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Abstract

The charge of the electron is measured using the classic technique of Millikan. Mea-
surements are made of the rise and fall times of oil drops illuminated by light from a
Helium-Neon laser. The chamber microscope is viewed by a CCD camera connected
to a TV screen. The emphasis of the experiment is to make an accurate measurement
with a full analysis of statistical and systematic errors.



Introduction

Robert A. Millikan performed a set of experiments which gave two important results:

(1) Electric charge is quantized. All electric charges are integral multiples of a
unique elementary charge e.

(2) The elementary charge was measured and found to have the value e = 1.60 ×
10−19 Coulombs.

Of these two results, the first is the most significant since it makes an absolute
assertion about the nature of matter. We now recognize e as the elementary charge
carried by the electron and other elementary particles. More precise measurements
have given the value

e = (1.60217733± 0.00000049)× 10−19 Coulombs

The electric charge carried by a particle may be calculated by measuring the force
experienced by the particle in an electric field of known strength. Although it is
relatively easy to produce a known electric field, the force exerted by such a field on
a particle carrying only one or several excess electrons is very small. For example,
a field of 1000 volts per cm would exert a force of only 1.6 × 10−14 N on a particle
bearing one excess electron. This is a force comparable to the weight of 10−12 grams.

The success of the Millikan Oil-Drop experiment depends on the ability to measure
small forces. The behavior of small charged droplets of oil, weighing only 10−12 gram
or less, is observed in a gravitational and electric field. Measuring the velocity of fall
of the drop in air enables, with the use of Stokes’ Law, the calculation of the mass of
the drop. The observation of the velocity of the drop rising in an electric field then
permits a calculation of the force on, and hence the charge, carried by the oil drop.

Although this experiment will allow one to measure the total charge q on a drop, it
is only through an analysis of the data obtained and a certain degree of experimental
skill that the charges can be shown to be quantized. By selecting droplets which rise
and fall slowly, one can be certain that the drop has a fairly small charge. A number
of such drops should be observed and their respective charges q calculated. If the
charges q on these drops are integral multiples of a certain smallest charge e, then
this is an observation that charge is quantized.
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Question

Some students measure a medium size charge q and then divide it by whatever large
integer, n, which will give

q

n
= 1.60× 10−19 coulombs!

What is wrong with this?
Since a different droplet has been used for measuring each charge, there remains

the question as to the effect of the drop itself on the charge. This uncertainty can be
eliminated by changing the charge on a single drop while the drop is under observation.
An ionization source placed near the drop will accomplish this. In fact, it is possible
to change the charge on the same drop several times. If the results of measurements
on the same drop then yield charges q which are integral multiples of some smallest
charge e, then this strongly suggests that charge is quantized.

The measurement of the charge of the electron also permits the calculation of
Avogadro’s number. The charge F required to electrodeposit one gram equivalent
of an element on an electrode (the Faraday) is equal to the charge of the electron
multiplied by the number of molecules in a mole. Through electrolysis experiments,
the Faraday has been found to be F = 9.625× 107 coulombs per kilogram equivalent
weight.

Hence Avogadro’s Number N = F/e =
9.625× 107 coulombs/kg equiv. wt.

1.60× 10−19 coulombs/molecule

= 6.02× 1026 molecules/kg equiv. wt.

Equations for calculating the charge on a drop

An analysis of the forces acting on the oil drop let will yield the equations for the
determination of the charge carried by the droplet.

Figure 1a shows the forces acting on the drop when it is falling in air and has
reached its terminal velocity (terminal velocity is reached in a few milliseconds for
the droplets used in this experiment). In Fig. 1a, vf is the velocity of fall, k is the
coefficient of friction between the air and the drop, m1 is the mass of the drop, m2 is
the mass of air displaced by the drop and g is the acceleration due to gravity.

The downward force due to gravity is m1g −m2g. The viscous retarding force is
kvf . Then

m1g −m2g = kvf .
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Figure 1: Fig. 1a and Fig. 1b

Let m = (m1 −m2), then
mg = kvf . (1)

Figure 1b shows the forces acting on the drop when it is rising under the influence
of an electric field. In Fig. 1b, E is the electric intensity, q is the charge carried by
the drop and vr is the velocity of rise. Adding the forces vectorially yields:

Eq = mg + kvr . (2)

Eliminating k from equations (1) and (2) and solving for q yields:

q =
mg(vf + vr)

Evf

. (3)

To eliminate m from equation (3), one uses the expression for the volume of a
sphere:

m = (m1 −m2)

m = (4/3)πa3(ρ1 − ρ2) (4)
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where a is the radius of the droplet, ρ1 is the density of the oil and ρ2 is the density
of the air. Equations (3) and (4) are combined:

q =
4π

3

g

E
(ρ1 − ρ2)(1 +

vr

vf

)a3 . (5)

To calculate a, one employs Stokes’ Law, relating the radius a of any spherical
body to its velocity of fall in a viscous medium (with the coefficient of viscosity, η):

velocity falling =
2

9

ga2

η
(ρ1 − ρ2)

In the theoretical derivation of Stokes’ Law the following five assumptions are
made:

(1) that the inhomogeneities in the medium are small in comparison with the size
of the sphere;

(2) that the sphere falls as it would in a medium of unlimited extent;

(3) that the sphere is smooth and rigid;

(4) that there is no slipping of the medium over the surface of the sphere;

(5) that the velocity with which the sphere is moving is so small that the resistance
to the motion is all due to the viscosity of the medium and not at all due to the
inertia of such portion of the medium as is being pushed forward by the motion
of the sphere.

In the case of our small drops, the assumptions (2), (3), (4) and (5) are valid.
However, the assumption (1) is not completely valid since the drop radii are about 1
or 2 microns and not much greater than the mean free path of the air molecules.

The drop will tend to fall more quickly in the “holes” between the air molecules.
Kinetic theory indicates that a correction must be made to the formula for the falling
velocity

vf =
2

9

ga2

η
(ρ1 − ρ2)

(
1 + A

`

a

)
,

where ` is the mean free path of the air molecules and A is a dimensionless correction
factor.
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The mean free path ` is dependent upon the air pressure P and so we use a more
convenient form

vf =
2

9

ga2

ηeff

(ρ1 − ρ2) where ηeff = η/(1 +
b

Pa
) (6)

Here b is a correction factor, and P is the pressure.
To calculate the radius a we must solve this equation. First rearrange.

9ηvf

2g(ρ1 − ρ2)
= a2 +

b

P
a .

Let
θ = b/2P , (7)

and

φ =
9ηvf

2g(ρ1 − ρ2)
. (8)

Then a2 + 2θa− φ = 0. The solution must be the positive root

a = −θ +
√

θ2 + φ . (9)

The electric intensity is given by E = V/d, where V is the potential difference
across the parallel plates separated by a distance d. E, V and d are all expressed in
the mks system of units and so E is measured in volts/meter.

The charge q may be obtained by calculating θ and φ with equations (7) and (8)
then calculating the radius a with equation (9) and finally q with equation (5).

A second method for determining the charge can be obtained by measuring the
float potential Vfloat and the fall velocity. The following two equations can be com-
bined to determine the charge, using the expression for the drop radius a in Eqn.
(9).

mg − qE = 0 and 4/3πa3(ρ1 − ρ2)g − qVfloat/d = 0 (10)

resulting in:

q =
6πdηeffvf

Vfloat

·
√

9ηeffvf

2(ρ1 − ρ2)g
. (11)
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Calculations

It is suggested that you lay out the results of your calculations for each drop in
the form of a table so that errors may be found more easily. Use MKS units and the
following columns:

average
fall
time
tf

average
rise
time
tr

(
1 +

tf
tr

)
=

(
1 +

vr

vf

) fall
velocity

vf

φ (θ2 + φ)
√

θ2 + φ a a3 q

(1) The fall velocity vf = s/tf where s is distance between the images of the
graticule lines. You will have to determine s experimentally.

(2) From vf , calculate φ by multiplying by a factor 9η/2g(σ1 − σ2) where:

η = ? N sec m2 (Use graph in Fig. 2: 1 N sec m2 = 1 kg m−1 sec−1).

g = 9.81 meters/sec2.

ρ1 = ? kg/meters3 (density of oil to be measured).

ρ2 = 1.192 kg/meters3 (density of air at 1 atmosphere and 22◦C).

(3) Calculate θ from the barometric pressure P measured in Torr (mm of Hg) and
use b = 6.17× 10−5 Torr-meter.

(4) Add θ2 + φ. The θ2 will be small.

(5) Take the square root
√

θ2 + φ.

(6) Subtract θ to obtain a.

(7) At this stage, check that the radius a is reasonable.

(8) Obtain a3.

(9) Compute a multiplier 4π
3

gd(ρ1−ρ2)
V

. (d in this apparatus is 6.00 mm.)

(10) Combine the multiplier, (1 + vr

vf
) and a3 to obtain q.
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Figure 2: Viscosity(η) of dry air as a function of temperature (◦C). Vertical scale is

in units of 10−5 kg m−1 sec−1.
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Apparatus

The experiment uses:

1. A Leybold GmbH apparatus.

2. A He-Ne laser pointer is used for illumination of the drops. The laser is fastened
so that its light cannot enter your eyes accidentally. However, be careful, and
do not thoughtlessly unfasten the laser or introduce shiny or reflecting objects
into the laser beam.

3. The high voltage is generated and stabilized within the Leybold apparatus and
is measured precisely with the volt meter on the control panel.

4. The time is measured by a small counter controlled by a microswitch and a 100
kHz crystal oscillator. The count is visible on LEDs and is precise to the least
count of 0.01 seconds. Eight readings can be stored. A reading is not stored
until the next reading is started.

5. An atomizer contains mineral oil of known density.

The HV power supply is controlled by a potentiometer and switch.
The power Supply specifications are:

Power Input: 110/130 VAC, 50/60 cps.

Range: 0 - 600 VDC, continuously variable.

Regulation: 1% for 10% line variation.

Ripple: less than 0.1 volt.

Stability: within 1% after warm up.
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Procedure

1. There should be enough room light so that the reticule lines are visible. The
telescope is viewed by a CCD camera connected to a video monitor. The CCD
camera lens can be used to focus on the reticule lines. The small divisions of
the reticule are 0.10 mm but the telescope magnification is 2.0. Thus 1 mm of
the reticule corresponds to 0.50 mm in the condensor.

2. Introduce some oil drops into the condenser by placing the nozzle of the atomizer
into the small holes of the condenser housing cover. A few quick “squirts” of
oil will fill the upper chamber of the condenser with drops and begin to force
some drops into the viewing area.

The exact technique of introducing drops will have to be developed by the
experimenter. The object is to get a small number of drops, not a large, bright
cloud, from which a single drop can be chosen. It is important to remember
that the drops are being forced into the viewing area by the pressure of the
atomizer. Therefore, excessive use of the atomizer can cause too many drops
to be forced into the viewing area and, more important, into the area between
the condenser wall and the focal point of the scope. Drops in this area prevent
observation of drops at the focal point of the scope.

NOTE: If the entire viewing area becomes filled with drops, so that no one drop
can be isolated, either wait three or four minutes until the drops settle out of
view.

3. Select drops which have a mass which can be accurately measured. If the mass
is too large the drop will fall quickly and your percentage error in timing will
be poor. Note that the viewing image is inverted.

If the mass is too small, the drop will bounce around due to random collisions
with air molecules (Brownian motion) and it will be difficult to estimate when
it crosses a line. A very small drop may cross a line 10 or 20 times! The laser
shows the Brownian motion quite clearly.

We recommend using drops which fall at the rate of 15 - 30 sec per mm.

4. Select drops with measurable charges. If the drop rises quickly then it has a
large charge q and so will not be much use in finding the elementary charge.
Look for drops which take 10 to 40 seconds to rise when you switch on the
electric field. A drop that requires about 15 sec to fall 0.5 mm will rise the
same distance under the influence of an electric field produced by 600 V (1000
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V/cm) in the following times for the following charges: 15 s, 1 excess electron;
7 s, 2 excess electrons; 3 s, 3 excess electrons. (Note: these ratios are only
approximate).

5. If you still have many drops in sight, repeat 5 and 7 to concentrate on a useful
drop.

6. Take at least 4 measurements of the fall time and of the rise time of a particular
drop. Do not jar the apparatus or you may lose your drop.

7. Plot the fall time and rise time of this drop before measuring the next drop.
Write the drop number beside its point.

Fall
time

sec

Rise time

sec

40

30

20

10

10 20 30 40

8. Calculate the q for the first drop before you make any further measurements.
If the drop is outside the range of 1 to 10 × 10−19 coulombs then find your
procedural or arithmetic error before continuing.

9. Repeat the procedure for at least 6 drops. Choose the fall and rise times so that
you have a fairly uniform scatter within the 10–40 sec square on your fall time,
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rise time plot. This will prevent you from selecting too many identical charges.
Include a few points outside the square if you wish.

10. Record the barometric pressure and the voltage on the condenser for each mea-
surement set.

11. At this time (before doing the calculations) decide which of your observations
may be in error. It is very important that you not reject any data after you
see the result of the calculations. Why?

12. Now calculate q for each of your drops.

13. Make a histogram of your charges q. Use a bin width of 0.2× 10−19 coulombs.
Label each square in the histogram with the drop number.

14. Does your evidence indicate that all charges are integral multiples of an elemen-
tary charge?

15. Choose a charge Q such that all charges less than Q, fall in groups which are
obvious multiples of an elementary charge. (The errors of the charges larger
than Q are too large for clean grouping).

16. Tabulate all charges q less than Q (it is now too late to reject a charge), divide
each q by the integer appropriate for its group. The final step is an average
charge determined from the average charge of each of the integer subgroups.
The final result should include an error resulting from correct error propagation
of individual error contributions. Be sure to separate systematic and statistical
errors.
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