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It is demonstrated that the premisses of the Einstein—Podolsky—Rosen paper are inconsistent
when applied to quantum systems consisting of at least three particles. The demonstration reveals
that the EPR program contradicts quantum mechanics even for the cases of perfect correlations.
By perfect correlations is meant arrangements by which the result of the measurement on one
particle can be predicted with certainty given the outcomes of measurements on the other
particles of the system. This incompatibility with quantum mechanics is stronger than the one
previously revealed for two-particle systems by Bell’s inequality, where no contradiction arises at
the level of perfect correlations. Both spin-correlation and multiparticle interferometry examples
are given of suitable three- and four-particle arrangements, both at the gedanken and at the real

experiment level.

1. INTRODUCTION

Bell’s theorem of 1964 is a proof that certain plausible
propositions about locality, reality, and theoretical com-
pleteness are incompatible with some predictions of two-
particle quantum mechanics.! These propositions were
presented in 1935 by Einstein, Podolsky, and Rosen
(EPR),? who used them in conjunction with some quan-
tum mechanical predictions as the premisses of an argu-
ment concluding that quantum states cannot in all situa-
tions be complete descriptions of physical reality. There is
nothing in EPR’s argument nor in their comments on it
that suggests doubt about the correctness of quantum me-
chanical predictions. Their claim that the quantum state is
an incomplete description is offered rather as an interpreta-
tion of quantum mechanics: roughly, that individual sys-
tems have intrinsic properties, but the quantum state gives
only a statistical description of an ensemble of intrinsically
differing individual systems. Furthermore, they suggest
that the idea of a complete state, richer in content than the
quantum state, provides a commonsense explanation of
certain perfect correlations predicted by quantum mechan-
ics, which otherwise are baffling. Consequently, contrary
to the impressions of many physicists, EPR were not offer-
ing a paradox, but rather a program for solving a problem.
What Bell’s theorem shows is that their program cannot be
right: The conjunction of EPR’s propositions with the
quantum mechanical predictions for a pair of systems (as
simple as two-state systems) leads to a contradiction.

The contradiction is revealed by deriving from EPR’s
program an inequality which is violated by certain quan-
tum mechanical statistical predictions. Statistical predic-
tions concern imperfect or statistical correlations, in which
the outcome of a measurement on one system determines
not the outcome of a measurement on the other system but
rather the probabilities of various outcomes. Because of the
contradiction, experiments can be performed in which the
results cannot agree both with the predictions of quantum
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mechanics and with the inequality. Extensions of Bell’s
original theorem made such experimental tests feasible,
and more than a dozen of these have been performed, with
results overwhelmingly supporting quantum mechanics.?

Recently, Greenberger, Horne, and Zeilinger (GHZ)*
have demonstrated Bell’s theorem in a new way, by analyz-
ing a system consisting of three or more correlated spin-1/2
particles. Unlike Bell’s original theorem and variants of it,
GHZ’s demonstration of the incompatibility of quantum
mechanics with EPR’s propositions concerns only perfect
correlations rather than statistical correlations, and it com-
pletely dispenses with inequalities. Since EPR’s argument
for the incompleteness of quantum mechanics was based
upon perfect correlations, GHZ’s analysis lies close to the
heart of EPR’s ideas, but with the surprising turnabout of
exhibiting a contradiction. GHZ’s demonstration can also
be read as a gedankenexperiment for testing quantum me-
chanical predictions against the propositions of EPR on
locality, reality, and completeness, and it may be possible,
as we shall discuss, to transform the gedankenexperiment
into a real experiment. There was one previous proof of
Bell’s theorem that dispensed with inequalities, that of Ko-
chen and (equivalently) of Heywood and Redhead,’ who
analyzed a pair of spin-1 systems in a state of total spin
angular momentum zero. GHZ’s demonstration has sever-
al advantages, however. First, it is much shorter, as a result
of the freedom for manipulation afforded by three or more
particles. Second, GHZ’s argument suggests a very direct
gedankenexperiment. And third, if GHZ’s gedankenexper-
iment can be realized, then a new type of multiparticle cor-
relation experiment will be initiated.

The central purpose of this paper is to present and devel-
op GHZ’s original argument, which has been published so
far only in outline in proceedings of a conference. As back-
ground we shall recapitulate in Sec. II the route from
EPR’s propositions to Bell’s theorem of 1964, via the ge-
dankenexperiment of Bohm,® who introduced the use of a
pair of spin-1/2 particles. We emphasize that the premisses
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of Bell are those of EPR (adapted to Bohm’s gedankenex-
periment), but that he revealed an unexpected conse-
quence of their premisses. In Sec. IIT we shall present
GHZ’s argument, which uses a gedankenexperiment with
three or four correlated spin-1/2 particles in order to prove
Bell’s theorem without resorting to an inequality. Section
IV will present a new gedankenexperiment involving three
particles, as in versions of GHZ’s proof by Greenberger
and Choi’ and by Mermin.® The innovation is that in the
new experiment propagation directions rather than spins
are correlated, as in recent two-particle interferometer ex-
periments.’ In Sec. V we shall show how EPR’s program
might be feasibly tested experimentally, by observing ap-
proximations to theoretically perfect correlations. Section
VI will discuss the possibility of real multiparticle experi-
ments, by generating triples and quadruples of photons,
either via atomic cascades or via down conversion.

It is our intention to make this paper as nearly self-con-
tained as possible. We shall present the arguments of EPR,
Bell, and GHZ essentially in their entirety, and the new
material (of Secs. IV, V, and VI) will not presuppose any
previous acquaintance with two-particle interferometry. A
series of Appendices will present all the relevant quantum
mechanical calculations. We hope, therefore, to make
accessible both some important earlier contributions to the
foundations of quantum mechanics and some fascinating
recent developments.

I1. FROM EPR TO BELL’S THEOREM

In this section we shall consider the system represented
in Fig. 1, consisting of a pair of spin-1/2 particles produced
at a source and moving freely in opposite directions. Parti-
cle 1is subjected to a spin measurement by a Stern—Gerlach
apparatus with magnetic field in the fi, direction. The out-
come of the measurement will be labeled + 1ifthefi, com-
ponent of spin is found to be up, and — 1 if down. Particle 2
is similarly subjected to a measurement by Stern—Gerlach
apparatus with magnetic field along i,. We shall assume
that the pair is produced with total spin angular momen-
tum zero. Then the quantum state is

W) = (A [+ )il =)= 1= Dl+)2] ey

where the kets | + ), and | — ), represent states of spin-up
and -down, respectively, along the arbitrary direction f for
particle 1, and| + ), and | — ), have analogous meanings
for particle 2 with the same direction fi. Quantum mechan-
ics of the spin-1/2 system yields the remarkable result that
the state of Eq. (1) is the same for all unit vectors fi, which

Xa / Fig. 1. The Bohm gedankenex-
periment. The source emits a pair

of spin-1/2 particles, 1 and 2, in
the state of Eq. (1). Particle i
19, (i=1,2) enters its own Stern—
Gerlach  apparatus oriented
along direction fi;. Behind each
2 A apparatus two detectors, not
\'25 2 vy shown, record whether the result

< is up or down.
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is an invariance expressing the spherical symmetry of the
state of total spin angular momentum zero, and therefore
no ambiguity results from our omission of fi from the nota-
tion. (See Appendix A.) Another remarkable feature of
|W) is that, in Schrodinger’s terminology, it is entangled—
that is, it cannot be written in any way as a product of
single-particle states (Appendix A). The feature of great-
est importance for our purposes is that |¥) entails perfect
spin correlation: If the fi component of spin is found to be
+ 1 for particle 1, then with certainty it will be found to be
— 1 for particle 2, and vice versa. (Sometimes this relation
is called perfect “anticorrelation,” in contrast to the situa-
tion in which the spin components of the two particles have
the same value, but our simpler terminology should cause
no confusion.)

From the state {¥) of Eq. (1) one can calculate (see
Appendix B) the joint probabilities P¥ | (&,,h,),
P* _(n,h,), PY | (& ,B,), PY _ (@ ,h,), where the
first subscript indicates whether the outcome of the mea-
surement on particle 1is + 1 or — 1, and the second sub-
script is analogous for particle 2, and where i, and fi, are
the directions along which the spin is measured. The expec-
tation value of the product of the measurement outcomes is
defined as

E¥(dh,) =P% _ (A, ,B,) —PY _ (A, ,f,)
—‘Pqi_*.(ﬁ[,ﬁz)'i'qu_f(ﬁl,ﬁZ)' (2)

As one might anticipate from the rotational invariance of
the state | W), this expectation value depends only upon the
angle between the directions (i, ,i, ), specifically (Appen-
dix B),

EY(i,,h,) = — i -f,. (3)

In the special cases of fi; = fi,, Eq. (3) expresses the per-
fect correlation mentioned previously.

So far we have given the quantum mechanical descrip-
tion of a pair of spin-1/2 particles in the quantum state | V).
We now present EPR’s argument (adapted to Bohm’s ge-
dankenexperiment) that this quantum mechanical de-
scription of the pair of particles cannot be complete. The
first of their premisses is drawn from quantum mechanics,
and the other three are quite plausible propositions about
locality, reality, and completeness, which we state in EPR’s
words. :

(1) Perfect correlation: If the spins of particles 1 and 2 are
measured along the same direction, then with certainty the
outcomes will be found to be opposite.

(ii) Locality: “Since at the time of measurement the two
systems no longer interact, no real change can take place in
the second system in consequence of anything that may be
done to the first system.”

(iil) Reality: “If, without in any way disturbing a sys-
tem, we can predict with certainty (i.e., with probability
equal to unity) the value of a physical quantity, then there
exists an element of physical reality corresponding to this
physical quantity.”

(iv) Completéness:*“Every element of the physical rea-
lity must have a counterpart in the [complete] physical
theory.”

EPR’s argument now proceeds as follows. Because of
perfect correlation (i), we can predict with certainty the
result of measuring any component of spin of particle 2 by
previously choosing to measure the same component of
spin of particle 1. By locality (ii), the measurement per-
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formed on particle 1 can cause no real change in particle 2.
Hence, by the premiss about reality (iii), the chosen spin
component of particle 2 is an element of physical reality.
But this argument goes through for any component of spin,
and hence all of the components of spin of particle 2 are
elements of physical reality'® (and, of course, the same is
true of particle 1, by a parallel argument). There is, how-
ever, no quantum state of a spin-1/2 particle in which all
components of spin have definite values. Therefore, by
(iv), quantum mechanics cannot be a complete theory; at
least in the case of a pair of spin-1/2 particles with total
spin angular momentum zero, there are elements of phys-
ical reality for which quantum mechanics has no counter-
part. Having shown from their premisses that quantum
mechanics is incomplete, EPR do not exhibit a completion
or even a model of a completion. They do say, “We believe
... that such a theory is possible.”

Bell’s argument of 1964 commences by recapitulating
the argument of EPR."! He then introduces the notation 1
for the complete state of a pair of particles, specifying all of
the elements of physical reality of the pair at some suitable
instant, and he notes, “It is a matter of indifference whether
A denotes a single variable or a set, or even a set of func-
tions, and whether the variables are discrete or contin-
uous.” If A belongs to the set of complete states consistent
with the perfect correlation cases of Eq. (3) (a set which
we shall denote by A; ), then A predetermines the outcome
of a measurement of the fi component of spin of both parti-
cles 1 and 2. Hence, if the spin-up and spin-down outcome
channels of the Stern-Gerlach analyzers are labeled + 1
and — 1, then there exist functions 4, (/) and B, (ii), with
values + 1, defined for all i and all A€A,; which are the
outcomes, respectively, for particles 1 and 2.

He then considers a probability measure p on the whole
space of complete states A, in order to give a statistical
characterization of the ensemble of pairs prepared in the
quantum state |¥). EPR’s program clearly demands the
use of probability, because the diversity of measurement
results shows that the individual pairs of the ensemble can-
not all be in the same complete state. Expectation values of
all physical quantities of interest can be defined in terms of
p- Specifically, the expectation value of the product of out-
comes of spin measurements on the two particles is

E2( ) = [ 4, (8B, Gy dp. (4)
A

Bell emphasizes a fact that has been built into the formal-
ism: that in this expression for the expectation value, the
factor 4, (i, ) is independent of fi, and the factor B, (ii,) is
independent of fi,—as required by the locality assumption
(ii) of EPR. Since EPR’s argument for their program com-
menced with the perfect quantum mechanical correlations
[assumption (i) 1, it is essential that the expectation value
of Eq. (4) agree with that of Eq. (3) when i, = #, = fi:

E°(hf) = EY(fi,i) = — 1. » (5)
Equation (5) is a very strong constraint. Since the mini-
mum possible value of 4, (i) B, (i) is — 1 (the only other
possible value being + 1), itis impossible to satisfy Eq. (5)
unless the set of 4 ’s for which 4, (i) = — B, (ii) has prob-
ability measure unity, i.e., in the notation introduced
above, unless p( A, ) is unity for each . It is worthwhile to
point out that there is no ground in EPR’s argument for
concluding that the A,’s for different i are identical, nor is
this identity needed for Bell’s demonstration. '?
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Bell now has the concepts required for his theorem. The
theorem states that the envisaged complete theory (with
A; (i,),B, (fi,), and p as described) must disagree with
some of the statistical predictions of quantum mechanics.
He uses the expression for expectation values given in Eq.
(4) and, by a simple mathematical argument (Appendix
C), shows that

|E*(4,b) — E°(4,c)| — E”(b,c) — 1<O0. (6)
This is known as “Bell’s inequality”: Or, rather, it is the
first of a family of inequalities that have collectively been
given that name.

The remainder of the proof consists in noting that there
are choices of directions 4,b,¢& for which the quantum me-
chanical expectation values of Eq. (3) conflict with in-
equality (6). For simplicity, rewrite Eq. (3) for the special
case in which both fi, and fi, lie in the x-y plane, so that
they are identified by their azimuthal angles ¢, and ¢,, and
then

Ew(¢1,¢2) = —cos(¢, —&,). (39

If ﬁ,l;,é lie in the x-y plane with azimuthal angles 0, 7/3,
and 27/3, respectively, the discrepancy between Bell’s in-
equality and quantum mechanics emerges:

E¥(ab)=E¥(he)= —}, EY(48) = +4,
so that ‘

|E¥(4,b) — E¥(4,8)| — E¥(be) —1=1, (6"
in disagreement with inequality (6). Hence, no choice of
the A ’s, the functions 4 and B, and the probability measure
p on the space of complete states can yield agreement with
the quantum mechanical predictions of Eq. (3), if these
choices conform to premisses (i) through (iv). This is
Bell’s theorem of 1964.

Before proceeding with the new multiparticle discussion
of Sec. IlI, we emphasize several important differences
between it and Bell’s two-particle theorem. First, the per-
fect correlation (i) and the other EPR premisses (ii)—-(iv)
are self-consistent in the case of two spin-1/2 particles (see
Appendix D). However, as we shall see in Sec. III, the
perfect correlations in a three- (or more) particle system
are not consistent with the other EPR premisses. Thus, for
such a system, the EPR program cannot be carried out
even for the special case of perfect correlations.

Second, in the system of two spin-1/2 particles, contra-
dictions develop only when one considers the quantum me-
chanical statistical predictions. This incompatibility is
demonstrated by deriving an inequality from EPR’s pre-
misses and then noting that the quantum mechanical statis-
tical predictions do not satisfy this inequality. However, in
the three-particle system, there is no point in deriving an
inequality, or anything else for that matter, since the pre-
misses are inconsistent.

Third, in the case of two spin-1/2 particles with total
spin zero, the cosine of Eq. (3') plays a central role in
proving that quantum mechanics contradicts the inequali-
ty. However, in the three-particle case, the specific form of

the correlation plays no role in demonstrating a contradic-
tion.

(3")

I11. BELL’S THEOREM WITHOUT INEQUALITIES

Consider a system of four spin-1/2 particles produced so
that particles 1 and 2 move freely in the positive z-direction
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source —

Fig. 2. A four-particle gedankenexperiment. The source emits a quadru-
ple of spin-1/2 particles, 1,2,3, and 4, in the state of Eq. (7). Particle /
(/= 1,2,3,4) enters its own Stern—Gerlach apparatus oriented along di-
rection ii,. We emphasize that the four Stern-Gerlach apparatuses can be
separated by arbitrarily large distances. Behind each apparatus two detec-
tors, not shown, record whether the result is up or down.

and particles 3 and 4 in the negative z direction, as shown in
Fig. 2. As indicated in the figure, the beams bearing parti-
cles 1 and 2 are spatially displaced,'® so that they can enter
different Stern—Gerlach analyzers with orientations fi, and
fi,, respectively. Similarly, let i, and fi, be the orientations
of Stern—Gerlach analyzers receiving particles 3 and 4. If
the four particles result from the decay of a single spin-1
particle into a pair of spin-1 particles, each of which then
decays into a pair of spin-1/2 particles, with the z compo-
nent of spin initially zero and remaining so throughout the
decay process, then the quantum mechanical spin state of
the four particles is

i‘l’):(l/\/Z)[|+),|+)2|—)3|—)4
— =2l =20+ 5]+ )] (7

(see Appendix E). Consider, as in Sec. 11, the expectation
value E ¥ (i fi,,fi;,fi,) of the product of the outcomes when
the orientations are as indicated. It is shown in Appendix F
that

E ¥ (fi,,fi,,h;,fi,) = cos 8, cos 8, cos 65 cos G,
— sin €, sin 6, sin 8; sin 4,

Xcos(d, + ¢, —d; — ), (8)

where (6,,6,) are the polar and azimuthal angles of i, etc.
For simplicity, we shall restrict our attention to fi’s in the
x-y plane, so that

EY (f,fipfiy,fy) = —cos(d + 6y — By —44).  (9)

Of particular interest will be the following cases of perfect
correlation:

If ¢1 +¢2 —¢3 _¢4 =0,
then EY (i, 0,,0,), = — 1, (10a)
If ¢, + ¢, — ¢ — ¢, =,

* then EY(f,,h, f;,0,) = + 1. (10b)

EPR’s premisses can be adapted to the present four-par-
ticle situation as follows.

(1) Perfect correlation: With four Stern—Gerlach analyz-
ers set at angles satisfying the conditions of either (10a) or
(10b), knowledge of the outcomes for any three particles
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enables a prediction with certainty of the outcome for the
fourth.

(ii) Locality: Since at the time of measurement the four
particles are arbitrarily far apart, they presumably do not
interact, and hence no real change can take place in any one
of them in consequence of what is done to the other three.

(iii) Reality: same as in Sec. 11

(iv) Completeness: Same as in Sec. IL
It should be emphasized that (i) has a very different status
from that of (ii)—(iv). Premiss (i) is a prediction of the
quantum mechanical state of Eq. (7) in the arrangement of
the gedankenexperiment of Fig. 2, whereas premisses (1i)—
(iv) are propositions in EPR’s world view—propositions
that are quite plausible, however, and which agree well
with classical physics. The premisses are listed sequential-
ly, in spite of the difference of their status, because they
play crucial roles in EPR’s argument for their program.

The arguments in Sec. II can now be paralleled to infer
the existence of four functions 4, (¢, ), B, (#,), C; (¢3),
D, (¢,) with the values + 1 or — 1. These functions are
the outcomes of spin measurements along the respective
directions when the complete state of the four particles is 4.
One could now proceed to derive inequalities of Bell’s type
and to reveal discrepancies with the statistical predictions
of Eq. (9) for appropriate choices of ¢,,¢,,8,,4,. There is
no point in doing so, however, until the consistency of pre-
misses (i)—(iv) is established. One might suspect that this
could easily be done, because in the case of a pair of spin-
1/2 particles there already exists a model of Bell (Appen-
dix D) exhibiting the consistency of (ii)—(iv) with the
quantum mechanical perfect correlation. That is, one
might expect to construct a model, parallel to Bell’s,which
explicitly exhibits functions 4, B, C, and D reproducing the
perfect correlations of (10a) and (10b). However, this ex-
pectation will not be fulfilled. No such model is possible.
As we shall now proceed to show, EPR’s premisses for the
four-particle situation are inconsistent.

First, we restate (10a) and (10b) in terms of the func-
tions 4, B, C, and D, the existence of which follows from
the premisses:'*

If ¢ +¢, — ¢y — 0, =0,
then 4, (4,)B,(4,)C;($:)D,(d) = — 1, (11a)
If ¢, +¢, —¢; — ¢, =,
then 4, (¢,)B,(¢,)C, ($3)D,; (d,) = 1. (11b)

Let us now consider some implications of just one of (11a)
and (11b), say, the first. Four instances of (11a) are

4;(0)B, (0)C,(0)D,(0) = — (12a)

4,(4)B,(0)C,($)D; (0) = — (12b)

A, (B, (0)C,(0)D, (¢) = — (12¢)

A4,(26)B,(0)C,(¢)D, ($) = — (12d)
From Eqs. (12a) and (12b) we obtain

A ($)C, (¢) = 4,(0)C,(0), (13a)
and from Eqs. (12a) and (12c) we obtain

AA (¢)Da(¢) =4, (0)D;(0). (13b)
A consequence of these is

Ci(¢)/D,(¢) = C,(0)/D; (0), (14a)
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which can be rewritten as
C,(¢)D; (¢) =C,(0)D, (0), (14b)

because D, (¢) is + 1 and hence equals its inverse, and the
same for D, (0). We then obtain from Eqgs. (12d) and
(14b)

A, (2¢)B,(0)C,(0)D, (0) = — 1,
which in combination with Eq. (12a) yields'?
A, (2¢) = A, (0) = const for all ¢. (16)

Equation (16) is a quite surprising preliminary result. By
itself, this equation is not mathematically contradictory,
but physically it is very troublesome: For if 4, (¢) is in-
tended, as EPR’s program suggests, to represent an intrin-
sic spin quantity, then 4, (0) and A, () would be expect-
ed to have opposite signs. The trouble becomes manifest,
and an actual contradiction emerges, when we use (11b)—
which until now has not been brought into play—to obtain

(15)

A, (6+m)B,(0)C,(6)D;(0) =1, QY]
which in combination with Eq. (12b) yields
A, 8+ 7)= —A4,(0). (18)

This result confirms the sign change that we anticipated on
physical grounds in EPR’s program, but it also contradicts
the earlier result of Eq. (16) (let¢ = 7/2,6 = 0). We have
thus brought to the surface an inconsistency hidden in pre-
misses (1)—(iv).

In the foregoing algebra, the argument of the function
B; (¢,) was fixed throughout to be 0, which shows that
premisses (i)—(iv) are also inconsistent when applied to a
system of three spin-1/2 particles. But we know from Bell’s
model (Appendix D) that the corresponding premisses are
consistent for a pair of spin-1/2 particles. Correlations of
three or more spin-1/2 particles involve at least one more
degree of freedom than one finds in correlations of two
spin-1/2 particles, and it is clear that the manipulation of
an additional degree of freedom is essential to the exhibi-
tion of a contradiction.'® The most significant feature of
the new argument is the revelation that the EPR program
cannot handle even the perfect correlations of quantum
mechanics for systems of three or more particles. There is
anirony in this result in that perfect correlations are central
to EPR’s argument for the existence of states more com-
plete than those of quantum mechanics.

IV.... AND WITHOUT SPIN

In this section we shall present a new gedankenexperi-
ment, with three particles and without spin, for which the
argument of Sec. IIT applies unchanged. The new system is
an extension of a two-particle interferometer previously
considered by Horne and Zeilinger'” for exhibiting entan-
gled states in momentum and position, and it resembles.
Mermin’s® figure of a three-spin “gadget.” Since the gedan-
kenexperiment does not involve spin, it emphasizes, yet
again, that Bell’s theorem does not hinge on spin.'” Since it
employs only three particles, it emphasizes that the GHZ
argument goes through for three particles. Finally, the new
gedankenexperiment may be realizable in the laboratory.

Consider a particle that can decay into three particles of
equal mass or into three photons (though, with a slight
modification, we could allow any combination of different
mass particles and photons). Imagine that the decaying
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Fig. 3. A gedanken three-particle interferometer. The source emits a triple
of particles, 1, 2, and 3, in six beams, with the state given by Eq. (19). A
phase shift ¢, is imparted to beam &’ of particle 1, and beams @ and 4’ are

brought together on a beam splitter beforeilluminating detectorsdand d .
Likewise for particles 2 and 3.

particle has (mean) momentum zero and that the decay
occurs in the central region of the arrangement of Fig. 3. If
all three particles have the same energy, then, by momen-
tum conservation, they must be emitted 120° apart. The
equal energy requirement can be enforced by placing ener-
gy filters at the detectors. The central source is surrounded
by an array of six apertures: g, b, and ¢ at 120° separation,
and d', b', and ¢’ also at 120° separation. Because of the
placement of the apertures, the three particles 1, 2, and 3
must emerge either through a, b, and ¢ or through a’, b,
and ¢'. Thus the state of the three particles beyond the aper-
tures will be the superposition

|¥) = (1/\/2)“0)1 [6)2le)s +1a') |67, Ic')s ], (19)

where Ja), denotes the particle 1 in beam a, etc. The inser-
tion of an arbitrary (but fixed) phase between the two
terms of Eq. (19) produces no significant change of predic-
tions.

Beyond the apertures beams a and &’ are totally reflected
so as to overlap at a 50-50 beam splitter,'® and the two
outgoing beams are monitored by detectors d and d'. Note
that en route beam &’ passes through a phase plate'® which
causes an adjustable phase shift ¢,. Consequently, the evo-
lution of the kets |a), and |a’}, is given by

|a)1“’(1/\/—2_)[1d>1 +1'|d’>|] (20a)
and
') = (1/A2)e? [|d"), +ild), ], (20b)

wheretheket |d ), denotes particle 1 directed toward detec-
tord, etc. In (20a) and (20b) the i is due to reflection from
the beam splitter,'” and the ¢, is the phase shift due to the
phase plate inserted in beam a’. The particle 2 beams and
the particle 3 beams are subjected to similar treatment and
hence undergo similar evolutions. When the evolutions of
(20a) and (20b) and the similar ones for particles 2 and 3
are combined with the initial three-particle state of Eq.
(19), a state with eight terms develops (Appendix G),
from which we obtain amplitudes and hence probabilities
of detection of the three particles by the triple of detectors
(d,e, /), the triple of detectors (d’,e, f), etc. We assume
that the detectors are perfect, so that every triple of parti-
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cles causes either d or d’ to fire, either e or €' to fire, and
either for /' to fire.

The resulting expressions for the probabilities of detec-
tions (Appendix G) are

PY (BB =11 +sin(h, + b, +¢5)],  (212)
Py (dudyds) =41 —sin(d; + b, + 45)],  (21b)

etc. (If the number of primes on the detector labels is even,
there is a plus sign; if odd, there is a minus sign.) Obviously
the sum of these probabilities for eight possible outcomes
(d,e,f), etc. is unity. Paralleling the discussion of Sec. III
we call the result + 1 when a particle enters an unprimed
detector (for example, d) and — 1 when it enters a primed
detector (for example, d ). With these values and the prob-
abilities of Egs. (21a) and (21b), etc., we may calculate the
expectation value of the product of the three outcomes. The
result (Appendix G) is

EW(¢I’¢2’¢3) =sin(g, + ¢, + ¢5). (22)

Perfect correlations are obtained for the following choices
of angles:

¢, + ¢+ s =7/2,

then E¥ (¢,,0,,4;) = + 1, (23a)
If g, + ¢, + ¢ =37/2,
then E¥(8,,0,,6;) = — 1. (23b)

All the requirements are now met for the argument of Sec.
III to go through, exhibiting a contradiction in EPR’s pre-
misses. Note that Egs. (22), (23a), and (23b) are the ana-
logs of Egs. (9), and (10a) and (10b), the significant
change being that the phases associated with the plates take
the place of the azimuthal angles of the Stern—Gerlach ori-
entations.

We conclude this section by emphasizing some fascinat-
ing features and generalization of the arrangement of Fig.
3, which we call a three-particle interferometer. First, if
detectors d,ef (for example) were monitored for three-
particle coincidences, then Eq. (21a) predicts that the ob-
served count rate for these coincidences will depend sensi-
tively on the phases imparted by the phase plates. For
example, if ¢, + @, + ¢, is varied linearly in time (by man-
ipulating one or more of the plates), then the three-particle
coincidence rate will vary sinusoidally, with a minimum of
zero and a maximum of one-quarter the rate at which tri-
ples of particles are emitted from the apertures. We shall
call these sinusoidal oscillations three-particle interference
fringes. Second, the three-particle interferometer will not
exhibit any two-particle fringes. That is, if detectors e and f
(for example) are monitored for two-particle coinci-
dences, while detectors d and d ' are ignored, the observed
two-particle coincidence rate will be completely indepen-
dent of the phases. This statement follows from the fact
that the sum of Egs. (21a) and (21b) is }, independent of
&, + &, + ¢;. Third, the three-particle interferometer will
also exhibit no single-particle fringes. If, for example, de-
tector fis monitored while d, d' , e, and ¢’ are ignored,
then the observed count rate will be one-half the rate of
emission of triples through the apertures, independent of
the phases. This follows by summing P, (¢,¢2.¢3),
P:’ef(¢l’¢2’¢3)9 P:Ie’f(¢li¢2’¢3)’ and Pz"e'f(¢|’¢2’¢3)-
Finally, the three-particle interferometer of Fig. 3 and the
initial three-particle state of Eq. (19) can be generalized to
n-particle interferometry, and the features just described
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also generalize: An n-particle interferometer will exhibit 7-
particle fringes, but it will not exhibit n — 1, » — 2,..., or
single-particle fringes.*®

V. ON TESTING EPR’S PROGRAM

The new demonstration of Bell’s theorem without in-
equalities does not necessarily call for an experiment, any
more than did Bell’s original theorem of 1964. However,
EPR’s program is plausible, and one may suspect that in a
situation of conflict between that program and some pre-
dictions of quantum mechanics, the latter will turn out to
be false. Indeed, this motivation led to more than a dozen
experimental tests in the last two decades, with results
overwhelmingly supporting quantum mechanics.’ Is there
any point in designing yet another experiment along new
lines, in order to rerefute the program of EPR? We think
so, for two reasons. The first is sheer intellectual challenge.
We would like to know what experiment would have been
appropriate had history been different and had GHZ’s de-
monstration been the first proof of Bell’s theorem. The sec-
ond is that the investigation of correlations among three or
more particles can open a new, beautiful, and fruitful type
of experimentation, of interest independently of EPR.
Since multiparticle interferometry seems particularly
promising, we shall focus attention on the arrangement of
Fig. 3.

It must be emphasized that the experiment that we shall
propose will test EPR’s program—by which we mean (in
the context of Fig. 3) the existence of the complete states 4,
the result functions 4, (¢,), B, (#,), C, (¢5), and proba-
bility measure over the space of complete states—but will
not test the premisses from which EPR argue for their pro-
gram. The reason for targeting the experiment in this way is
that premisses (i)-(iv) together are inconsistent, as we
have already seen, while premisses (ii)—(iv) without (i) do
not suffice to make testable predictions. We are struck by
the curiosity of the logical situation: Perfect correlations
are needed to initiate the EPR argument, and perfect corre-
lations suffice to show that the EPR premisses are invalid.
By focusing on the program, rather than the argument for
the program, we circumvent the difficulty posed by this
logical situation. Furthermore, there are good historical
and philosophical reasons for considering EPR’s program
as a hypothesis. Einstein urged his program as early as the
Fifth Solvay Congress of 1927, because of his belief that a
fundamental physical theory should not be stochastic. The
EPR argument of 1935 was intended to support Einstein’s
program and his interpretation of quantum mechanics
without relying upon an antecedent commitment to deter-
minism, but the program itself is worthy of serious consi-
deration even without their argument.

In proposing an experiment we proceed in three steps.
First, we show that the mere existence of the result func-
tions A;,B,,C; imposes a remarkably strong constraint
on the probability measure p [see inequality (29)]. This
inequality is in principle testable. The second step is to
show how the test could be done even with low-efficiency
detectors, provided that we make a plausible auxiliary as-
sumption, which we call fair sampling. Finally, we show
that the auxiliary assumption is dispensable if detector effi-
ciencies exceed 90.8%.

In the arrangement of Fig. 3 consider four different
choices of the phase angles (&,,6,,4;): namely, (7/2,0,0),
0,77/2,0), (0,0,7/2), and (7/2, w/2, w/2). Each triple of
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particles emitted through the apertures is assumed by
EPR’s program to be in a complete state 4, and the as-
sumed  existence of the result  functions
A,(4,),B;(4,),C,(¢;) implies A will predetermine the
outcome for each particle for each of the four choices of
phase angles. Of course, any specific triple of particles can
be subjected to only one of the four choices of phase angles,
and therefore the entire ensemble of triples emitted from
the aperture is subdivided into four mutually exclusive and
exhaustive subensembles. But since the triples are emitted
before encountering the phase plates, where the subdivi-
sion into subensembles takes place, it is reasonable to as-
sume that the same probability measure p governs all four
of the subensembles.
Consider now the following three statements:

A, (7/2)B,(0)C, (0) = 1, (24a)
A, (0)B, (7/2)C, (0) = 1, (24b)
A,(0)B, (0)C, (/2) = 1. (24c)

Multiplying Eqgs. (24a), (24b), and (24c), as suggested by
Mermin,!® we obtain
A, (7/2)B, (7/2)C, (7w/2) =1, (24d)

since the other factors in the product obviously multiply to
unity. Consequently, the statement

A, (7/2)B, (7/2)C, (7/2) = — 1 (24e)
implies that at least one of Egs. (24a), (24b), and (24c¢) is

false. We can express this last implication in the language
of set theory:

A, CA UA,UA,, (25)
Here,

A, = the set of all A ’s such that Eq. (24a) holds, (26a)
A, = the set of all A ’s such that Eq. (24b) holds, (26b)
A; = the set of all A ’s such that Eq. (24¢) holds, (26¢)
but (note well)

A, = the set of all A ’s such that Eq. (24e) holds, (26d)

and A, is the complement of A, (i.e., the set of all A ’s not
belonging to A,), etc.

We are now in a position to make use of the probability
measure p on the space of complete states. Specifically, by
(25)

p(A) C<p(A, UA, UA,). (27)
But by standard probability theory
P(AUA UKD <p(A) +p(A,) +p(Ry),  (28)

the reason for connecting the left-hand side to the right-
hand side by < being the possibility that the three sets A,
A, A;, are not mutually exclusive. From inequalities (27)
and (28) we obtain the strong constraint on the probability
measure p which we have been seeking:

p(A)<p(A) + p(A,) + p(As). (29)

Inequality (29) is testable, once appropriate connection is
supplied between the probabilities p(A,), etc. and labora-
tory quantities, a matter that we are about to discuss. Be-
fore doing so, however, we wish to stress that inequality
(29) was derived from apparently innocent premisses:
nothing but the existence of the complete states A, the re-
sult functions 4;,B,,C,, and the probability measure p-
The fact that inequality (29)is nontrivial shows that the
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premisses are not innocent after all. Especially, they em-
body EPR’s commitment to locality, because the result
function 4, for particle 1 depends only on the phase angle
¢, of the phase plate that it encounters, and not on ¢, and
&5, and likewise B, does not depend on ¢, and ¢,, and C,
does not depend on ¢, and ¢,.

A test of inequality (29) requires a connection between
the quantities entering in this inequality and laboratory
data. As pointed out in Sec. IV, the arrangement of Fig. 3
defines an ensemble of triples of particles: namely, those
emitted through the apertures into the six beams a,b,
¢,a',b',c’. Because of imperfection of actual detectors, and
the possible loss at actual mirrors and beam splitters, not
all of these triplet will be detected. If the detectors are made
as nearly alike as possible, then it is reasonable to assume
“fair sampling”’: that is, the number of triples actually de-
tected by any three designated detectors, say d,e,f, with any
specified phase angles ¢,,¢,,¢, is proportional to the num-
ber that would be detected if the mirrors, beam splitters,
and detectors were perfect—with the same constant of pro-
portionality in all cases. This fair sampling assumption was
previously proposed by Clauser ef al.>! in order to permit a
test of one of Bell’s inequalities. Given the fair sampling
assumption, the probability p(A,) is determined by mak-
ing the phase angles (¢,,4,,¢,) be (7/2,0,0) and dividing
the number of coincidence counts for which the product of
outcomes is + 1 (i.e., those in which an even number of
primed detectors are triggered) by the total number of tri-
ples detected. If the choices (¢,,0,,¢;) are set to be

(0,7/2,0) and (0,0,7/2), then p(A,) and p(A;) are like-
wise determined. In order to determine p(A,) the phase
angles are set at (7/2,7/2,7/2), and the number of counts
for which the product of the outcomes is — 1 (i.e., an odd
number of primed detectors are triggered ) is divided by the
total number of detectors triggered. Since

p(AD) =1—p(A), (30)
etc., we would then have all of the information in hand to
test inequality (29). Violation of the inequality would con-
stitute strong evidence against EPR’s program, and of
course this is the result that we anticipate, in view of the
general success of quantum mechanics.

There has been extensive discussion of possible failure of
the fair sampling assumption and of ways to dispense with
it in tests of Bell’s inequality. It has been shown that the
assumption would indeed be dispensable if the detectors
were at least 82.8% efficient.* A similar conclusion can be
drawn in the present context, concerning a test of inequali-
ty (29). Suppose the rate of triples emitted through the
apertures is known (possibly by some calorimetric meth-

- od) and for (¢,,¢,,¢5) = (7/2,0,0) a fraction f of these is

detected with product of outcomes equal to + 1. Others
may be detected with product of outcomes — 1, and others
are not detected at all. From these data, together with the
definition of p(A,), we obtain

p(A)>f (31a)
and
p(A)<l —f (31b)

Similar bounds may be obtained for p(A,), p(Xz), etc.,
and for simplicity we shall take the fractions detected with
the outcomes mentioned in the definitions of these sets to
be the same /. Combining these bounds with inequality
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(29) yields

F<p(AD<p(A) +p(A) +p(A)<3(1— . (32)

This inequality will be violated (with consequent disconfir-
mation of EPR’s program) if />0.75. As pointed out
above, there are two contributions to the fraction 1 — f: one
from the detection of triples in the “wrong” way (i.e., con-
trary to the prediction of quantum mechanics) and one
from the nondetection of triples. The latter part could be as
large as 1 — #°, where 7 is the efficiency of a single detec-
tor. Hence, even if no “wrong” triples are detected, there
would be certainty that fis greater than 0.75 only if 7’ is
greater than 0.75, i.e., only if 7 is greater than 0.908. Thus
the demand on detector efficiency if the fair sampling as-
sumption is to be avoided in the present arrangement is
more stringent than in tests of Bell’s inequality.*”

An advocate of EPR’s point of view might attempt to
salvage part of their program, even if inequality (29) turns
out to be refuted experimentally. The salvaging strategy
could consist in  abandoning the functions
A, (¢,),B,(45),C; (¢;), and thereby giving up the idea
that the complete state A predetermines the outcomes of
measurements. Instead, it would be assumed that when A
and ¢, are given, there is only a definite probability that
particle 1 will trigger detector d and a definite probability
that it will trigger detector d': and likewise for particles 2
and 3. The spirit of EPR’s program would be preserved by
making the probabilities concerning one particle depend
only on the phase plate that it encounters, and not on the
other two phase plates. The type of theory envisaged by this
strategy is often called a stochastic local theory, in contrast
to a deterministic local theory, which has been considered
so far in-this paper.

We already know from traditional work on Bell’s
theorem that this salvaging strategy fails. In the first place,
it was shown by Bell** in 1971 and by Clauser and Horne?
in 1974 that the same inequality governing statistical corre-
lations that is derived from a deterministic local theory can
be derived from a stochastic local theory. Consequently,
the violation of Bell’s inequality by the data of numerous
experiments constitutes a disconfirmation of the weakened
version of EPR’s program. Second, there are “‘equivalence
theorems” (Stapp®® and Fine®’) to the effect that the pre-
dictions of any stochastic local theory can be duplicated by
an appropriate deterministic local theory. Hence, any ex-
perimental evidence against the family of deterministic lo-
cal theories would automatically be evidence against the
family of stochastic local theories. The second of these two
reasons for the failure of the salvaging strategy is the one
more relevant to the argument of the present paper, since
this reason makes no reference to Bell’s inequality.

VI. REAL EXPERIMENTS

There are two immediate avenues for experimental ver-
ification of the remarkable features of multiparticle corre-
lations; both are generalizations of previous experiments
with pairs of photons. As the first possibility one may con-
template the polarization correlations among three or
more photons emitted by a cascading atom. Such an experi-
ment would be a generalization of the many two-photon
polarization correlation experiments done over the past
two decades, all of which are descendants of the pioneering
experiments of Kocher and Commins®® and of Freedman
and Clauser.* The second possibility would be to exploit
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the momentum and energy correlations among three or
more photons emitted in the process of parametric down
conversion. Such an experiment would generalize the re-
cent series two-photon interference experiments which are
all descendants of the pioneering experiments of Burnham
and Weinberg® and of Gosh and Mandel.’

A generalization of the atomic cascade two-photon ex-
periments would use an atom cascading through two inter-
mediate levels to produce three photons. For example, con-
sider an atom undergoing electric dipole transitions that
carry the atom from a state of zero total angular momen-
tum through two intermediate states of angular momen-
tum one back to a state of zero total angular momentum,
thatisaJ = 0—J = 1 -J = 1 -J = O cascade. Suppose for
simplicity that the three detectors select three photons that
propagate in a plane along directions at angles 120° from
each other. Then by conservation of angular momentum
the three-photon state is*°

|¥) = (1/V2)[|IR),|IR);|R); + tL>1|L>zlL>3],33
(33)

which has the required entanglement to exhibit polariza-
tion correlations analogous to the direction correlations of
Sec. IV.

A generalization of the class of recent two-photon down-
conversion experiments would utilize the fact that, at least
in principle, down conversion can produce three or more
correlated photons. As a specific example consider the
three-photon generalization of two-particle interferometry
(Horne, Shimony, and Zeilinger® and Rarity and Tap-
ster'”). In such a generalization six apertures a,b,c and
a',b’,c' would be suitably placed downstream from a down-
conversion crystal so that by energy and momentum con-
servation the emerging state of the three-photon radiation
would be

W) = (1/v'2) [la), |6 aleds + @y b)), ], ], 4

which is formally the same as Eq. (19) of Sec. IV.

One could equally well contemplate generalization of
some of the other existing two-photon down-conversion
experiments. An example would be a three-photon general-
ization of the experiment proposed by Franson®' and per-
formed by Ou and Mandel*?> and by Kwiat et al.** Such
experiments exploit correlations in energy/time instead of
momentum/direction. Alternatively, instead of direct
down-conversion to three or four photons, one could in
principle contemplate a two-step cascade of two-photon
down conversions to produce a four-photon entangled
state.
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APPENDIX A: PERFECT CORRELATIONS IN THE
TWO-PARTICLE STATE |¥)

In order to show the rotational invariance of the state of
Eq. (1) we shall have to express the kets |fi, + ) and
|fi, — ), the states of spin-up and -down along the fi direc-
tion, in terms of | + ) and | — ), which are states of spin-up
and -down along a specified direction, commonly z. We
shall use the standard Pauli matrices o,,0,,0, and write

o+ii|ii, + ) = |, + ), (Ala)
oilfi, — ) = — |Jfi, — ). (Alb)
Each of the Eqs. (Ala) and (A1b) can be written as a pair

of coupled linear equations, which can be solved to yield
(up to an arbitrary scalar multiple)

|, + ) = (cos 6/2)e | +)

+ (sin 6/2)e??| — ), (A2a)
[, — )= — (sin8/2)e="*?* +)
+cos 8/2)e?| — ), (A2b)

where 6 and ¢ are the polar and azimuthal angles of ii. Now
consider

W) = (/A2 [|1B, + ), B, — ), — [f, — )y A +),],

(A3)
and insert Eqs. (A2a) and (A2b) to obtain
W) = AN [+ )] =Da == )il +):]
= |W). (A4)

Thus rotational invariance is proved, and incidentally we
are justified in using the notation of Eq. (1), which refrains
from making the basis explicit.

The foregoing argument implies as a corollary that |¥)
is entangled. The reason is that there are no bases for the
spin-1/2 particle other than pairs of kets of the form |, + )
and |fi, — ), and we have just seen that in none of these
bases is |W) expressed as a product state.

It is instructive, however, to give a more general proof of
entanglement. Let |$) be a vector representing a state of a
two-particle system with the form

|®) =clu), [v), +d|u'), |v),, (AS)

where |u), and |u'), are orthonormal kets in the space of
states of particle 1 and |v), and |v’), are orthonormal kets
in the space of states of particle 2, and both of the scalars ¢
and d are nonzero. We claim that |®) is entangled. If not, it
can be written as

|®) = jw)|z),, (A6)
where |w) , and |z), are, respectively, in the spaces of states
of particles 1 and 2. General vector space considerations
imply that {w), can be expressed as a linear superposition

of |u), and |u'),, and |z), can be expressed as a linear
superposition of |v), and [v'),, i.e.,

lw), =alu), +d'u'),, (A7a)
|2}y = bv), +b'|V"),. (AT7b)
Then
Iw>1 Iz)l =ab |u)l|v>2 +ab’|u>1 |v’>2
+ab|u') |v), +a'b’'|u),|v),. (A8)
Comparing Egs. (AS5) and (A8) yields
ab’'=a'b=0, (A9a)
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which in turn implies that either
c=ab=0 (A9b)
or
d=ah' =0,

contrary to assumption.

(A9c)

APPENDIX B: STATISTICAL CORRELATIONS IN
THE TWO-PARTICLE STATE |¥)

Because of Eq. (A4) of Appendix A we can write the
state |¥) of Eq. (1) in the form

|\Il> = (l/ﬁ)(lﬁl, + >llﬁ1’ - >2 - |ﬁl, - )llﬁl’ + >2))
(BI)

where 1, is an arbitrary direction. Let fi, be another arbi-
trary direction, which will be taken to be the polar axis, and
let the polar angle of it, with respect to fi, be §. By proper
choice of the other coordinates the azimuthal angle for fi,
will be zero. Hence, adapting Eqs. (A2a) and (A2b), we
have

[fy, + ), = (cos 0/2) By, + ), + (sin 8/2) |y, — )y,

(B2ay
By, — ), = — (sinf/2)|fy, + ), + (cos 8/2)|fiy, — ),
(B2b)
Hence,
W) = (1/42)[ — (sin 8/2)|f,, + ), |fy + ),
+ (cos @/2) iy, + ) (|fiy — >
— (cos 0/2)|ﬁ|, - )1|ﬁ2’ +),
— (sin 0/2) i, — ), |fip, — ), |- (B3)

The amplitude for the joint outcome up along i, for parti-

cle 1 and up along i, for particle 2is — (sin 6 /2)/42, and
similarly for the three other possible outcomes. Hence,

Py, (finfiy) =1sin? 672, (Bda)
P,y (fyfi,) =}cos?6/2, (B4b)
P_y, (f,h,) =1cos®6/2, (B4c)
P_y  (Aph,) =1sin6/2. (B4d)

Using Egs. (B4a), (B4b), (B4c),and (B4d) and the defin-
ition of E ¥ (#,,A,) of Eq. (2), we obtain

EY(fif,) =sin’0/2 —cos’ /2 = —cos 8 = — i,

(B5)

Of course, this expectation value can also be computed us-
ing

E¥(f,h,) = (¥|(Ag0)) (i, 0,) | V). (B6)

The reader should be on guard against confusing the
pure two-particle entangled state |¥) with a rotationally
invariant mixture of product states, which will not yield
correlations as strong as | V) does. Consider specifically the
following ensemble: Each individual system in the ensem-
ble is in a pure state |fi) ,| — i), for some specific direction
fi. The whole ensemble is simply a classical mixture of these
quantum mechanical product states, with an isotropic dis-
tribution of the directions fi. The expectation value of the
product of the fi, component of spin of particle 1 and the f,
component of spin of particle 2 in this ensemble is obtained
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by first calculating
E, (fi,,fi,)

=,( — 1| (8| (A0,) (fy0,) [6),| — 1), (B7)
and then averaging this result with an isotropic distribution
over the ii’s. Since the result will clearly only depend upon

the angle between ii, and fi,, we make the simplest choice of
directions making an angle « to each other:

i, =2, M,=cosaZ+ sinak. (B8)
Using Egs. (A2a) and (A2b) of Appendix A, we obtain
E%(f,,A,) = — cos® 8 cos a — cos @ sin O cos ¢ sin a,

(B9)
where 8 and ¢ are the polar and azimuthal angles of fi.
Averaging over ii with an isotropic distribution yields the
ensemble average

(B10)

in agreement with Eq. (11) of Bell’s paper in Ref. 1. Note
that even when (fi, =i, ) the correlation given by Eq.
(B10) is not perfect, and all types of spin outcomes
(+ +,4+ —,— +,— —) willoccur.

E PO (f fy)) = —Jcosa = — ()i, f,,

APPENDIX C: PROOF OF BELL’S INEQUALITY

For any direction fi and for all 4 (except for a set of
probability measure zero'* ) there is the perfect correlation

A, (R) = — B, (Q). (C1)
Hence we can rewrite the expectation value E#(ii,,fi, ) of
Eq. (4) as

Ef(f, i) = — fA,I(ﬁl)A,l(ﬁz)dp. (C2)
A

Hence,
E°(ab) — E P(4,8)

= —f [4, ()4, (b) — A4, (A)A4, (&) ]dp
A

=f [ — A4, ()4, ()] [1—4,(B)4, (&) ]dp. (C3)
A

ForallA, — 4,;(a)4, (ﬁ) is either 4 1 or — 1 and hence
has absolute value 1, and [1 — A4, (b)A4, (&) ] is nonnega-
tive and therefore equals its absolute value. Therefore, tak-
ing the absolute values of the terms in Eq. (C3) yields

|E*(4,b) — E*(4,¢) |<J [1—4,(b)4,(&)]dp
R \

=1+ E*(b,e). (C4)

where use has again been made of Eq. (4) and also of the
normalization condition

fdp:l.
A

Hence, inequality (6) of Sec. II is proved.

(C5)

APPENDIX D: BELL’S MODEL

In Bell’s illustrative local model for pairs of spin-1/2
particles with total spin angular momentum zero, the space
A of complete states consists of unit vectors in three-dimen-
sional space, denoted by A. The functions A4; (i) and
B; (i) are defined as follows:

1140 Am. J. Phys., Vol. 58, No. 12, December 1990

If A-d£0, then A4; (A) = — B; (1) = sign(A-4). (D1)

(In other words, 4; (fi) =1 if A and f are in the same
hemisphere, and Bj (ii) = 1if A and fi are opposite in hemi-
spheres.)

If A+i = 0, then 4; ()
= — Bj (fi) =sign
(D2)

[ Actually, Bell does not give a rule for the case of A+h = 0,
but we have written (D2), as he himself does elsewhere, '®
ip order to ensure that 45 (i) and Bj (fi) are defined for all
AeA.] From Eq. (3) one sees that there are perfect correla-
tions of the outcomes of measuring the i, spin component
of particle 1 and the i, spin component of particle 2 if and
only if #t, =i, or i; = — f,. In the first case, the out-
comes are opposite; in the second, they are the same. Clear-
ly (D1) and (D2) reproduce these perfect correlations.

APPENDIX E: DERIVATION OF THE INITIAL
STATE OF THE SYSTEM IN FOUR SPIN-1/2
PARTICLES

It is assumed that a spin-1 particle decays into two spin-1
particles, I and II, each of which decays into two spin-1/2
particles, and these four are labeled 1,2,3,4. Throughout
the process the total spin S is assumed to remain 1 and the
total z component M is assumed to remain 0. We shall de-
note the spin states of I and II by the kets |m), and {m),
respectively, where m is the component of spin along the
specified polar axis; in both of these kets the total spin
quantum number 1 has been suppressed. The spin state of
the composite system consisting of I and II will be denoted
by ||S M ) ), suppressing the total spin-1 of each of the parti-
cles I and I1. The spin state of the composite system after
the first decay is |1 0) ), and it can be expressed as

110)) = ¢, [1);] = Dy +¢,10);|0)
+C3i_1)1|1>u' (E1)

The coefficients ¢, ¢, ,¢; can be found in a table of Clebsch-
Gordon coefficients, but we can determine them here by a
shortcut. We know that all the kets ||2M/ ) ) are symmetric
under exchange of particles I and II because
22)) = [1);]1)y, is symmetric and the lowering operator
S_ =(s1, + Sux) — i(sy, + 5y,) clearly preserves sym-
metry. Hence |{11)) must be antisymmetric in order to
ensure orthogonality to ||21)), and therefore by lowering
one obtains an antisymmetric ||10) ). Hence in Eq. (E1) we
obtain

¢, =0, ¢, = —c¢;=1/2 (E2)

(the last step by normalization). At the second decay we
have

(the first nonzero term of Hoshyn, ).

1)y —[1/2),]1/2),, (E3a)
|_1)[_’|_1/2>||_1/2)2, (E3b)
|1>ll_'t1/2>3|1/2)4’ (E3c)
| — Du=|—1/2)5| = 1/2),. (E3d)

Hence the state of the quadruple of spin-1/2 particles
1,2,3,41is

WY = (VDI + 0]+l =)l =)

—|_>1|_>2|+>3|+>4]’ (E4)
where we have simplified the notation | + 1/2) to | + ).
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APPENDIX F: STATISTICAL CORRELATIONS IN THE SYSTEM OF FOUR SPIN-1/2 PARTICLES
The expectation value in the state | ) of Eq. (7) of the product of outcomes of the fi; component of spin of particle 1, the
fi, component of spin of particle 2, etc. is

Ew(ﬁpﬁbﬁyﬁ‘t) = (W! (ﬁl'ol) (ﬁ2'0'2) (ﬁ3'0'3) (ﬁ4'0'4) |\I/>

=[++ - - | (o)) (iy0,) (fiy0;) (o) | + + — —)
—{+ + — —[(iij0o)) (iye;) (fyo;) (Bpeo,) | — — + + )
—{— — + +|(ipo)) (iy0,) (fiyoy) (Aeo,) | + + — — )
+{— — 4+ + |(B0,) (Byr0,) (fy0;) (igo) | — — + +)]. ' (F1)
But
i — e
(+ (o) +) = (1 0)(81:‘;1?,.‘, o fgs , )((1)) = cos 6, (F2a)
and
Likewise,
(— |(fa)| 4+ ) = sin G ; (F2c)
and . ' .
(—|(he)]—)= —cosb. (F2d)

The first and the last terms in the brackets of Eq. (F1) are products of four factors like those of Eqs. (F2a) and (F2d), with
net result cos 8, cos 6, cos &, cos ,. The second and third terms add to sin 8, sin 6, sin 6, sin 8, cos(¢, + ¢, — @3 — d4).
Collecting terms we obtain

EY(ii,,fiy,05,0,) = cos 8, cos 8, cos 85 cos 8, — sin &, sin 6, sin 6, sin 6, cos(¢, + ¢, — 3 — &,). (F3)

APPENDIX G: STATISTICAL CORRELATIONS IN THE THREE-PARTICLE INTERFEROMETER
The evolution of the state |¥) of Eq. (19) can be obtained by using the evolutions (20a) and (20b) of the states of
particle 1 and the analogous evolutions of states of particles 2 and 3. The result is

I\p)__)%[(l_iei(¢.+¢;+¢‘))ld)l|e>zlf>3+(i_ei(¢.+¢:+¢;))|d)l|e)2vl>3
+ (i— ei(¢'+¢:+¢"))|d)1 |e')2 Lf)a + (-1 +iei(¢'+¢:+¢‘))|d)1 |e’>2 V')s
_+_(i_ei(¢.+¢:+¢.))ld'>1|e>2V'>3 +(—1+l'e"(d"+¢3+¢‘))|d'>|’€)2[f'>3
+ (= L4 @80 d ) [€),]f ) + (— i@ =5 40d "), [e),]f")s ] (GD)

The probability for detection of the three particles by the respective detectors d,ef'is
Poy($1$ads) = f3|(1 — i@+ o420y 2

=§[1+Sin(¢1+¢2+¢3)~] (G2a)
Likewise,

Pg’ef(¢1!¢2’¢3) =é[1 —sin(¢, + ¢, + &) 1. (G2b)

The difference between Egs. (G2a) and (G2b) is exactly what one would expect, since replacing d by d ' has the effect of re-
quiring the beam a to be reflected (rather than transmitted ) from the beam splitter in order to reach the designated detector
and requiring beam a’ to be transmitted (rather than reflected) in order to reach it. The replacement thus removes an / from
one of the two terms in the coefficient of the ket |d }, |e}, |/} ; and inserts an / in the other term. Hence, there is a net change
of sign in the cross terms when the absolute square is taken. Iterating this argument shows that the probability that a triple
of particles will cause three designated detectors to fire will be the same as for d,e,f [ given by Eq. G2a] if an even number of
the detectors are primed; and the probability will be the same as for d’,e,f | given by Eq. (G2b) ] if an odd number of them
are primed.

If detection by an unprimed detector (for example, d) is assigned the value + 1 and by a primed detector (for example,
d') is assigned the value — 1, then the expectation value of the product of the outcomes is

Ew(¢l + ¢2 + ¢3) = P:ef(¢l’¢2’¢3) + P:’ef’ (¢l’¢2’¢3) + Pz"ef’ (¢l’¢2’¢3) + P:iy’e’f(¢l’¢2’¢3) - P:’ef’ (¢l’¢2’¢3)
- Pge'f(¢l’¢2’¢3) - Pg'ef(¢l’¢29¢3) - Pg'e’f’ (¢1’¢29¢3)'
=sin(¢; + ¢, + ¢3). (G3)
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Electron wavelike behavior: A historical and experimental introduction
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Following the Fresnel theory of light and the consequent scientific debate that his formulation
generated, two key experiments with electrons, diffraction by means of a circular hole and a
circular obstruction, have been realized to show the existence of the Fresnel zones and of the so-
called “Poisson spot.” The basic arguments concerning the quantum mechanical nature of
electrons can be introduced by taking advantage of the vivid impression stimulated by the

experimental images.

I. INTRODUCTION

The debate that led the scientific community to accept
the wave behavior of what we call light constitutes one of
the most fascinating parts of optics.

The conclusive facts are well known.

In an extremely fruitful paper presented at the end of
July 1818 for participation in a public competition orga-
nized by the French Academy, Fresnel, the major “archi-
tect” of the wave theory of light, described diffraction by a
border and interference phenomenon occurring in the
shadow of a thin wire. He gave a mathematical and phys-
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ical interpretation by combining the principle of elemen-
tary wavelets with that of interference.

The Newtonian concept of light, nevertheless, was deep
rooted, thus the Fresnel paper became a new subject for
heated controversies. A member of the judging committee,
Poisson, considering the integrals reported in the Fresnel
paper, deduced the singular and “unbelievable” result that
even behind a circular obstacle there should be light when
this latter is illuminated by a beam of light rays. The chair-
man of the committee, Arago, performed this experiment
and the observation confirmed the calculations. This unex-
pected result that, by reductio ad absurdum, should have
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