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 ACCURACY, PRECISION, ERRORS, UNCERTAINTY, ETC. 
 
Part of making and reporting a measurement is deciding how accurate it might be.  Finding that a 
distance is 10.0000 cm ± .0001 cm could tell you something very different from 10 cm ± 1 cm.  In 
common speech, the words accuracy and precision are often used interchangeably. However, many 
scientists like to make a distinction between the meanings of the two words.  Accuracy refers to the 
relationship between a measured quantity and the real value of that quantity.  The accuracy of a 
single measurement can be defined as the difference between the measured value and the true value 
of the quantity.  Since in most cases you don’t know the true value (if you did, you wouldn’t be 
bothering to measure it!), you seldom know the true accuracy of your answer.  Exceptions to this 
occur primarily when you are testing an apparatus or new measurement method, and in teaching labs 
like this one.  Since here we often do know the true value, or have measured the same quantity two 
different ways, whenever you have this opportunity you should always compare the achieved 
accuracy (the difference between the true value and your measured value) with your independently 
estimated error as described below.  If the difference is comparable to your estimated uncertainty, 
then your measurement is consistent with the accepted value.  If it is five time larger, you owe some 
discussion in your notebook of why this might be the case. 
 
More vocabulary: The word error in standard English is the same as mistake.  In science however, it 
means the estimated uncertainty, or probable accuracy of a result (i.e. the amount by which the 
measured value is expected to differ from the true value).  The point is that in most experiments we 
do not know the true value of the quantity we are measuring, and therefore cannot determine the 
actual error in our result. However, it is still possible to make an estimate of the uncertainty (or the 
“probable error”) in the measurement based on what we know about the properties of the measuring, 
instruments, etc. 
 
Precision: The maximum possible accuracy of a measurement.  If you measure a 1 cm long object 
with a ruler, you won’t be able to determine the length to better than a few tenths of a mm.  If you 
measure it with a micrometer, you can get a value that is precise to a couple of µm.  If you copy 
down a 6-digit voltmeter display in your notebook with only three significant figures (very often the 
right thing to do!), its precision is +/- 1 digit in the third place.  There are many things that will make 
a number less accurate than its precision, but it can never be more accurate. 
 
Measurement uncertainties can be divided into two distinct classes: random or statistical errors, and 
systematic errors.  Systematic errors are things like the accuracy of a voltmeter calibration or 
perhaps that you made all your length measurements with a metal tape measure that had expanded 
because you are in a much warmer room than the one where the tape was constructed.  Systematic 
errors can be quite difficult to estimate, since you have to understand everything about how your 
measurement system works.   
 
Somewhat counter-intuitively, the random error is usually easier to estimate.  It is due to some 
combination of the limited precision to which a quantity can be read from a ruler or meter scale, and 
intrinsic “noise” on the measurement.  For example, if a radioactive source that gives an average of 
one count per second is counted for exactly 100 seconds, you will find that you don’t always get 
exactly 100 counts even if your count perfectly accurately (no mistakes).  About one-third of the 
time, you will get fewer than 90 or more than 110 counts, and occasionally (about 0.5% of the time) 
you will get fewer than 70 or more than 130 counts.  If you make a plot of the distribution of a large 



number of 100-second counts, you will get a curve called a “Poisson distribution.”  Unless the 
number of counts is very small, this curve will be very close to a gaussian or “bell curve”.  Most 
random errors follow this kind of distribution.  The expected size of the uncertainty in a 
measurement is described by the width of this curve.  The limits that contain 2/3 of the 
measurements (±10 in our example) are called the “1-sigma” uncertainty.  If the errors follow the 
bell curve, then 95% of the results will be within ±2s, and 99.5% within ±3s.  
 
You can often estimate the random error in a measurement empirically.  If you can make a few 
independent measurements of some quantity, you can obtain an estimate of the precision of each 
individual measurement.  (The “independent” part is important: if you measure a length with a meter 
stick, and on the first try estimate 113.3 mm, you are likely to write down 113.3 on subsequent 
measurements as well, even if you can really only estimate to ±0.1 or 0.2 mm.  One way around this 
is to have different people make each measurement, and write them down without looking at each 
other’s answers.  Or by yourself, you could start from a random point on the ruler each time and 
estimate the readings at both ends, then do all the subtractions afterwards.) 
 
The following example illustrates several of these ideas. In this example the resistance of a known 
1000  ± 0.01 W resistor is determined by measuring V and I for several different voltage settings. 
The results are given in the table on the following page. The average value of R in this example is 
1002.4 W, so our final result has an accuracy of 2.4 W. The expected error of any individual 
measurement of R can be determined by calculating the standard deviation of the distribution: 
                      

  

  
where  is the average value of x and where N is the number of measurements. In this example the 
standard deviation is 5.6 W. We could take this as an estimate of the uncertainty or probable error, 
since any individual measurement has a reasonable probability of being in error by at least that 
amount. It should be emphasized, however, that the actual error in a measurement can be much 
larger than the standard deviation if there are systematic errors (for example errors in the calibration 
of some meter) that affect all the measurements the same way. 
 
                                                 Data for a 1000  0.01 kW Resistor 
 
                                        V(a)  (volts)     I(b)  (mA)          R(c)  (W) 

1.000 0.99 1010 
2.000 1.99 1005 
3.000 3.00 1000 
4.000 4.02 995 
5.000 4.99 1002 

                                                                       Average   =   1002.4 ± 2.5 W (usually better: 1002 ± 3W) 
          “Mean Standard Deviation”   =          5.6 W (expected accuracy of a single measurement) 
“Standard Deviation of the Mean”   =          2.5 W (expected accuracy of average of 5 measurements) 
                               Actual accuracy  =         2.4 W 
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Measured with digital voltmeter. 
Measured with Simpson VOM. 
Calculated from R = V/I. 
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Propagation of Errors 
 
In many experiments, our desired result Q is determined from a mathematical formula that uses two 
or more separately measured quantities: Q = f(xi, …xn), where x1, …. xn are measured values, and f is 
the mathematical function.  If each of the  were to change by an amount , then to first order Q 
will change by 

                                                       .                                                        (1) 

We have estimated the uncertainties in the n measured quantities, and want to calculate the 
uncertainty in Q.  We know the expected magnitude of , but expect it is equally likely to be 
positive or negative, so its average value would be zero.  We usually try to estimate (or assume we 
know) the quantity , or the square root of the average of  (the “root mean square” 
or r.m.s. value of the expected error).  The problem of figuring out the uncertainty in the result, 
given the formula and the uncertainties in the numbers going into it, is called “error propagation.” 
 
Since , the average or “expected” value of  is also zero, we need to calculate the expected 
value of : 

                                                    .                                           (2) 

Taking the square will produce terms of the form .  For  we generally assume 
the expected value is zero, since if  is positive,  should be equally likely to be positive or 
negative.  This assumes that the errors in  and  are independent.  If this is not true, you must 
keep these terms!  The expected value of the terms with i = j are , which is just . 
 
There are just two cases that in combination will cover 98% of the error propagation problems you 
will run into.  We give these results here with the recommendation that you memorize them, 
although all can easily be derived from equation (2) above.  A and B are two measured (or 
calculated) values: 
For  or :    .  (Note errors add even for .) 

For :    . 

For independent errors, it makes some sense that the errors add as the square root of the sum of their 
squares, or “in quadrature”:  the errors might add, or they might have opposite signs, and at least 
partially cancel.  So on the average, we could expect them to add “at right angles”.  Beyond that, the 
two formulae above are easily remembered as “for addition or subtraction, add absolute errors, for 
multiplication or division, add percentage errors.”  (Where “add” means  “add in quadrature”.)  One 

other occasionally useful result is for , .  Note that in the case of the resistor 

measurements tabulated above, we made several measurements to estimate the error in a single 
measurement by looking at the repeatability, or scatter.  But then we might as well report the average 
of these measurements, since propagating the individual error estimate through the simple formula 
for calculating an average shows that the uncertainty is reduced by a factor of sqrt(N).  The technical 
terms for these quantities are mean standard deviation and standard deviation of the mean. 
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For a mixed case like , you first add absolute errors for the numerator and 
denominator, then convert these to % errors, and add them to get the error in Q.  So error 
propagation becomes largely an exercise in converting back and forth from absolute to percentages. 
You do have to be careful of correlated errors.  This actually happens most often when it’s really the 
same quantity that shows up in more than one place.  In that case, the errors are perfectly correlated.  
Take the case of , which could also be written .  If you use the formulae given 
above for independent errors, you’ll get different answers for !  If you use equation (2) and keep 
the cross term, they’ll come out the same.  A more subtle example comes up in experiment 5:  R4 in 
the Wheatstone Bridge consists of RE (0.5% accuracy) in parallel with RH (10% accuracy), so that: 
 

                                                                   .                                                               (3) 

You can calculate the errors in the numerator and denominator separately using the independent 
error formulae, but then you can’t combine them with the independent errors formula because they 
contain the same variables, so these errors aren’t independent. 
 
To do such cases exactly, it’s usually easiest (and always safest) to go back to equation (2), which 
gives: 

                                                 .                                           (4) 

But you can often save a huge amount of effort by looking at the magnitude of the numbers and 
making approximations.  In this case, typically RE = 1 kW and RH = 200 kW.  Although the fractional 
error in RH is large, its error doesn’t contribute much to the total error in R4 since it is multiplied by 
the square of a factor (R4/RH  »1/200) that is small compared to 1.  You could have told this without 
bothering to derive equation (4): looking at equation (3).  , so the denominator , and 
this will approximately cancel the  in the numerator.  So  and has the same uncertainty as 

, or 0.5%.  This you can all do in your head!  For measurements where it’s clear that the 
uncertainty will not contribute significantly to the error in the final result (usually true for 
measurements you make with a six-digit multimeter, for instance), you don’t need to write down any 
± for the number. 
 

****************************** 
 
It is usually not required to make detailed calculations of the uncertainties in your measurements, 
and the calculations are often long and time consuming to do exactly.  But it is always important for 
experimenters to have an approximate idea of the uncertainties in their results.  With suitable 
approximations, by ignoring variables that make insignificant contributions and using the two simple 
independent-error results, you can do most of the error estimation in your head and just put down 
± s, where this is a rough estimate of what you expect to be within ~2/3 of the time.  The usual 
convention is to convert x to the same units as the result and give the absolute error.  One significant 
figure is usually quite adequate for errors, and in some cases just being sure to round your result to 
an appropriate number of significant figures is enough and you don’t bother to write down the ± s. 
 
More discussion of errors and detailed derivations can be found in Data Reduction & Error Analysis 
for the Physical Sciences, 3rd Edition by Bevington & Robinson (QA278 B48 2003).  
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