
Physics 623 — Problem Set 6 
 
NOISE: 
Which is better for low-noise applications, bipolar or field-effect (FET) transistors?  Answer the 
following questions. 
 
1. Input noise specifications for two high-performance op-amps (both advertised as “Low-noise”) are 
given as follows. 
 
 
 OP-27: Ultra-low noise bipolar op amp 
  en-A = 3 nV/sqrt(Hz)  in-A = 0.4 pA/sqrt(Hz) 
 
 LF-347: Low-noise FET-input op amp 
  en-A = 18 nV/sqrt(Hz)  in-A = 0.01 pA/sqrt(Hz) 
 
miscellaneous useful data:  Room temperature = 300 K,      kB = 1.38 x 10–23 J/K. 
 
a) for each of these op amps, calculate the Noise Resistance, RN, which is the value of the source 
resistance for which the Noise Temperature, TN, is a minimum.  (TN is the physical temperature the source 
resitance would need to have for its Johnson noise to equal the total noise due to the amplifier, giving a 
Noise Figure of 3 dB.  (Noise Figure, NF, is the ratio of total noise at the amplifier output to what it 
would be with an ideal amplifier with en-A = in-A = 0.  This is usually expressed in dB.) 
Show your work! 
 
 
 
       OP-27:     RN = _____________ ohms 
 
       LF-347:   RN = _____________ ohms 
 
b) Give the minimum value for the noise temperature, TN, that can be achieved with each amplifier: 
 
 
 
       OP-27:     TN = ___________ K   for RS = RN  
 
       LF-347:   TN = ___________ K   for RS = RN  
 
c) Which op amp would be better (lower Noise Figure) for: 
 
  i) measuring the potential of a pH electrode with a source impedance of 5 Megohms?  
 
        best amplifier: ____________ 
 
 
 
 ii) measuring the voltage across a thermocouple with a resistance of 3 ohms? 
 
        best amplifier: ____________ 
 



d) At what source impedance does the room-temperature Johnson noise of the source equal the voltage  
 
noise of the OP-27?     
          _____________ ohms 
 
    Is the current noise of the op-amp significant for this RS?        yes / no         
 
    Explain: 
 
 
 
e) Using an LF-347, what bandwidth must be used to measure a 1 µV r.m.s. signal to 1% rms precision if 
the source resistance is 106 ohms? 
          _____________ Hz 
 
About how long would it take to make one measurement with this bandwidth?     _____________ seconds 
 
 
 
   Could the measurement be made significantly faster with a better amplifier?       yes / no        
 
   Explain: 
  
 
FOURIER TRANSFORMS: 
2. Use the convolution theorem to prove the trigonometric identity: 

€ 

cos(ω0t)•cos(ω1t) =
1
2
cos((ω0 +ω1)t) + cos((ω0 −ω1)t)( ) 

(This is easier to sketch and think about if you make ω0 −ω1 ω0 <<1 .) 
 
 
 
 
 
 
 
 
The phase detector for the lab we will do in a few weeks is effectively a multiplier that takes advantage of 
this to convert two frequencies into their sum and difference.  The technique, called heterodyne, is also 
widely used in radio receivers and other instruments. 
 
 
3. Use the convolution theorem to find the apparent frequency spectrum derived from a 1-second 
observation of the sum of two cosine waves, one at f = 9 Hz and one at f = 11 Hz.  Both have amplitudes 
of 1 V peak.  Sketch the spectrum that would be obtained.  (Note that you can mathematically reproduce a 
one-second observation by multiplying the infinite time sequence by a rectangular function that is 1.0 
between t = –0.5 s and t = +0.5 s and zero elsewhere.) 
 
 



4.  The sinc function that smears the spectrum observed for a finite length of time is shown in blue at the 
left below (compare problem 3).  The oscillations can create confusing features in a spectrum that has 
both strong and weak sharp lines in it.  The problem can be alleviated by multiplying the sampled time 
function by another “window” function that falls off more gently before doing the Fourier transform.  One 
common function that is used is called a “Hanning window”.  If the time sequence is observed for a time 
T, the Hanning window function is: 
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This goes smoothly to zero as the ends of the observing interval are approached.  The new smearing 
function will be the Fourier transform of this Hanning window.   You can use the convolution theorem 
again to find this transform without doing any integrals if you construct the Hanning window as a 
continuous 1+cos multiplied by a rectangle function of length T.  (Since FTs are linear, the FT of a sum is 
just the sum of the FTs.  You need to know that the FT of a constant is a delta function at zero frequency 
to do the “1” part.  Both terms have unit amplitude, but the cosine amplitude is split half and half between 
positive and negative frequencies.)  The result is the red curve on the left, although this won’t be obvious 
unless you plot your solution.  You can do this, or just give the formula and plug in a couple of key points 
to check against red plot on the left below.)  Applying this type of window to a data sample is called 
“apodization”, or “removing the feet”.  Note the tradeoff — the Hanning window greatly reduces the 
extraneous features far from the main response, but there is significant loss of resolution in the main peak 
(it is broader).  The squares of these smearing functions are shown on the right in blue and red and the 
absolute values in green and orange.  These are what would appear in power spectra (V2) and Vr.m.s. spectra 
respectively. 
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