RAMSAUER - TOWNSEND EFFECT

Advanced Laboratory, Physics 407,
University of Wisconsin
Madison, Wisconsin 53706

Abstract

The scattering cross section of electrons on noble gas atoms exhibits a very small value at electron energies near 1 eV . This is the Ramsauer-Townsend effect and provides an example of a phenomenon which requires a quantum mechanical description of the interaction of particles.

References

1. "Demonstration of the Ramsauer - Townsend Effect in a Xenon Thyratron", S.G. Kukolich, Am. Jo. Phys. 36, 1968, pages 701-701, included in this description.
2. "Quantum Mechanics", Merzbacher (Wiley), page 105.
3. "Quantum Physics", Eisberg \& Resnick (Wiley), pages 219 and problem \#16 on page 247.
4. "Modern Physics and Quantum Mechanics", Anderson (Saunders), page 401.
5. "The Quantitative Study of the Collisions of Electrons with Atoms", R.B. Brode, Rev. Mod. Phys., 5, (1933), pages 257-279.

Theory

We omit the theory here but strongly recommend that you read reference 4 (start on page 396). If you understand only a little quantum mechanics, then you may profit more by reading a simplified one-dimensional treatment in either reference 2 or reference 3 .

Note that reference 2 produces the interesting graph of the transmission coefficient which is displayed on its dust cover.

Apparatus

0.1 Thyratron - (RCA 2D21)

The tube contains Xenon gas. The assembly is mounted on a stand so that the filament of the tube is uppermost and so that the tube may be dipped into a liquid nitrogen dewar. (Note that the voltages being used here are NOT the voltages which are normally used in thyratron circuits).

0.2 Regulated DC Power Supply - (Heathkit IP-27)

This provides the voltage to accelerate the electrons. The supply provides 0 to 30 volts but is difficult to adjust near zero. For this reason a potentiometer is used to obtain the lowest voltages.

0.3 4-Volt Transformer

This provides the power for the thyratron filament. The tube normally uses 6.3 volts AC but by running the cathode at a lower temperature the spread in electron energies is reduced.

0.4 Dewar Flask

This will hold the liquid nitrogen necessary for freezing out the Xenon in the thyratron tube.

0.5 Digital Multimeters - (3 1/2 digit Data Precision 1450)

These are high impedance meters used to measure the plate voltage, V_{p}; the shield voltage, V_{s}; and the cathode to shield voltage, $\left(V-V_{s}\right)$.

Circuit Diagram
Thratron Socket Wiring Color Code

Pin	Internal Connection	Color of Wire
1	grid \#1	green*
2	cathode	black
3	heater	red
4	heater	red
5	shield (grid \#2)	no connection
6	anode	yellow
7	shield (grid \#2)	green*

* grid \#1 and shield (grid \#2) are joined externally

Demonstration of the Ramsauer-Townsend Effect in a Xenon Thyratron

Stephen G. Kukolich
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 15 January 1968; revision received 15 April 1968)

Abstract

The anomalously small scattering of electrons near 1 eV energy by noble gas atoms may be easily demonstrated using a 2D21 xenon thyratron. This experiment is suitable for a lecture demonstration or for an undergraduate physics laboratory. The probability of scattering and the scattering cross section may be obtained as a function of electron energy by measuring the grid and plate currents in the tube.

The scattering cross section for electrons on noble gas atoms exhibits a very small value at electron energies near 1 eV . This cross section is much smaller than that obtained from measurements involving atom-atom collisions. This is the Ramsauer-Townsend effect and provides an example of a phenomenon which requires a quantum mechanical description of the interaction of particles. If the atoms are treated classically as hard spheres, the calculated cross section is independent of the incident electron energy and we cannot account for the RamsauerTownsend effect. If the noble-gas atoms are considered to present an attractive potential (e.g., square well, screened Coulomb) of typical atomic dimensions, the solution of the Schrödinger equation for the electrons indicates that the cross section will have a minimum at electron energies near 1 eV . Reviews of the Ramsauer-Townsend effect are given by Mott and Massey ${ }^{1}$ and Brode. ${ }^{2}$
${ }^{1}$ N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions (Oxford University Press, London, 1965), 3rd ed., Chap. 18.
${ }^{2}$ R. B. Brode, Rev. ılod. Phys. 6, 257 (1933).

The problem of scattering of electrons by a square well is considered in many introductory quantum physics texts. ${ }^{3-7}$ The one-dimensional model predicts that the scattering will go to zero whenever half the electron wavelength in the well is a multiple of the well width. The difficulty with this model is that only one distinct minimum is observed.
A slightly better model of the xenon atom is a three dimensional square well. Then the scattering cross section will have a very small value when the phase shift δ_{0} of the $l=0$ partial wave is π. Here the scattering due to the $l=0$ partial wave will vanish and the scattering due to higher l partial waves will be small if the width of the

[^0]
well is small. ${ }^{1}$ When the $l=0$ phase shift becomes 2π, or higher l phase shifts become π at higher values of electron energy, the dips in the cross section will not be as prominent since contributions from other values of l will not be small. The well parameters may be adjusted to give a minimum at the observed energy. This model predicts the Ramsauer-Townsend effect in a qualitative way, but does not give quantitative agreement over a wide range of electron energies. The results of more accurate calculations with a screened coulomb potential are given by Mott and Massey. ${ }^{1}$

I. THE EXPERIMENT

The 2D21 thyratron is very well suited for a demonstration of the Ramsauer effect. The shield (grid 2) is a boxlike structure with three sections

Fig. 2. Diagram of the circuit for the Ramsauer effect experiment. The filament of the 2 D21 (pins 3, 4) is heated by 4 V dc .

Fig. 3. The plate current I_{p} as a function of the voltage V, and $I_{p}{ }^{*}$ the plate current with the xenon frozen out with liquid nitrogen.
connected by apertures (see Fig. 1). The electron bęam originates at the cathode in the first section, passes through the second section, and part of it is collected on the plate in the third section. The xenon pressure in the tube is approximately 0.05 Torr. A diagram of the circuit is shown in Fig. 2. The shield current is proportional to the intensity of the electron beam at the first aperture. After the first aperture the beam passes through an equipotential region where the scattering takes place. In this region the beam intensity is $J=$ $J_{0} e^{-x / \lambda}$, where λ is the mean free path. If the plate is a distance l from the first aperture, the intensity at the plate is $J_{p}=J_{0} e^{-l / \lambda}$ or $J_{p}=J_{0}\left(1-P_{s}\right)$, where P_{s} is the probability of scattering. The plate current is $I_{p}=I_{s} f(V)\left(1-P_{s}\right)$, where I_{s} is

Fig. 4. The probability of scattering P_{s} as a function of $\left(V-V_{s}\right)^{1 / 2}$, where $V-V_{s}$ is the electron energy. Ionization occurs at " I ".
the shield current and $f(V)$ is a geometrical factor which contains the ratio of the angle intercepted by the plate to the angle intercepted by the shield and a factor due to space charge effects near the cathode. To measure $f(V)$ we freeze out the xenon by dunking the top of the tube in liquid nitrogen. This reduces the xenon pressure to ${ }^{\prime} \sim 10^{-3}$ Torr and P_{s} becomes very small so we get $f(V) \cong$ $I_{p}{ }^{*} / I_{s}{ }^{*}$. Now we have $P_{s}=1-I_{p} I_{s}{ }^{*} / I_{s} I_{p}{ }^{*}$. Figure 3 shows that I_{p} has a maximum near 1 eV and that $I_{p} / I_{p}{ }^{*}$ approaches one there, indicating that there is very little scattering. At higher energies ' $I_{p} / I_{p}{ }^{*}$ is very small indicating a large probability of scattering. A plot of P_{s} calculated from the data using the above equation is shown in Fig. 4.

The probability of scattering is related to the mean free path by the relation $P_{s}=1-e^{-l / \lambda}$. For the $2 \mathrm{D} 21 l=0.7 \mathrm{~cm}$ so we can calculate λ. The cross section σ is related to λ by $n \sigma=1 / \lambda$, where n is the number of atoms per unit volume. A plot obtained from our values of P_{s} is shown in Fig. 5. A similar set of data for $P_{c}\left(P_{c}=P / \lambda\right.$, where P is the pressure in Torr) given by Brode ${ }^{7}$ is shown in Fig. 6. In the 2D21 fairly large angular deflections must be produced to scatter an electron out of the beam (greater than $\sim 0.2 \mathrm{rad}$) so the cross section measured in the 2D21 will be smaller than Brode's data.

II. EXPERIMENTAL DETAILS

The filament of the 2 D 21 is operated on 4 V dc. This is lower than the recommended value of

Fra. 5. The cross section times density $n \sigma=1 / \lambda$ as a function of $\left(V-V_{s}\right)^{1 / 2}$, where $V-V_{s}$ is the electron energy. Ionization occurs at " I ".

Fig. 6. The probability of collision P_{c} (=pressure times $n \sigma$) as a function of $(V)^{1 / 2}$ where V is the electron energy (from Brode see Ref. 2).
6.3 V, but tends to reduce space charge effects. Since the cathode temperature is lower, the thermal kinetic energy of the electrons is smaller and this will result in a narrower distribution of electron energies. The shield and plate currents are obtained by measuring the voltages V_{s} and V_{p} with two Keithley model 600A electrometers (see Fig. 2). The voltage source V is a well regulated and filtered supply which may be varied between 0-15 V. The electron energy plotted in the figures is $V-V_{8}$. We have not included a correction for the contact potential difference between the cathode and the shield. This contact potential difference is approximately 0.4 V and was measured by noting that ionization occurs when $V-V_{s}$ is 0.4 V less than the tabulated ionization potential. A similar value was obtained by measuring the value of V required to cut off the electron current to the shield. The voltages V_{s} and V_{p} range from a few millivolts to a few tenths of a volt. The data may be displayed on an oscilloscope by using an audio oscillator for the source V and for the x axis of the 'scope.

ACKNOWLEDGMENT

This experiment was suggested by Professor R. Weiss as a demonstration in an introductory course in quantum physics given by him at MIT.

Procedure

1. Read the article by S.G. Kukolich in the Am. Jour. Phys. 36, 1968, pages 701-703.
2. Set up the circuit as in the diagram on page 4 .
3. Allow 5 minutes for the tube filament, cathode and multimeters to heat up and become stable.
4. Measure the voltages V_{s} and V_{p} as a function of the cathode to shield voltage $\left(V-V_{s}\right)$ with the thyratron at room temperature. Try using values of $\left(V-V_{s}\right)$ as follows:

from	0.25	to	0.40	volts in steps of	0.025	volts
0.40	to	1.00	volts in steps of	0.05	volts	
1.00	to	2.00	volts in steps of	0.1	volts	
2.00	to	3.00	volts in steps of	0.2	volts	
3.00	to	5.00	volts in steps of	0.5	volts	
	5.00	to	13.00	volts in steps of	1.0	volts

The purpose of the of the uneven steps is to give the best detail between 0.3 and 1.0 on the plot of $\sqrt{V-V_{s}}$. You will find that you cannot increase ($V-V_{s}$) to 13 V because the Xenon gas begins to ionize. Do not increase V_{s} above 3 V . Estimate the voltage at which ionization occurs and compare with the accepted value of 12.13 Volts. The difference is due to the contact potential difference between cathode and shield.
5. Turn off the filament and gently immerse only the lower blackened part of the thyratron in liquid nitrogen. Allow it to cool for 15 minutes then turn on the filament again and allow a further 5 minutes for temperatures to stabilize. The Xenon will have condensed and frozen at the cold end of the tube.
6. Repeat measurements of Step 4 above at the same values of $\left(V-V_{s}\right)$ to obtain V_{s}^{*} and V_{p}^{*}. Adjust the tube from time to time to keep the lower end in the liquid nitrogen.
7. Plot I_{p} and I_{p}^{*} against $\sqrt{V-V_{s}}$.
8. Calculate the probability of transmission (no scattering):

$$
T=\frac{I_{p} I_{s}^{*}}{I_{s} I_{p}^{*}} .
$$

Since $V_{p}=I_{p} R_{p}$

$$
\begin{aligned}
V_{p}^{*} & =I_{p}^{*} R_{p} \\
V_{s} & =I_{s} R_{s} \\
V_{s}^{*} & =I_{s}^{*} R_{s},
\end{aligned}
$$

it is easier to calculate:

$$
T=\frac{V_{p} V_{s}^{*}}{V_{s} V_{p}^{*}} .
$$

Plot T against $\sqrt{V-V_{s}}$ (which is proportional to the electron momentum).

Plot T against $V-V_{s}$ (which is proportional to the electron energy).
Note the value of $\left(V-V_{s}\right)$ corresponding to maximum T. Correct your result for the contact potential difference.
9. Compare your plot of T against energy with those of Merzbacher (figures 6.11 and 6.12).
10. The voltages and currents you have used with the thyratron are very unusual. You should understand how a thyratron is normally used to control large currents.
11. What solid state device can be used, instead of a thyratron, to control large currents?
12. Assume that the diameter of a Xenon atom is about $2.8 \AA$ (Xenon is smaller than Cesium ($5.5 \AA$) because Xenon has closed shells). From your data and using one-dimensional Quantum Mechanics estimate the average depth of the square well seen by the electrons.
13. A somewhat more realistic result for the depth of the square well seen by the electrons can be made by using the three-dimensional square well as a model. Theory predicts that the scattering will be a minimum when the phase shift δ_{0} of the $\ell=0$ partial wave is $n \pi$ provided that all other partial wave contributions are negligible. The condition that the
wave function and its derivative must be continuous at the boundary $r=a$ then becomes

$$
k_{2} a \tan k_{1} a=k_{1} a \tan k_{2} a
$$

where $k=\frac{2 \pi}{\lambda}, \lambda_{1}=$ wave length of the electron inside the square well, and $\lambda_{2}=$ wave length of the free electron. Use this relation to make another estimate of the depth of the square well.

From Merzbacher pages 106, 107 (and dustcover).

Figure \&.ll. Transmission coefficient T versus $E \mid V_{0}$ for a square well with $\beta=13 \pi / 4$. The spikes on the left are at the positions of the discrete energy levels.

Figwre 6.12. Tranamiasion coefficient T versus E / V_{0} for a square well with $\beta=315$. As E increases, the resonances become broader.

[^0]: ${ }^{3}$ L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Co., New York, 1955), Chap. 5.
 ${ }^{4}$ E. Merzbacher, Quantum Mechanics (John Wiley \& Sons, Inc., New York, 1955), Chaps. 6, 12.
 ${ }^{5}$ D. Bohm, Quantum Theory (Prentice-Hall Inc., Englewood Cliffs, N.J., 1951), Chaps. 11.9, 21.51.
 ${ }^{6}$ A. Messiah, Quantum Mechanics I (North-Holland Publ. Co., Amsterdam, 1961), Chaps. III-6.
 ${ }^{7}$ R. M. Eisberg, Fundamentals of Modern Physics (John Wiley \& Sons, Inc., N.Y., 1961), Chap. 15.

