
Appendix I: Bloch Sphere Representation

The Bloch sphere provides an extremely useful geometrical representation of the state of
a spin-1/2 system. We consider a ground state |↑〉 and excited state |↓〉. Any (normalized)
superposition state can be expressed as follows:

|ψ〉 = cos
θ

2
|↑〉+ sin

θ

2
eiφ|↓〉, (1)

where θ and φ are real. The parameter θ expresses the relative amplitude of the basis states,
while φ expresses their relative phase. In the Bloch sphere representation, the state |ψ〉 is
depicted as a vector pointing from the origin to a point on the surface of the unit sphere;
the direction of the state vector is specified by polar angle θ and azimuthal angle φ. For
example, the ground state |↑〉 resides at the north pole of the Bloch sphere, the excited state
|↓〉 resides at the south pole, while an equal superposition of |↑〉 and |↓〉 exists somewhere
on the equator (Fig. 1).

In general, the state of the spin will be a statistical mixture of pure states of the form
(1) (a so-called “mixed state”). In this case, the state is described by a 2x2 density matrix,
involving three real parameters. The state of the system can be depicted as a vector with
polar and azimuthal angles θ and φ and length r < 1. Thus, a mixed state resides in the
interior of the Bloch sphere. For example, an incoherent mixture of spin-up and spin-down
with equal weights (corresponding to an infinite spin temperature) is described by the density
operator

ρ =
1

2
|↑〉〈↑|+ 1

2
|↓〉〈↓|; (2)

this state is depicted as a point at the origin of the Bloch sphere.

Figure 1: Bloch sphere representation of a spin-1/2 system.
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Spin Rotations

When the spin-1/2 system is immersed in a static field B = B0 ẑ, the moments become
polarized along the Zeeman field direction. To induce spin flips, we apply a weak, oscillating
magnetic field in the xy plane, at a frequency ω0 ≡ B0/γ that is matched to the Zeeman
splitting, where γ is the nuclear gyromagnetic ratio. Most often this excitation field is linearly
polarized; for example, it is typically produced by a small solenoid coupled tightly to the spin
sample and oriented in a direction orthogonal to the Zeeman field. The linearly polarized
excitation can be decomposed into two counter-rotating components that circulate at angular
frequency ±ω0. The effect of the excitation field is best understood by transforming to a
reference frame that rotates with the excitation component that is matched to the sense
of spin precession. In this frame, one component of the excitation field appears stationary,
while the counter-rotating component circulates at twice the Larmor frequency and can be
neglected. By Larmor’s theorem, transformation to the rotating frame is equivalent to the
application of a magnetic field −γ ω0 ẑ that cancels the Zeeman field. In the absence of a
Zeeman field, the spins experience a torque due to the stationary component of the excitation
field that can tip the moments away from the ẑ direction.

In the Bloch sphere representation, the excitation field corresponds to a control vector
aligned in the equatorial plane that induces rotations of the sample magnetization. The
orientation of the control vector is related to the phase of the radiofrequency excitation
field (for example, by introducing 90◦ phase shifts between resonant pulses, it is possible to
perform rotations about both the x− and y−axes of the Bloch sphere), while the length of
the control vector is determined by the magnitude B1 of the excitation field in the rotating
frame. Under the influence of the excitation field, the sample magnetization rotates at a
frequency

ω1 = γB1. (3)

The tip angle θpulse of the excitation pulse is determined by the integral

θpulse = γ

∫
B1(t) dt. (4)
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Appendix II: Spin Relaxation

In NMR we distinguish two distinct types of spin relaxation: (1) longitudinal relaxation,
corresponding to decay of the excited state and relaxation of the state vector toward thermal
equilibrium, and (2) transverse relaxation, corresponding to decay of the transverse (xy)
components of the state vector. Relaxation of the spin magnetization M is described by the
phenomenological Bloch equations:

dMz

dt
=
Mz,0 −Mz

T1

(5)

dMx,y

dt
=
−Mx,y

T2

,

where Mz,0 ẑ is the equilibrium spin magnetization and where T1 and T2 are the longitudinal
(or spin-lattice) and transverse (or spin-spin) relaxation times, respectively.

Physically, both longitudinal and transverse relaxation are due to fluctuating magnetic
fields of microscopic origin that induce spurious rotations of the state vector on the Bloch
sphere. Longitudinal relaxation involves a transfer of population from |↓〉 to |↑〉, and re-
quires the exchange of quanta with a thermal reservoir (the “lattice”). Thus, T1 processes
involve fluctuations at the Larmor frequency, corresponding to rotations about a control
vector oriented in the transverse (xy−) plane of the Bloch sphere. These high-frequency,
resonant fluctuations also contribute to transverse relaxation; in this case, however, only one
quadrature of the fluctuating field can induce a spurious rotation of the transverse magne-
tization, since a control vector that is aligned with the magnetization induces no rotation.
At the same time, energy-conserving, low-frequency fluctuations of the z−component of the
magnetic field also produce transverse relaxation, with a characteristic pure dephasing time
T ′2. The transverse relaxation time T2 is related to T1 and T ′2 as follows:

1

T2

=
1

2T1

+
1

T ′2
. (6)

Relaxation in Liquids

For many nuclear spin samples of interest, the fluctuating fields that induce relaxation
are due to nearby nuclear spins that are oriented randomly with respect to the Zeeman field
direction (recall that for typical temperatures and Zeeman field strengths, the nuclear spin
polarization is quite small, of order 10−6 − 10−5). To estimate the magnitude of this effect,
we calculate the dipolar field Bloc of a proton at a distance r = 1 Å. We find

Bloc ≈
µ0µp
4πr3

= 1 mT. (7)

These local fields cause spins to acquire a spurious phase at characteristic rate

ωloc/2π = Bloc/2πγ ≈ 40 kHz. (8)
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Figure 2: Spectral density of local field fluctuations for different molecular correlation times
τc (arbitrary units).

Since each spin acquires phase at a random rate (due to the random orientations and mag-
nitudes of local fields), phase coherence is lost in a characteristic time 1/ωloc of order 1-10
microseconds.

The above picture of fixed, randomly oriented nuclei is valid in the case of a nuclear spin
sample in the solid state, where the molecules are rigidly bound in the lattice. For nuclei in
a liquid sample, the rapid reorientation of the molecules causes randomization of the local
magnetic field experienced by each nucleus on a timescale τc, the microscopic correlation time
characteristic of molecular rotations. As a result, each spin accumulates spurious phase at a
much slower rate, leading to a dramatic increase in spin relaxation times and a corresponding
narrowing of the NMR lines, an effect known as motional narrowing. The following simplified
picture (after C. Kittel, Introduction to Solid-State Physics) provides physical intuition. We
consider spin dephasing in the liquid state in terms of a one-dimensional random walk of
the phase θ of the nuclear spin. We break the time axis into discrete steps of duration τc;
during each time step, the spin acquires phase ±ωlocτc, where the sign is random. After N
time steps, the spin has acquired a spurious phase

θ(N) ≈
√
Nωlocτc. (9)

Phase coherence is lost when the spurious phase is of order 1, i.e., after N ≈ (ωlocτc)
−2 time

steps. The spin dephasing time is therefore

T ′2 ≈
1

ω2
locτc

. (10)

We see that the spin relaxation time in the liquid is enhanced by a factor 1/ωlocτc over
its value in the solid state. For water at room temperature, we have 1/ωloc ≈ 10 µs and
τc ≈ 100 ps; thus, we expect spin relaxation times of order 1 s, an enhancement of about
five orders of magnitude over the relaxation times seen in the solid state.

In a more rigorous treatment, one can show that the longitudinal relaxation rate is
proportional to the spectral density SB(ω0) of local magnetic field fluctuations at the Larmor
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frequency, while the pure dephasing rate is proportional to the spectral density SB(0) of field
fluctuations at zero frequency:

1/T1 = 2πγ2SB(ω0) (11)

1/T ′2 = πγ2SB(0).

In a liquid, the field fluctuations are due to the random tumbling of the molecules, resulting
in the rapid translation and rotation of the nuclear dipole moments. The random motion
of the molecules causes an exponential decay of the autocorrelation function of the local
magnetic field, with characteristic time τc:

< B(0)B(t) >= B2
loce
−t/τc . (12)

The Fourier transform of the autocorrelation yields the power spectral density of magnetic
field fluctuations:

SB(ω) = B2
loc

τc
1 + ω2τ 2

c

. (13)

As τc increases, weight in the fluctuation spectrum is shifted from high frequency to low fre-
quency, but the total noise power is conserved (Fig. 2). Clearly, T ′2 decreases monotonically
as τc increases; this makes sense, since motional narrowing becomes less effective as molec-
ular motion slows. On the other hand, T1 goes through a local minimum as τc increases.
Spin-lattice relaxation is most efficient when τc is matched to the inverse of the Larmor
frequency.

When the Larmor frequency is much less than the inverse correlation time (a situation
that is often realized in liquids), we have

SB(0) ≈ SB(ω0). (14)

Combining Equations 6, 11, and 14 above, we find

T2 ≈ T1. (15)

In this laboratory, you will use inversion-recovery sequences to measure T1, and spin-echo
(or CPMG) sequences to measure T2. The liquid samples will span a range of viscosities,
corresponding to a range of rotational correlation times. For a liquid with molecules ap-
proximated as spheres with radius a, the correlation time τc is related to viscosity η as
follows:

τc =
4πηa3

3kBT
. (16)

Because 1/T1 ∝ τc and τc ∝ η, we have T1 ∝ 1/η. Figure 3 demonstrates this relationship
for water-glycerine mixtures spanning three orders of magnitude in viscosity.
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Figure 3: NMR relaxation times in water-glycerine mixtures at 29 MHz (from Bloembergen).

Procedure

1. Calculate the thermal polarization of proton spins at room temperature in a magnetic
field of 0.35 T.

2. Using the mineral oil sample, adjust the excitation frequency until you find the proton
resonance (note that the oscillations at the mixer output are at the difference between
the excitation frequency and the Larmor frequency). Estimate the inhomogeneous
linewidth of the proton resonance.

3. Employ the CPMG sequence to measure T2 of the following samples: mineral oil, and
100%, 80%, and 50% glycerine solutions in water. Make careful note of the pulse
sequence parameters, and check that the repetition rate is low enough that the spins
are properly initialized before the 90◦ pulse.

4. Use inversion-recovery sequences to measure the T1 times of the above samples.

5. Explain the dependence of spin relaxation time on glycerine concentration for the
glycerine-water solutions. Refer to the table below (from Bloembergen).
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Figure 4:
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