follows. L
uc i& ( i 51,...,4) be an arbitrary set of orthonormal states
the joint space of qubits 1 and 3 and suppose that they ca
expanded as uc i&5ai u0&1u0&31bi u0&1u1&31ci u1&1u0&3

1di u1&1u1&3 , whereai ,...,di are complex coefficients. The
it follows that uf i&5ai* u0&2u0&41bi* u0&2u1&41ci* u1&2u0&4

1di* u1&2u1&4 ( i 51,...,4) is an orthonormal set of states
the joint space of qubits 2 and 4. It can be verified that
state given in Eq.~1! can be expressed in terms of theuc i&
and uf i& as

d
are
n-

Fig. 4. The Mermin–Peres ‘‘magic square’’~Refs. 8 and 9!. Each entry in
the square is an observable for a pair of qubits, with 1,sx , sy , and sz

being the identity and Pauli operators. The observables in each row or
umn of the square form a mutually commuting set. When a particular sw
setting on a detector is selected, the detector carries out a measurem
the observables in the corresponding row or column of the square on
qubits entering it and displays the eigenvalues in the form of colored lig
~115green,215red! on its panels. In the context of Eq.~1!, the first and
second halves of each observable in the square refer to qubits 1 and
Alice or to qubits 2 and 4 of Bob.
1305P. K. Aravind
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uC&5 1
2@ uc1&uf1&1uc2&uf2&1uc3&uf3&1uc4&uf4&].

~2!

When Alice carries out a measurement of one of the set
commuting observables in Fig. 4, Eq.~2! shows that if she
projects her qubits into one of the eigenstatesuc i& of this set,
she projects Bob’s qubits into the associated stateuf i&. It can
be shown that the coefficientsai ,...,di are always real for
the eigenstatesuc i& defined by Fig. 4~see Exercise 1 in the
Appendix!, and hence that eachuf i& is identical in form to
the correspondinguc i& when expressed in terms of its ow
standard basis. It follows from this that if Bob measures o
or more of the same observables as Alice, he always obt
the same eigenvalues as she does for these common ob
ables ~see Exercise 2 in the Appendix!, which is just the
correlation rule. Equation~2! also explains the fact, men
tioned at the end of Rule 1, that all four outcomes for ea
detector setting occur with the same probability~of 1

4!.

IV. CREDITS FOR THE DEMONSTRATION

The ‘‘magic square’’ of Fig. 4, which lies at the heart
the present demonstration, is due to Mermin8 and Peres.9

Mermin8,10 used this array of observables to prove the Be
Kochen–Specker~BKS! theorem,11 a close relative of the
more famous Bell’s theorem. Peres12 also used this array to
give a related, but different, proof of the BKS theorem. T
fact that the Mermin–Peres proof of the BKS theorem co
be converted into a proof of Bell’s theorem was pointed
by Cabello13 and the author14 who showed, in slightly differ-
ent ways, how this could be done by distributing one me
ber each of a pair of Bell states to two observers and hav
them carry out certain measurements. It is the author’s
sion of this proof of Bell’s theorem ‘‘without inequalities
that has been turned into the nontechnical demonstration
sented here. This very brief survey of the literature makes
attempt at completeness but merely highlight the works
directly influenced this demonstration.

After an earlier version of this paper was posted on
eprint archive, Richard Cleve informed me that David M
min and he had come up with a similar scheme in wh
each detector had only three switch settings. This is ea
accomplished, within our framework, by allowing Alice t
use only the row settings R1, R2, and R3 on her detector
Bob to use only the column settings C1, C2, and C3 on
If, at the same time, a negative sign is affixed to the sec
and third observables in the last row of Fig. 4, Rule 1 can
restated in the form that Alice only observes an even num
of red squares in any of the rows she activates and Bob
odd number of red squares in any of the columns he a
vates. Rule 2 is unchanged, and the impossibility of instr
tion sets follows from the same argument as before.

APPENDIX

Below are two exercises~and their solutions! that could
aid the reader in understanding some of the points mad
Sec. III.

Exercise 1:Calculate the simultaneous eigenstates of
commuting observables in each of the rows and column
Fig. 4 and verify that they all have real expansion coe
cients in terms of the standard basis for a pair of qubits.
1306 Am. J. Phys., Vol. 72, No. 10, October 2004
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Solution: A straightforward calculation shows that th
eigenstates of the observables in the three rows~R1, R2, and
R3! and three columns~C1, C2, and C3! of Fig. 4 are as
follows:

R1: ~1,0,0,0! ~0,0,1,0! ~0,1,0,0! ~0,0,0,1!
R2: ~1,1,1,1! ~1,21,1,21! ~1,1,21,21! ~1,21,21,1!
R3: ~1,1,1,21! ~1,21,1,1! ~1,1,21,1! ~1,21,21,21!
C1: ~1,0,1,0! ~1,0,21,0! ~0,1,0,1! ~0,1,0,21!
C2: ~1,1,0,0! ~1,21,0,0! ~0,0,1,1! ~0,0,1,21!
C3: ~1,0,0,1! ~1,0,0,21! ~0,1,1,0! ~0,21,1,0!

The shorthand notation (a,b,c,d) has been used for the~un-
normalized! stateau0&u0&1bu0&u1&1cu1&u0&1du1&u1& and
the eigenstates in each row have been arranged so that
have the eigenvalues~11,11!, ~11,21!, ~21,11!, and
~21,21! with respect to the first two observables in the ro
or column that define them~the eigenvalue of the third ob
servable can be inferred from those of the first two, and s
omitted!. The reality of all the numbers in this table show
that the statesuc i& for Alice derived from these eigenstate
~by takingu0&u0& to beu0&1u0&3 , etc.! are identical in form to
the associated statesuf i& for Bob. This observation will
prove of use in the next exercise.

Exercise 2:Suppose Alice carries out a measurement
the observables in the third row of Fig. 4 and obtains
eigenvalues11, 21, 21 ~in that order!. ~a! Show that if Bob
carries out the same measurement as Alice, he obtains
same eigenvalues as she does.~b! Show that if Bob carries
out a measurement of the observables in the third colum
Fig. 4, he gets the same eigenvalue as Alice for the
observable they measure in common and also calculate
probabilities with which he obtains the various outcomes
the other two observables.

Solution:The state given in Eq.~1! can be expanded in th
form of Eq. ~2!, with uc i& and uf i& ( i 51,...,4) both being
given by the eigenstates in the third row~R3! of Fig. 4. A
measurement by Alice of the observables in the third r
that yields the eigenvalues11, 21, 21 projects her qubits
into the state~1,21,1,1! and Bob’s qubits into this same sta
as well. Thus, a measurement by Bob of the same obs
ables as Alice leads to the same eigenvalues as she ob
as was to be shown in part~a!. To do part~b!, note that the
state Bob is left with after Alice’s measurement, name
~1,21,1,1!, can be expressed as an equally weighted su
position ~with coefficients of 1/& each! of the states
~1,0,0,1! and~0,21,1,0!. This shows that if Bob measures th
observablesszsz , sxsx , sysy he obtains the eigenvalue
11, 11, 21 with a probability of1

2 and the eigenvalues21,
21, 21 with a probability of1

2; in either case he obtains th
same eigenvalue~namely, 21! for the single observable
~namely,sysy) that he measures in common with Alice.

a!Electronic mail: paravind@wpi.edu
1J. S. Bell, ‘‘On the Einstein-Podolsky-Rosen paradox,’’ Physics~Long Is-
land City, N.Y.! 1, 195–200~1964!. Reprinted in J. S. Bell,Speakable and
Unspeakable in Quantum Mechanics~Cambridge U.P., Cambridge, New
York, 1987!.

2A popular exposition of Bell’s theorem can be found in N. D. Mermi
‘‘Bringing home the atomic world: Quantum mysteries for anybody,’’ Am
J. Phys.49, 940–943~1981!. An expanded version of this paper can b
found as Chap. 12 in N. D. Mermin,Boojums All the Way Through~Cam-
bridge U.P., Cambridge, 1990!. See also N. D. Mermin, ‘‘Is the moon ther
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