Physics 623

FPGA 1II: Construction of a ROM
Aug. 5, 2008

1 Objective

A 32 word 12 bit read-only memory (ROM) is constructed in the Spartan II FPGA and is used to
drive three seven-segment displays with a programmed pattern. The ROM is constructed using
the Xilinx CORE generator and the CORE memory editor. The ROM addresses are set by a five
bit binary counter which is driven with the test board external 100 MHz clock oscillator. The
clock frequency must be stepped down to make the display visible using, for example, the MSB
of a 25 bit binary counter. We will program the ROM with the first 32 prime numbers, i.e. 2
through 131 and read it out with the seven-segment displays.

2 Procedure Outline

The top level source will again be a schematic diagram. Since 32 prime numbers takes you into the
hundreds, we have to use all three seven-segment displays and three seven-segment decoders. We
will also again use a count stepdown for the external 100 MHz clock. The 32x12 ROM requires
five address lines so we will need a five bit counter to sequentially address the ROM. While
the ROM can be built directly with VHDL coding, we will use a Xilinx tool called the CORE
generator which is used to build preconfigured logic functions. ISE 8.1 or higher is required to
support the CORE generator. The required counters and seven segment display decoders will be
constructed in VHDL language (easily done after working through the WebPack tutorial) and
once circuit symbols are created, all components can be entered into the circuit schematic.

2.1 Xilinx Cores

The CORE generator can be used to produce devices ranging in complexity from simple arith-
metic operators and delay elements to complex building-blocks such as digital signal decoders,
processing filters, multiplexers, transformers, FIFOs, and memories.

3 Core Implementation

The Core to be built is treated in the Project Navigator like another type of new source.
The Cores are built using the CORE generator which can be run either inside or outside the
Project navigator. To start the CORE generator from within Xilinx ISE select NewSource
and [P(Coregen& ArchitecturalWizard). The next window will present a choice of Core types.
Choose Memories & StorageElements, then RAMS & ROM s, and then Distributed Memory v7.1
to make a ROM. After executing Finish a Distributed M emory window will open up which is
a tool to construct the memory. Choose ROM, specify the required Depth and Width, go to
Next, and then execute Generate. A .xco file will be generated, but remember that the ROM
at this point is empty. Now you will run the Memory Editor to load data into the ROM. With
the .xco file highlighted, click on ManageCores. From the window that opens up, load your

CORE .cgp Project File and under Tools select the MemoryEditor. Choose a memory block
name and again specify the depth and width but you will now also be able to edit the memory
contents. Select 2 for the Address Radix (since you will address the ROM in binary) and select
16 for the Data Radix since you will write the memory contents in Hex. Each memory entry will
contain three Hex characters corresponding to 12 bits. For example, entering the prime 5 will
be entered as 005 and the prime 131 will be entered as 131. When the memory contents have
been entered, save the memory definition and execute Generate under the File menu item. Select
Making a .coefile. Exit the Memory Editor after saving all the files. You now have created a
memory definition but the data is not yet in the ROM. Double click on the .xco file name and the
Distributed M emory window will open up showing the parameters of the ROM. Click on Next
two times and load the memory defintion file created earlier. You can check the memory contents
by clicking on ShowCoef ficients. The CORE generation procedure will also have made a ROM
circuit symbol which will be available from the schematic window.

4 Creating the Bitmap

Open the schematic window and wire up the circuit. All the parts are available from the Symbols
window. Rename the Clock input to CLK. No buffer is required for the Clock input but an obuf
part is required for each output. The obufs must be renamed to match the 7 bit wide branch
by renaming them to obufname(6:0). See the writeup circuit diagram. Check the schematic by
running checkschematic and save the file.

The next step is to assign the circuit pins. Create a new constraint file (.ucf) by adding a new
source of the constraint type. Highlighting the file name will show a AssignPackagePins in the
Processes window. Clicking on this will open the PACE pin assignment editor from which you
enter the required pin assignments. Save the file. You will find the Pin Assigments in the table
at the end of this report.

Now Synthesize, Translate, Map, Place and Route as before. If you are successful, click on
Generate ProgrammingF'ile and a .bit file will be created. Remenber to use the JTAG clock with
the USB cable or the CCLK clock with the parallel port cable. The .bit file is than downloaded
into the FPGA with the XESS GXSLOAD tool.

5 Downloading the Circuit

The binary configuration bit file is now ready to be downloaded to the actual FPGA chip. Follow
the following steps for downloading.

1. Make sure the circuit boards are connected to a +9V plug-in power supply.

2. Make sure the circuit board is connected to the appropriate PC port using either the parallel
port or USB serial cable.

3. You will then use one of several available GXSTOOLS depending on which function you
are trying to implement.

e GXSTEST: This utility lets the user test an XS Board for proper functioning.

e GXSLOAD: This utility lets the user download FPGA configuration files to the
FPGA. Choose the appropriate download port (either the Parallel or USBO port)
depending on which download cable you are using.

e GXSPORT: This utility lets the user send logic inouts to an XS Board by toggling
the data pins of the parallel port.

e GXSSETCLK: This utility allows you to set an integer divisor for the on-board 100
MHz clock.

6 Questions

1. The ROM will be made up out of the Spartan II Block RAM. Our chip has eight Block
RAM cells each of which is a fully synchronous dual-port 4096-bit RAM giving 32 Kbits
of total Block RAM. The rest of the circuit has registers that are made up out of the D
Flip-Flops in the CLB. Estimate the number of CLBs required to implement the circuit
and compare your estimate to the information in the Project Status Report.

2. Determine the maximum clock frequency for the circuit (It better be above 50 MHz). The
required information is in the Post-Place Static Timing report.

3. Now we will look at the performance of the ROM by filtering out everything but the inputs
and outputs of the ROM block. Run the Timing Analyzer and once the window is open
select Analyze and Against User Specific Paths by Defining Endpoints. Enter
the nets corresponding to the Sources and Destinations of the ROM and run the Timing
Analyzer.

What is the worst case access time of the ROM?
What is the total worst case delay including nets?

7-Segment LED Display Pin Assignments

LED Decoder Output | FPGA Pin | 7-Segment LED
S0 P67 XSA Board
S1 P39
S2 P62
S3 P60
S4 P46
SH P57
S6 P49
S0 P47 Rightmost XStend
S1 P40
S2 P28
S3 P29
S4 P27
SH P42
S6 P48
S0 P64 Leftmost XStend
S1 P65
S2 P76
S3 P50
S4 P51
S5 P54
S6 P56

CLK P88 \ XSA Board Clock ‘

ircuit Diagram

7 C

T jo TIaUS

800Z ZT:€5'GT 10 Bny ugareq

NOY AUO peay :aweN

11VOd4 €29 SoIsAud @pIL

XNITIXZ3

a3 preog ue
¢ NXT u:mmnu

T NXIX

popp3)

a3znysi

TNXIX

papp3)

a3 wbry

{(0:9)zg NXIX (0:€)60T NXIX

popps|

(0:TT)60T NXTIX

WNOY ¢TXce

T1OdS

A2,

= (0:vhunoo

Jajunoowolbiq

INOT Ja1UNod

