
Introduction to Programmable Logic Devices
© 2015 Kael HANSON

1 Arbitrary Logic Tables

Here we briefly review two strategies used in programmable
logic devices to realize arbitrary truth tables in digital hard-
ware: the sum-of-products which uses explicit ANDs and
ORs, and the lookup table (LUT) method used in most mod-
ern FPGAs and CPLDs.

1.1 Sum of Products, &c.

Classic programmable logic devices, PALs, GALs, and older
CPLDs, implemented logic functions using combinations
of ANDs and ORs. An arbitrary function of N boolean
variables may be expressed as the sum (OR) of product
minterms or the product (AND) of sum maxterms, defined
below.

Minterm The minterms associated with N boolean vari-
ables, {ai} are the product terms of all possible combi-
nations of {ai} and {āi}. There are 2N distinct terms.
Perhaps an easier way to think of this is to construct
the full boolean truth table and associate a minterm
with each row of the table, such that the product term
evaluates to true.

Maxterm The maxterms associated with N boolean vari-
ables, {ai} are the sum terms of all possible combina-
tions of {ai} and {āi}. There are also 2N possible com-
binations. Whereas the minterms rows evaluate to true,
the maxterm rows evaluate to false.

For example, the minterms and maxterms of 3 logic signals
A, B, and C are shown in Table 1. The truth table output P
expresses whether the binary number formed by the inputs
is prime (true) or not (false). One can easily deduce that
the minterms are formed by placement of the variable or its
complement depending on whether the corresponding entry
in the table is true or false, respectively.

To find the boolean function P (A,B,C), pick out the rows
where P = 1 and sum the corresponding minterms, forming
the sum-of-products, or SOP:

P1 = ĀBC̄ + ĀBC +AB̄C +ABC (1)

or, equivalently, pick the rows where P = 0 and multiply
the corresponding maxterms, to form the product-of-sums,

A B C Minterm Maxterm P
0 0 0 Ā · B̄ · C̄ A+B + C 0
0 0 1 Ā · B̄ · C A+B + C̄ 0
0 1 0 Ā ·B · C̄ A+ B̄ + C 1
0 1 1 Ā ·B · C A+ B̄ + C̄ 1
1 0 0 A · B̄ · C̄ Ā+B + C 0
1 0 1 A · B̄ · C Ā+B + C̄ 1
1 1 0 A ·B · C̄ Ā+ B̄ + C 0
1 1 1 A ·B · C Ā+ B̄ + C̄ 1

Table 1: Minterms and maxterms of 3 logic variables A, B,
and C in a prime number truth table.

or POS:

P2 = (A+B+C)(A+B+ C̄)(Ā+B+C)(Ā+ B̄+C). (2)

It is easy to show that P̄1 = P2 using DeMorgan’s identity.
The above expression for P1 can be simplified using the rules
of Boolean algebra to obtain P1 = AC + ĀB which is easier
to extract directly from the truth table.

1.2 Look-Up Table Implementation

Another means of realizing the prime computer of Table 1
would be to treat the 3 inputs as an address into an 8-element
look-up table and then storing either true or false in this
memory table, as appropriate. This is the strategy taken by
FPGAs and more modern CPLDs. It is trivial to determine
the LUT elements given a truth table or boolean logic ex-
pression. For example, the CR muon pre-trigger discussed
previously took 3 inputs:

T = S1S2S̄3 (3)

This could be expressed in an 8-element LUT (8 = 23 where
3 is the number of inputs) with all elements zero except for
the element at address 6 (110 in binary) if S1 was the MSB
of the address.

1

UW-Physics PHYS623 Introduction to Programmable Logic Devices

Figure 1: Typical PAL internal structure. The small
shaded dots interconnecting the rows and columns are
(re-)programmable switches and allow arbitrary product
minterms to be presented to the summing OR gate at right.

2 Programmable Logic Types

2.1 CPLDs

Programmable array logic devices (PALs) implement the
sum-of-products using a structure shown in Figure 1. Ex-
ternal and feedback inputs are overlaid on an array of AND
gates. Fuse links connect these inputs into the AND gates
and can be programmed open or closed. Arbitrary product
sums are then formed using the multiple input OR gates.
The PAL may contain a number of registers on the outputs
as well to implement sequential logic.

Complex Programmable Logic Devices, or CPLDs, evolved
the registered sum-of-product structures of PAL devices to
include more flexiblity, called it a macrocell, and then packed
many macrocells connected by an intricate network of inter-
connects into a single IC. CPLDs replaced the fuses with
switches whose state is held in nonvolatile flash RAM: once
programmed the switch states persist across power down and
reset conditions which is a nice convenience. The flash mem-
ory can be reprogrammed thousands of times.

CPLDs are typically distinguished from the related logic de-
vice to be taken up shortly, the field-programmable gate ar-
ray, in their non-volatility, relatively low cost, clock speeds,
logic density, and power consumption. A popular CPLD, the

MAX V series from Altera was introduced in 2010 on a 180
nm process, costs between $1 and $30, contains the equiva-
lent of between 32 and 1700 macrocells, and has maximum
clocking speeds of 300MHz.
Newer (post-2010) CPLDs have moved away from the sum-
of-product logic implementation and adopt the lookup table
used in FPGAs, along with other features historically found
only on FPGAs: PLLs, memory, &c. They retain the non-
volatile flash memory, lower power, and clock speeds of the
classic CPLD.

2.2 FPGAs

The FPGA, short for field-programmable gate array, has be-
come a popular solution for digital designers in the past
two decades due to its flexibility and power. Totally re-
programmable, it is possible to purchase generic PCBs with
hard-wired on-board peripherals but in addition, expansion
headers that connect to off-board user-custom hardware, and
develop complex systems with minimal hardware develop-
ment. The programmable logic can then be configured with
firmware1 images which define the behavior of the digital
system.
FPGAs, unlike CPLDs, are based on configurations defining
the logic to be implemented held in static RAM (SRAM)
rather than flash. This means that the devices must be re-
configured each time they are powered on or reset due to
the volatile nature of SRAM. Despite this inconvenience,
the much higher densities and speeds which can be achived
with FPGAs relative to CPLDs has given them a market
edge.

2.2.1 Logic Cells

The fundamental element of the FPGA is the logic element,
or LE (Altera); configurable logic block, or CLB (Xilinx); or
programmable logic block, or PLB (Lattice Semiconductor).
They all function similarly, though differ in the details. A
schematic of the LEs found in Altera’s Cyclone IV series of
FPGAs is shown in Figure 2.2.1.
Signals from the global interconnect matrix arrive from the
left and exit at right. Signals at top and bottom are lo-
cal (more on this later). The Cyclone IV LE’s each con-
tain a single 4-input (i.e.16-element) LUT and a D register.
The LUT may be configured either as a single 16-element
LUT or a special arithmetic mode where the LUT is split

1Note, firmware is also often used when discussing the software im-
age running on an embedded microcontroller. I normally refer to mi-
croprocessor and microcontroller instruction bitstreams as software to
disambiguate the various image files in cases where a soft IP micropro-
cessor core runs on an FPGA and needs its own executable image or
images.

Page -2-

UW-Physics PHYS623 Introduction to Programmable Logic Devices

Figure 2: Logic element (LE) found in Altera’s Cyclone IV series of FPGA.

into 2 8-element LUTs where in addition to the normal out-
put which is derived from the LUT upper half there is a
fast carry output derived from the lower half. This is use-
ful for implementing adders and counters. It should be noted
that the carries propagate along low propagation delay paths
which increases the maximum speed of adders and counters.
The shaded muxes allow configuration-time selection of sig-
nal paths (i.e.these muxes cannot be changed dynamically
by logic). The D register have a dedicated clock enable (CE)
input. Clock enables are an important technique employed
in FPGA designs to control clock skew. More on this later
(see section 5.1).
The LEs are arranged, in Cyclone IV devices in groups of 16,
in LABs or logic array blocks which contain, in addition to the
LEs, local interconnect lines which offer low skew connections
to LEs within the same LAB. The LABs are then packed
in array fashion onto the die. The layout of the smallest
member of the Cyclone IV family - the EP4CE6E22 with
only 6k LEs is shown in Figure 3.

2.2.2 Other Resources

In addition to LEs, the FPGA fabric contains other special
functions of general use:
• Random access memory (RAM) blocks. On Altera de-

vices these are arranged in 9kbit blocks called M9K

blocks. Xilinx calls these BlockRAM and each block
contains 36kbit on the newest generation “7 series” FP-
GAs. In both cases the RAMs may be arranged in vary-
ing word lengths. In addition to the dedicated RAM
blocks, the LUTs may also be configured for distributed
RAM in cases where small blocks or extra flexibility is
needed.

• Hardware multipliers;
• Hard processor cores - dedicated resources which im-

plement high-performance ARM microprocessors are of-
fered by Altera (SoC variants of the Cyclone, Arria, and
Stratix families) and Xilinx (Zynq);

• Dedicated DDR physical interfaces;
• Hardware multipliers (DSP slices);
• Digital clock management tiles (fractional-N PLLs with

precision delay taps);
• Gigabit transceivers for high-speed serial interfaces;
• PCIe hard endpoints.

2.2.3 Clock Networks

Clocks are handled differently from normal logic in FPGA de-
signs: they are routed along low-skew networks, interconnect
freeways, while normal logic must travel the surface streets.

Page -3-

UW-Physics PHYS623 Introduction to Programmable Logic Devices

Figure 3: Structure of Altera EP4CE6E22 6k LE Cyclone IV FPGA. Each small rectangular tile in the matrix is a logic array
block (LAB) which itself contains 16 logic elements (LEs) and local interconnects (zoom at right). The greyed-out tiles are
unused. The two light blue strips are M9K memory blocks and the light red stripe contains the DSP multiplier blocks. Two
PLLs are located in opposite corners of the die. Around the periphery are located the various I/O banks. Each I/O bank
is capable of supporting several signaling standards, however, as I/Os within each bank share the power rail, designers are
constrained to common signaling within a bank.

Page -4-

UW-Physics PHYS623 Introduction to Programmable Logic Devices

There are only a few entry points to these preferred routes
where normal logic can access the clock networks. Because
logic signals can accumulate a considerable delay in travelling
these routes, it is strongly discouraged in firmware designs
to connect the output of LUTs or registers to clock inputs.
The standard work around for instances where gated clocks
or clock dividers would normally be used is to use clock en-
ables. These are described further in Section 5.1

3 Firmware Design Tutorial

Firmware development using a hardware description lan-
guage (HDL) offers many advantages over schematic entry,
however it presents a steep learning curve. We will plunge
in, tutorial fashion: after giving some high-level guidance,
the reader is presented with familiar examples of logic gates
and shown how they are modeled in the two common HDLs
in the hope that firmware design patterns will be recognized
and generalized. Then the important subject of simulation
testbenches will be used to demonstrate good design prac-
tice (test early, test often) and explore additional features of
HDLs.

3.1 Three Levels of Abstraction

There are three levels on which a firmware designer can, and
ought to, regard the firmware design. Starting with the most
concrete there is the technology level: at this level the de-
sign exists mapped onto the various logic elements and other
resources on the PLD. It is probably impossible to compre-
hend an entire design of even middling complexity at this
level, nevertheless it is often necessary for reasons of opti-
mization to examine critical path elements at this low level.
Also, in order to understand the reports generated by the
logic synthesis tools, resource utilization for example, some
familiarity with the technology level is useful.

At the next level, detaching itself slightly from the reality of
the underlying logic cells, the design exists on the RTL, reg-
ister transfer level, or sometimes called gate level. A designer
entering the firmware design in schematic capture mode in-
puts directly at this level. It is considerably easier to navi-
gate a design here: hierarchical structure exists or can exist
at this level so generic (i.e., counters) and user-defined com-
posed logic blocks are used to improve design readability.
The design, while not a literal representation of the low-level
structure, is a functionally equivalent view and, moreover, is
able to be realized on the PLD, unlike some constructions
found at the higher level. This may seem an odd comment
to make: what’s the point of designing firmware that cannot
be implemented in hardware? The answer should become

clearer after discussing the highest level of design abstrac-
tion.
This level is called the behavioral modeling level and is de-
scribed using one or more textual-based HDLs as opposed
to graphical-based schematic capture. The designer speci-
fies how the logic signals are to behave and how they are
linked togethers but does not explicitly use gates to do so.
Statements to the effect of “make a group of signals C which
are the binary sum of signals A and B” or “at the rising
edge of the clock signal set the state of a state machine to
some specified state if the value of an input signal is high,
otherwise remain in the current state” are how the design
is expressed in behavioral modeling. To be quite honest, de-
signers are free to model at the gate or even technology level:
as will soon be shown, a basic modeling concept present in all
HDLs is the module which allows encapsulation of firmware
sub-circuits in boxes with input and output ports. It is en-
tirely possible2 to define boolean gates or D or JK flip-flops
as firmware modules or even use vendor-supplied modules
that implement the primitive logic cells and connect these
together in the firmware source text.
In my experience, design expression at the behavioral level in
an HDL is the most efficient method of design entry and I see
the design globally as a collection of the firmware modules.
However, within a given firmware module I always seem to
have a running guess at least of how the synthesizer will
render the RTL.
Coming back briefly to the comment about behavioral mod-
eling statements that are not synthesizable (i.e., unable to
be realized in hardware), one may well guess that there are
applications of behavioral modeling beyond firmware imple-
mentation. HDLs are also used for documenting and sim-
ulating digital circuits. Only a subset of the languages are
used to implement firmware and this is a particularly steeply-
sloped section of the learning curve for HDLs. It is not al-
ways clear which constructs will synthesize; worse, it is not
consistent across different toolchains. An intuitive under-
standing of the RTL representation of the behavioral model
helps: if a statement would take a great number of logic
gates to implement, be on guard that it may not synthesize.
Having said that, most synthesizers will infer arbitrarily long
adders from a single line of HDL code which adds two signals.
Now that many FPGAs have dedicated hardware multipli-
ers, inference of DSP multiplier blocks is often supported by
synthesis tools. Recommendation: invest time reading the
documentation of each tool to see what it will do.

3.2 VHDL and Verilog

VHDL (Very High Speed Integrated Circuit HDL) and Ver-
ilog are the two most popular HDLs in use currently. These

2and occassionally necessary for design optimization

Page -5-

UW-Physics PHYS623 Introduction to Programmable Logic Devices

languages have evolved over time, again read the tool doc-
umentation to see what standard is supported. Despite an
admitted personal bias toward VHDL, there is not a right
choice nor a wrong one - each have strengths and weak-
nesses: VHDL supports some high-level constructs which
Verilog does not but Verilog syntax is much more succint.
Verilog syntax is close to C and thus more intuitive to a
wider group of people while VHDL has an Ada-like syntax
which takes some getting used to. SystemVerilog with its
Verilog syntax and support for more abstraction is now sup-
ported by major toolchains and so may be the right choice
for future-looking designers. To give a flavor for both VHDL
and Verilog, the basic introductory portions of this tutorial
on HDLs will include and compare both languages. However,
the later sections will present only VHDL.

3.3 Entities and Modules

VHDL and Verilog designs are entered into text files with
extension .vhd or .vhdl for VHDL, .v for Verilog files. By
convention one file holds one design unit. The basic design
unit is the entity (VHDL) or module (Verilog). All firmware
designs start with the top module whose I/O ports then cor-
respond to the physical I/O pins of the IC. Modules are then
hierarchically arranged to arbitrary depth.
This tutorial starts with a familiar circuit element, the 2-
input NAND gate of Figure 4.

Figure 4: The 2-input NAND modeled in HDLs.

3.3.1 Verilog NAND

The following 3-line Verilog module implements the NAND
gate. The syntax should be pretty obvious to those familiar
with C-like languages: a module definition looks like a C
function definition with the input and output signals taking
the place of function arguments. Inside the module, the only
action taken is the assignment of the result of the NAND
operation to the output port q.

1 module my_nand(input a , input b , output q) ;
2 ass ign q = ~(a & b) ;
3 endmodule

3.3.2 VHDL NAND

The equivalent code in VHDL is some four times length-
ier and requires a bit more explanation. The first two

lines inform the synthesizer that the IEEE code library
called std_logic_1164 must be loaded to gain access to the
std_logic type. VHDL contains many built-in types however
the type most used for logic synthesis, std_logic, is contained
in an add-on (but omnipresent) library. VHDL makes a dis-
tinction between module interface and implementation and
so requires the designer to declare the input and output ports
in the entity declaration between lines 4 and 6, while putting
the implementation in an architecture block, here between
lines 8 and 11.

1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3
4 ent i t y my_nand i s
5 port (a , b : i n s td_ log i c ; q : out s td_ log i c) ;
6 end ent i t y my_nand ;
7
8 arch i tec tu re behav i o r a l of my_nand i s
9 begin

10 q <= a nand b ;
11 end arch i tec tu re behav i o r a l ;

3.4 Modeling Sequential Logic

While similar concepts exist in both languages for concur-
rent (combinational) and sequential logic, Verilog and VHDL
differ substantially on how they handle stateful and state-
less signals. Before tackling this more difficult topic, let’s
first cover each language’s syntax to deal with sequential
events: Verilog’s always blocks and VHDL’s process state-
ments which are of similar nature. Again, we take a known
example from the real digital world: a JK flip-flop, Fig-
ure 5.

Figure 5: JK flip-flop and truth table.

3.4.1 Verilog JK Register

1 module j k f f (
2 input wire c lk ,
3 input wire r s t ,
4 input wire j ,
5 input wire k ,
6 output reg q
7) ;
8 always @(posedge c lk , r s t) begin
9 i f (r s t == 1) begin

10 q <= 1 ’b0 ;
11 end

Page -6-

UW-Physics PHYS623 Introduction to Programmable Logic Devices

12 e l s e begin
13 case ({ j , k})
14 2 ’b00 : ;
15 2 ’b01 : q <= 1 ’b0 ;
16 2 ’b10 : q <= 1 ’b1 ;
17 2 ’b11 : q <= ~q ;
18 de fau l t : ;
19 endcase
20 end
21 end
22 endmodule

The module’s input and output ports are enumerated in lines
2-6. It is more conventional to write port lists in this man-
ner, one port per line, as opposed to several per line unless
the list fits on a single line. Note that the output port has
the reg type because it is a stateful signal. We still have
not seen explicit wire declarations, however, the inputs are
implicitly wires possibly connecting to registers elsewhere.
An alternative to declaring q a reg in the port list would
have been to declare a register within the module and then
connect an output wire to it but the style presented in the
listing saves one line of typing. Inputs are always wires. The
always keyword introduces a procedural block of statements
which are evaluated sequentially, in order.
The block is triggered when one or more of the signals inside
the (), called the sensitivity list change state. The posedge
keyword on clk restricts the trigger to only the rising edge
of clk. Inside the procedural block an if-else statement de-
termines which signal triggered the block: the asynchronous
reset or the clock edge. In case the asynch reset and clock
edge both trigger simultaneously, the asynch reset wins. If
the async reset triggers, the q output is set to logical ‘0’: the
notation 1’b0 is the Verilog way to express a 0 bit, and 1’b1
expresses a 1 bit.
If the clock edge triggers then the else branch is selected and
the output is determined by the state of j and k. By enclosing
j and k in curly braces, they get smashed together to form a 2-
element bit vector which can succinctly be compared against
the case statement cases which echo the JK’s truth table
(Fig. 5).
3.4.2 VHDL JK Register

1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;
4
5 ent i t y j k f f i s
6 port (
7 c l k : i n s td_ log i c ;
8 r s t : i n s td_ log i c ;
9 j : i n s td_ log i c ;

10 k : i n s td_ log i c ;
11 q : out s td_ log i c) ;
12 end ent i t y j k f f ;
13
14 arch i tec tu re behav i o r a l of j k f f i s
15 s i g n a l q_int : s td_ log i c ;

16 begin
17 q <= q_int ;
18 process (c lk , r s t)
19 begin
20 i f r s t = ’1 ’ then
21 q_int <= ’0 ’ ;
22 e l s i f r i s ing_edge (c l k) then
23 case std_log ic_vector ’ (j & k) i s
24 when ”00” => n u l l ;
25 when ”01” => q_int <= ’0 ’ ;
26 when ”10” => q_int <= ’1 ’ ;
27 when ”11” => q_int <= not q_int ;
28 when others => n u l l ;
29 end case ;
30 end i f ;
31 end process ;
32 end arch i tec tu re behav i o r a l ;

The library and use clauses are identical to the first VHDL
listing (these two lines begin practically every VHDL source
file). Like Verilog, it is more usual to write out port lists one
port per line. Because VHDL enforces write-only access for
out ports, the port read on line 25 would cause an error on
synthesis if we’d tried to read from it - so an internal signal is
used and the output simply connected to it. VHDL offers the
buffer type of port, however that also has some limitations
on what can be connected to it so this simple work-around
is IMO preferred in the majority of cases.

VHDL process statements also include a sensitivity list but
will trigger on every signal change, therefore the edge direc-
tion of clk is tested on line 20. You may be tempted to model
a dual edge triggered register to react at double speed. This
will work in simulation. Currently, however, such dual edge
flip flops do not exist in FPGAs. Don’t worry, there are
other ways to achieve the same effect.

The same trick is used here to write a compact case state-
ment to handle the JK’s truth table: signals j and k are
concatenated using the & operator on line 21. The result-
ing bit string must be type cast to std_logic_vector type:
VHDL is a strongly typed language and requires that any
type ambiguities be resolved explicitly.

3.5 Simulation Constructs

The preceeding listings were models of real gates, so by de-
sign synthesizable. We now explore models that will not
synthesize to real gates but are rather for the sole purpose
of simulating models. We will construct so-called simulation
testbenches to test the functional behavior of the previous
listings. This is also show how to instantiate modules, that
is how to build circuit structure by inclusion of sub-modules
into containing modules. Again, both Verilog and VHDL
testbench drivers will be demonstrated.

Page -7-

UW-Physics PHYS623 Introduction to Programmable Logic Devices

3.5.1 Verilog Testbench

Testbenches are special examples of modules with no inputs
and outputs – they exist only in their own isolated simula-
tion universes. The first line of the testbench is a directive
telling the simulator what is the fundamental time step in
the simulation. This will become important to understand
time in the # delay statements on lines 25 to 34. Otherwise
the file is a normal Verilog file with the caveat that it will
not produce hardware files of course.

Module local nets and registers are declared in lines 5–6.
The parameter is a constant giving the clock period. It is
defined here to define clock half period delays, described in
the very next paragraph, in one place so that, if the clock
period changes, it can be changed in just one place.

Clocks are simulated using continuously retriggered always
blocks, seen in lines 9–13. At the beginning of the block the
clk is set to ‘0’. Line 11 contains a delay statement, only
useful in simulation, where the number after the # spec-
ifies how many time units, specified by the ‘timescale di-
rective, should elapse before the statement is executed. It
waits one half clock period, sets the clock high, then waits
another half clock period on line 12 before repeating the end-
less loop.

1 ‘ t imesca le 1ns / 1ps
2
3 module j k f f_ tb () ;
4 parameter CLKPER = 10;
5 reg c lk , j , k , r s t ;
6 wire q ;
7
8 // Clock generator
9 always begin

10 c l k = 1 ’b0 ;
11 #(CLKPER/2) c l k = 1 ’b1 ;
12 #(CLKPER/2) ;
13 end
14
15 // Stimulus generator
16 i n i t i a l begin
17 { j , k} = 2 ’b00 ;
18 r s t = 1 ’b1 ;
19 #10 k = 1 ’b1 ;
20 #30 r s t = 1 ’b0 ;
21 #50 j = 1 ’b1 ;
22 #412 r s t = 1 ’b1 ;
23 #32 r s t = 1 ’b0 ;
24 end
25
26 // DUT
27 j k f f j k_ in s t (. c l k (c l k) , . r s t (r s t) ,
28 . j (j) , . k (k) , . q(q)) ;
29 endmodule

The initial block, lines 16–24, is similar to the always block
but is executed only once. It is used here to define stimuli for
the device under test (DUT). It is used in synthesizable code
to set initial conditions for registers, memories, &c.

The JK flip-flop DUT is placed in lines 27–28. The
ports are mapped using the syntax .port_name(net), where
port_name is the name of the port in the module definition,
and net is the name of the wire or register in the current
module to connect to that port.

3.5.2 VHDL Testbench

Similar to Verilog testbenchs, VHDL testbenches are entities
with no ports. VHDL entity local signals are declared in
the lines between the architecture keyword and the begin,
here lines 8–21. The component declaration, lines 14–21,
is needed to declare to VHDL that there exists an entity
or module somewhere with those I/O ports. Note that the
module could be written in Verilog.

1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3
4 ent i t y j k f f_ tb i s
5 end ent i t y j k f f_ tb ;
6
7 arch i tec tu re s imu la t i on of j k f f_ tb i s
8 s i g n a l c l k : s td_ log i c ;
9 s i g n a l r s t : s td_ log i c ;

10 s i g n a l j , k : s td_ log i c ;
11 s i g n a l q : s td_ log i c ;
12 constant CLKPER : time := 10 ns ;
13
14 component j k f f i s
15 port (
16 c l k : i n s td_ log i c ;
17 r s t : i n s td_ log i c ;
18 j : i n s td_ log i c ;
19 k : i n s td_ log i c ;
20 q : out s td_ log i c) ;
21 end component j k f f ;
22 begin
23
24 −− c lock generator
25 c lkgen : process
26 begin
27 c l k <= ’0 ’ ;
28 wait fo r CLKPER/2;
29 c l k <= ’1 ’ ;
30 wait fo r CLKPER/2;
31 end process c lkgen ;
32
33 s t imu l i : process
34 begin
35 r s t <= ’0 ’ , ’1 ’ a f t e r 15 ns , ’0 ’ a f t e r 40 ns ;
36 j <= ’0 ’ , ’1 ’ a f t e r 60 ns ;
37 k <= ’0 ’ , ’1 ’ a f t e r 80 ns ;
38 wait ;
39 end process ;
40
41 j k_ in s t : j k f f port map(c l k=>clk , r s t=>rs t ,
42 j=>j , k=>k , q=>q) ;
43
44 end arch i tec tu re s imu la t i on ;

Lines 25–31 mirror the Verilog clock generation using VHDL
wait statements. The stimuli are generated in another pro-

Page -8-

UW-Physics PHYS623 Introduction to Programmable Logic Devices

cess which terminates in a wait halting the process, func-
tionally equivalent to the Verilog initial block. Note that in
VHDL, signal assignments happen asynchronously (they act
like non-blocking assignments in Verilog) so that, while rst
goes high at 15 ns and then back low at 55 ns, the rising edge
of j happens at 60 ns, and k at 80 ns. This is in contrast to
the cumulative delays of Verilog delay statements. Not sur-
prisingly, VHDL wait statements and delayed assignments
are not synthesizable.

4 More on VHDL

At this point we conclude the tutorial and backup to de-
scribe the VHDL language syntax only in enough detail to
understand the following sections. It’s a vast language, and
readers interested in a full specification of the language are
referred to the bibliography, in particular the book by Ashen-
den.
N.B.: VHDL is not case sensitive. Verilog is.

4.1 Data Types

VHDL is a strongly typed language and provides many types,
each one serving a specific purpose. Data types specify the
nature of signals and variables (sec. 4.3).

4.1.1 Scalar Types

Booleans With the prior duality between digial logic and
boolean algebra, one might imagine the fundamental logic
type to be a boolean. A boolean type does exist, with possi-
ble values false and true, however since logic signals tend to
come in groups of many bits, and character strings are less
bulky typograpically than boolean arrays, booleans are not
the dominant type. Nonetheless, they are common and quite
useful.
Example signal declaration (with initial value):
s i g n a l t r i g g e r ed : boolean := f a l s e ;

Bits and Standard Logic Bit types take on (character)
values ‘0’ and ‘1’ and are easier to gang into bit vectors.
However, the std_logic type is normally used in preference
to bit types because logic synthesis tools need to model logic
states other than LO and HI: other possible states are tri-
stated (high impedance), and weak pullups or pulldowns, to
name a few. To encompass models with these states, the
IEEE has developed a standard package (std_logic_1164)
which defines the std_logic type. Valid std_logic values are:
‘0’ logic LO; ‘1’ logic HI; ‘Z’ tri-stated; ‘U’ uninitialized; ‘X’

unknown, i.e. driven to different levels by multiple sources;
‘L’ weak pull-down; ‘H’ weak pull-up; ‘-’ don’t care.
std_logic objects can be used where bit types are
used.
Example signal declarations (with initial values):
s i g n a l c l k : b i t := ‘0 ’ ;
s i g n a l sda : s td_ log i c := ‘H’ ;

Note that setting std_logic objects to anything other than
‘0’ or ‘1’ in code meant for hardware synthesis is likely to
result in the synthesizer silently (!!) ignoring the assign-
ment.

Integer Signed, whole numbers are modeled by the integer
type. Because logic resources are often at a premium, it is
common, and encouraged to restrict integers to the range
needed using range constraints:
s i g n a l count : i n t e g e r range 0 to 255;

The above declaration would result in allocation of only 8
flip flops instead of potentially 32. Standard VHDL defines a
natural integer subtype which only includes positive integers
and zero.

4.1.2 Array Types

Standard Logic The type std_logic_vector is an array
of std_logic elements used ubiquitously to describe multibit
logic arrays. It is common practice to order bit arrays with
MSB on the left and LSB on the right, the way numbers are
normally written. For example, a signal group to hold the
32-bit sum of two addends could be declared like this:
s i g n a l sum32 : s td_log ic_vector (31 downto 0) ;

std_logic_vector literals are bit strings delineated by double
quote marks. By default the bit strings are binary base-2 but
can be written as hexadecimal base-16 by prepending an x
before the bit string:
sum32 <= X”4000C8B3” ;

which is equivalent to
sum32 <= X”01000000000000001100100010110011” ;

Individual elements can be accessed read or write:
i f sum8(11) = ’1 ’ then

−− t rue
end i f ;

as can entire slices
i f sum32(15 downto 12) = ”1100” then

−− a l s o t rue
end i f ;

Page -9-

UW-Physics PHYS623 Introduction to Programmable Logic Devices

Signed and Unsigned The signed and unsigned types
are used for modeling numeric computations. They are
bit strings, not integers, however the packages which define
them, numeric_std and numeric_bit, define a number of oper-
ators which allow bitwise and arithmetic operations between
signed, unsigned, and integer types.
constant u1 : unsigned (7 downto 0) := x”44” ;
constant u2 : unsigned (3 downto 0) := b”1010” ;

i f u2 < 10 then
−− not t rue

end i f ;

4.1.3 User-Defined Types

Enumerations Enumerated data types specify a type
which can taken on a small number of discrete values. Finite
state machine states are the textbook example of uses for
enumerated types. The type definition defines a type which
is later attached to a data object:
type state_t i s (i d l e , edge , wa i t ing) ;
s i g n a l s : s tate_t := i d l e ;

4.2 Operators

4.2.1 Logical Operators

Taking bit or bit vector arguments of equal length and re-
turning bit or bit vector, the following logical operators com-
pute the named logic operation: not, and, nand, or, nor, xor,
and xnor. Examples:
s i g n a l a : s td_log ic_vector (3 downto 0) := ”1010” ;
s i g n a l b : s td_log ic_vector (3 downto 0) := ”0011” ;
s i g n a l c : s td_log ic_vector (3 downto 0) ;
s i g n a l d : s td_log ic_vector (3 downto 0) ;
s i g n a l e : s td_log ic_vector (3 downto 0) ;
s i g n a l f : s td_log ic_vector (3 downto 0) ;

c <= not b ; −− r e s u l t = ”1100”
d <= a xor b ; −− r e s u l t = ”1101”
e <= a nor b ; −− r e s u l t = ”0100”
f <= b and (c or d) ; −− r e s u l t = ”0001”

4.2.2 Arithmetic Operators

Addition and subtraction via the ’+’ and ’-’ operators works
on integer and signed and unsigned types and generally is
synthesizable. It is possible with a bit of extra typing to add
and subtract std_logic_vector types (Sec. 4.4). Multiplica-
tion (’*’ operator) of integer and bit types often infers the
correct hardware strutures, with the special case of power-of-
two multiplication always being OK as it is equivalent to a

shift operation. Division (’/’), modulus (mod), and remain-
der (mod) will synthesize to division and modulus logic in
the Quartus synthesizer:

s i g n a l w : unsigned (15 downto 0) := x”3 f0a ” ;
s i g n a l x : unsigned (15 downto 0) := x”0049” ;
s i g n a l y : unsigned (15 downto 0) ;
s i g n a l z : unsigned (31 downto 0) ;
y <= w / x ;
z <= w * x ;

should work but will consume a fair number of logic re-
sources.

4.2.3 Shift Operators

Two directions (left, right) and three varieties (rotations, log-
ical, arithmetic) of shift operation work on bit vectors. Here
is the list:

rol Rotate bits left N places, bits which fall off the left hand
side return to fill the rightmost bit;

ror Rotate bits right N places, new bits fill leftmost bit from
bits exiting on right;

sll Logical shift left. Bits shift N places to the left filling
right bits with zeros;

srl Logical shift right. Bits shift N places to the right filling
left bits with zeros;

sla Arithmetic shift left. Bits shift N places to the left. The
rightmost bit holds its state and is propagated to the
neighboring bits in the shift;

sra Arithmetic shift right. Bits shift N places to the right.
The leftmost bit holds its state and is propagated to the
neighboring bits in the shift.

4.2.4 Comparison Operators

The comparison operations are equality: =; inequality: /=;
less than: <; less than or equal: <=; greater than: >; greater
than or equal: >=. All return boolean.

4.2.5 Concatenation Operator

The & operator concatenates two bit vectors:

s i g n a l c1 : s td_log ic_vector (5 downto 0) := ”101110” ;
s i g n a l c2 : s td_log ic_vector (2 downto 0) := ”010” ;
s i g n a l c3 : s td_log ic_vector (8 downto 0) ;
c3 <= c1 & c2 ; −− r e s u l t = ”101110010”

Page -10-

UW-Physics PHYS623 Introduction to Programmable Logic Devices

4.3 Signals and Variables

Now to address the difficult subject of VHDL signals and
variables. Unlike Verilog, VHDL makes no distinction be-
tween stateless connections and stateful signals: all physical
signals are modeled as signal objects. Signals are declared in
the lines before the begin line of architecture blocks. Input
and output ports of entities are signals. Signals are assigned
values, either literal values or the results of operations us-
ing the signal assignment operator, <= (yes, it looks like
less than or equal), or by attachment to ports in module
instantiations. They can be assigned within process state-
ments but this is where it gets weird: signal assignments in
processes don’t occur immediately but rather when the pro-
cess reaches the suspend state3 Sometimes this gets in the
way, so another data object, the VHDL variable, must be
used.

Variables are declared and exist only within a specific pro-
cess. If the value of the variable needs to be communicated
outside the process, it must be assigned to a signal. Vari-
ables can take on any type a signal can. Variables do update
immediately. The variable assignment operator is :=. The
use of variables is illustrated in Section ??.

4.4 Standard Logic Arithmetic

Frequently, it is necessary to perform arithmetic operations
on std_logic_vector types. It’s a bit bulky, however, casting
to either signed or unsigned types is the right way to do this.
Don’t forget to cast back to std_logic_vector:

1 s i g n a l x , y : s td_log ic_vector (9 downto 0) ;
2 s i g n a l z : s td_log ic_vector (19 downto 0) ;
3 z <= std_log ic_vector (s igned (x)* s igned (y)) ;

5 VHDL Design Patterns

5.1 Clock Enable

Often a divided clock or gated clock is needed. Clock signals
are routed differently than other logic, along special low-skew
lines, because of their critical role in synchronous circuits
and timing is hard to control when mixing clocks and logic
and is thus not recommended. Looking back to Figure 2.2.1,
the register features an enable input: the edge trigger only
functions when the CE input is high. By controlling the
state of the enable, functionality equivalent to clock gating
or division can be achieved. A VHDL module to generate
clock enables is presented in the code listing below.

3A side-effect of the process model: processes execute sequentially
but the time steps should be regarded as arbitrarily small.

1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3
4 ent i t y c l kenab l e i s
5 gener ic (MODULUS : i n t e g e r) ;
6 port (c l k : i n s td_ log i c ;
7 ce : out s td_ log i c) ;
8 end c l kenab l e ;
9

10 arch i tec tu re behav i o r a l of c l kenab l e i s
11 begin
12 c lken : process (c l k)
13 v a r i a b l e count : i n t e g e r range
14 0 to MODULUS−1 := 0;
15 begin
16 i f r i s ing_edge (c l k) then
17 ce <= ’0 ’ ;
18 i f count = MODULUS−1 then
19 count := 0;
20 ce <= ’1 ’ ;
21 e l s e
22 count := count + 1;
23 end i f ;
24 end i f ;
25 end process ;
26 end behav i o r a l ;

5.2 Example: CR Muon Trigger

Here is presented the firmware solution to the problem of
triggering on a muon decay in flight. The testdeck:

1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;
4
5 ent i t y crmu_tb i s
6 end crmu_tb ;
7
8 arch i tec tu re Behav io ra l of crmu_tb i s
9 constant CLOCK_PERIOD : time := 10 ns ;

10 s i g n a l c l k : s td_ log i c := ’0 ’ ;
11 s i g n a l pmt : s td_log ic_vector (2 downto 0) ;
12 s i g n a l daq_tr ig : s td_ log i c ;
13 component muon_decay_trigger i s
14 port (
15 c l k : i n s td_ log i c ;
16 s : i n s td_log ic_vector (2 downto 0) ;
17 t r i g : out s td_ log i c) ;
18 end component muon_decay_trigger ;
19 begin
20 c lkgen : process (c l k)
21 begin
22 c l k <= not c l k a f t e r CLOCK_PERIOD/2;
23 end process c lkgen ;
24
25 phys i c s : process
26 begin
27 pmt(0) <= ’0 ’ , ’1 ’ a f t e r 500 ns ,
28 ’0 ’ a f t e r 700 ns ;
29 pmt(1) <= ’0 ’ , ’1 ’ a f t e r 510 ns ,
30 ’0 ’ a f t e r 650 ns ;
31 pmt(2) <= ’0 ’ , ’1 ’ a f t e r 8000 ns ,
32 ’0 ’ a f t e r 8200 ns ;
33 wait ;
34 end process phys i c s ;

Page -11-

UW-Physics PHYS623 Introduction to Programmable Logic Devices

35
36 t r i g g e r : muon_decay_trigger port map (
37 c l k=>clk , s=>pmt , t r i g=>daq_tr ig) ;
38 end Behav io ra l ;

And the trigger code

1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3
4 use i e e e . numeric_std . a l l ;
5
6 ent i t y muon_decay_trigger i s
7 port (
8 c l k : i n s td_ log i c ;
9 s : i n s td_log ic_vector (2 downto 0) ;

10 t r i g : out s td_ log i c) ;
11 end muon_decay_trigger ;
12
13 arch i tec tu re behav i o r a l of muon_decay_trigger i s
14
15 type mu_state_t i s (
16 i d l e , wait500 , wait15k ,
17 t r i g g e r ed) ;
18 s i g n a l s t a t e : mu_state_t := i d l e ;
19 s i g n a l t , u : s td_ log i c ;
20
21 begin
22 t <= s (0) and s (1) and not s (2) ;
23 u <= s (1) or s (2) ;
24 t r i g <= ’1 ’ when s t a t e = t r i g g e r ed e l s e ’ 0 ’ ;
25
26 s t a t e s : process (c l k)
27 v a r i a b l e count : i n t e g e r range 0 to 1499;
28 begin
29 i f r i s ing_edge (c l k) then
30 case s t a t e i s
31 when i d l e =>
32 i f t = ’1 ’ then
33 s t a t e <= wait500 ;
34 count := 49;
35 end i f ;
36 when wait500 =>
37 i f count /= 0 then
38 count := count − 1 ;
39 e l s e
40 s t a t e <= wait15k ;
41 count := 1499;
42 end i f ;
43 when wait15k =>
44 i f u = ’1 ’ then
45 s t a t e <= t r i g g e r ed ;
46 e l s i f count /= 0 then
47 count := count − 1 ;
48 e l s e
49 s t a t e <= i d l e ;
50 end i f ;
51 when t r i g g e r ed =>
52 s t a t e <= i d l e ;
53 end case ;
54 end i f ;
55 end process s t a t e s ;
56
57 end behav i o r a l ;

5.3 Fixed-Point Math

There may arise the need to perform mathematical opera-
tions on real physical quantities in firmware. The DE0 Nano
board, for example, contains an accelerometer which reads
out 10-bit signed numbers with a range of ±2g. The map-
ping from digital count value, A to real acceleration value, a
is

a =

(
A

256

)
g (4)

This is known as fixed point representation of reals. How can
you use this acceleration measurement to compute derived
physical quantities such as the velocity and the position?
First, let’s consider velocity. I suppose that you know how
to do this in theory:

v = v0 + a∆t (5)

The accelerometer reads a value every 0.02 s: how can we
calculate the velocity change? This is tantamount to asking
how to represent the ∆t quantity? We expect the range of
possible ∆ts to be small, actually fixed at 0.02 s because the
FPGA should never skip a beat. So really there is only an
implict multiplication going on here; combining equations 4
and 5:

v = v0 + (0.766mm/s) ·A (6)

Likewise to compute the position of the DE0 board,

x = x0 + v∆t = x0 + (0.02 s) · v (7)

again substituting the fixed interval, ∆t = 0.02 s.
The procedure for computing the realtime velocity and posi-
tion of the DE0 is then the following:
• Initialize the position and velocity to zero;
• Readout the acceleration, A;
• Update the velocity: vn ← vn−1 +A;
• Update the position: xn ← xn−1 + vn−1

In VHDL, this looks like the following. Assuming the fol-
lowing declarations in the declarative part of the architec-
ture,
s i g n a l ax : s td_log ic_vector (9 downto 0) ;
s i g n a l vx : s igned (15 downto 0) ;
s i g n a l x : s igned (15 downto 0) ;

The statements to update the position are:
update : process (c l k)
begin

i f r i s ing_edge (c l k) and accel_ok = ’1 ’ then
vx <= vx + signed (ax) ;
x <= x + vx ;

end i f ;
end process update ;

Page -12-

UW-Physics PHYS623 Introduction to Programmable Logic Devices

So far, it has not even been necessary to do any multiplica-
tions! The units attached to the velocities and positions are
0.766mm/s for velocity and 15.32µm. To convert to more
useful units, millimeters, it is necessary to divide by 65.274
(or, equivalently, multiply by 0.01532). This is pretty close
to a power of two so you might consider your requirements
on accuracy: if the application can tolerate a 2% error, the
simplest approximation is to divide by 64, or equivalently,
shifting the bits to the right six steps:
x_in_near_mm <= x(15 downto 6) ;

If higher accuracy is needed, the least expensive method is to
use a rational approximation of the scaling factor where the
denominator is a power of two, again we can profit from the
ability to shift right instead of dividing4. Luck is on our side:
0.01532 is very close to the rational number 251/16384. We can
get an accuracy of %0.001 (way better than the acceleration
measurement, by the way, so be on guard to not overestimate
your accuracy!) by multiplying by 251 and then right shifting
14 bits. If we want to use the Cyclone IV’s 9×9 bit multiplier
hardware, the most efficient VHDL transformation is:
tmp := to_signed (251 , 9) * x (15 downto 7) ;
x_mm <= tmp(15 downto 7) ;

where tmp is an 18-bit signed variable defined to capture the
result of the 9× 9 multiplication:
v a r i a b l e tmp : s igned (17 downto 0) ;

Looking at the synthesis reports I see that the synthesizer
has even gotten around using the multipliers! How? Multi-
plying x by 251 is equivalent to multiplying x by 256 (i.e.
left shifting by 8) and then subtracting x times 4 and finally
again subtracting x. Keep that trick in your pocket in case
you are using PLDs without hardware multipliers.

5.4 Pseudorandom Numbers

(see Horowitz and Hill section 9.33 pg 655)
Apparently random sequences of bits can be generated using
a FSM configuration known as the linear feedback shift reg-
ister (LFSR). It is simply a shift register whose input bit is
determined by taking XORs of various bit positions further
into the register, these are often called taps. For example a
4-bit LFSR could be constructed like this:

Q3 ← Q0 ⊕Q1 (8)

This would then produce the bit sequence

0110, 1011, 0101, 1010, 1101, 1110, 1111, 0111
0011, 0001, 1000, 0100, 0010, 1001, 1100, 0110

4As a general rule, avoid expensive divisions whenever possible.

which then repeats. Hardly a random sequence, but if you
make it long enough it looks random. In general it is possible
using an n bit register to produce an sequence of repetition
length 2n − 1. Note that the sequence all zeros must be
excluded to prevent the sequence from getting stuck in that
state.
Getting the taps right is not trivial unless you are familiar
with advanced algebra. Fortunately several magic taps have
been tabulated5. Horowitz and Hill gives several suggestions
for various LFSR lengths.
Producing random integers from the random bits is not dif-
ficult. Returning to the random bits above by taking every
4th clock cycle (to avoid explicit bit correlations), a repeat-
ing sequence of integers ranging from 1 to 15 can be pro-
duced:

6, 13, 3, 2, 11, 14, 1, 9, 5, 15, 8, 12, 10, 7, 4, 6, ...
Often, random numbers in the real interval (0, 1) are needed.
In the spirit of fixed-point numbers, discussed above, the ran-
dom integer sequences can be interpreted as having implicit
scale factors. For example, the sequence above could be in-
terpreted as representing the numbers
0.3750, 0.8125, 0.1875, 0.1250,
0.6875, 0.8750, 0.0625, 0.5625,
0.3125, 0.9375, 0.5000, 0.7500,
0.6250, 0.4375, 0.2500, 0.3750...

5.5 ROMs

Read Only Memories are useful constructions to hold con-
stants and implement functions. Let’s start just by intro-
ducing the syntax for forcing VHDL to synthesize a ROM
using distributed storage elements (i.e. LEs). The ROM is
just an array of std_logic_vector types (array of bit arrays).
The VHDL syntax requires a 2-step definition; first, define
the array element type, then define the array type and finally
declare a concrete constant object of this array type (lines
12–14 in the listing below):

1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3
4 en t i t y romexa i s
5 port (
6 c l k : i n s td_ log i c ;
7 ce : i n s td_ log i c ;
8 data : out s td_log ic_vector (7 downto 0)) ;
9 end romexa ;

10
11 a r c h i t e c t u r e behav i o r a l of romexa i s
12 subtype word_t i s s td_log ic_vector (7 downto 0) ;
13 type rom_t i s a r ray (0 to 31) of word_t ;
14 constant mem : rom_t := (

5Of course, this is a security issue - don’t use these popular numbers
for crypto applications othewise your ciphers will be easily cracked!

Page -13-

UW-Physics PHYS623 Introduction to Programmable Logic Devices

15 (”10000000”) , (”01000000”) ,
16 (”00100000”) , (”00010000”) ,
17 (”00001000”) , (”00000100”) ,
18 (”00000010”) , (”00000001”) ,
19 (”00000010”) , (”00000100”) ,
20 (”00001000”) , (”00010000”) ,
21 (”00100000”) , (”01000000”) ,
22 (”00100000”) , (”00010000”) ,
23 (”00001000”) , (”00000100”) ,
24 (”00000010”) , (”00000100”) ,
25 (”00001000”) , (”00010000”) ,
26 (”00100000”) , (”00010000”) ,
27 (”00000100”) , (”00001000”) ,
28 (”00010000”) , (”00011000”) ,
29 (”00100100”) , (”01000010”) ,
30 (”10000001”) , (”00000000”));
31 begin
32 process (c l k)
33 v a r i a b l e addr : i n t e g e r range 0 to 31 := 0;
34 begin
35 i f r i s ing_edge (c l k) and ce = ’1 ’ then
36 data <= mem(addr) ;
37 addr := (addr + 1) mod 32;
38 end i f ;
39 end process ;
40
41 end behav i o r a l ;

ROMs can be filled with more complicated patterns. An
example of this is used in the gaussian entity of the LED Snow
project. The method is to define a VHDL function which
generates (at compile time, so you can use real variables)
the ROM contents programmatically.

1 l i b r a r y i e e e ;
2 use i e e e . std_logic_1164 . a l l ;
3 use i e e e . numeric_std . a l l ;
4 use i e e e . math_real . a l l ;
5
6 en t i t y gauss ian i s
7 port (
8 u , v : i n s td_log ic_vector (8 downto 0) ;
9 n1 , n2 : out s td_log ic_vector (17 downto 0)

10) ;
11 end en t i t y gauss ian ;
12
13 a r ch i t e c t u r e rom of gauss ian i s
14 subtype word_t i s s igned (8 downto 0) ;
15 type mem_t i s a r ray (0 to 511) of word_t ;
16
17 f unc t i on in i t_logrom retu rn mem_t i s
18 v a r i a b l e r , u : r e a l ;
19 v a r i a b l e tmp : mem_t := (othe r s =>
20 (othe r s => ’0 ’)) ;
21 begin
22 f o r i i n 0 to 511 loop
23 u := (r e a l (i)+0.5) / 512 .0 ;
24 r := sq r t (−2.0* log (u)) ;
25 tmp(i) := to_signed (i n t e g e r (r *64.0) , 9) ;
26 end loop ;
27 r e tu rn tmp ;
28 end in i t_logrom ;
29
30 func t i on in i t_s ine rom re tu rn mem_t i s
31 v a r i a b l e r , v : r e a l ;
32 v a r i a b l e tmp : mem_t := (othe r s =>
33 (othe r s => ’0 ’)) ;

34 begin
35 f o r i i n 0 to 511 loop
36 v := (r e a l (i)+0.5) / 512 .0 ;
37 r := s i n (2.0*MATH_PI*v) ;
38 tmp(i) := to_signed (i n t e g e r (r *128.0) , 9) ;
39 end loop ;
40 r e tu rn tmp ;
41 end in i t_s ine rom ;
42
43 s i g n a l s i n e : mem_t := in i t_s ine rom ;
44 s i g n a l l n : mem_t := in i t_logrom ;
45 s i g n a l x , y , z : word_t ;
46 begin
47 x <= ln (to_integer (unsigned (u))) ;
48 y <= s in e (to_integer (unsigned (v))) ;
49 z <= s in e ((to_integer (unsigned (v))+128) mod 512) ;
50 n1 <= std_log ic_vector (x*z) ;
51 n2 <= std_log ic_vector (x*y) ;
52 end a r c h i t e c t u r e rom ;

Page -14-

