
Physics 623 - Electronic Aids to Measurement
Fall 2018

FPGA lab # 2 Digital Phase Detection

1 Introduction

Last week you learned the basics of loading programs onto an Altera FPGA and running them.
At the end of the lab last week, you were also introduced to your first Verilog program, which
was used to create a state machine that cycled through different patterns of the LED’s. This
week, you will create a Verilog program that acts as a digital phase detector between two input
signals. If you recall, phase detectors are a critical component for the creation of Phase Locked
Loops which are used in Lock-In amplifiers and many other devices. The phase detector in this
lab leverages the built in ADC converter on the DE0-Nano board, which we discussed on class.
The basic idea of this lab is to read the incoming signal at two of the input ports of the ADC
converter, sum the digitial signals together, and then average them over time. Unlike last week,
everything today will be done in Verilog, we wont be using schematic capture.

Figure 1: timing diagram for ADC converter on the NanoBoard

2 ADC converter

The DEO-Nano board includes a national instruments ADC128S022 Analogue-to-digital con-
verter, and the documentation for it can be found on all the lab computers. This converters
has 8 different inputs, and the output is serial. Basically, over the course of 16 clock cycles, the
ADC first reads 3 bits sequentially, which determine which pin to record data from (on DIN)
and then it spits out 8 bits sequentially (on DOUT) which is a digital code for the voltage it
read. The timing diagram for it is shown below. (Recall that the clock that controls DIN is
slightly phase shifted from the clock that controls DOUT, you will not need to worry about this,
but you should not be confused when you see iCLK and iCLK n in the code).

The ADC chip is wired up to the FPGA and to the pins on the DEO-Nano board as shown
in Figure 2. The address names you see coming from the ALTERA chip (like ADC SCLK) are
dedicated names, similar to CLOCK 50, and LED[7..0] from the lab last week. The first thing
you should do is make sure the ADC converter is working. To do this connect your nanoboard
to the computer, and open the DEO-Nano control panel program. Connect to the board and
click on the ADC. Attach a wire to the ground pin (pin #26) and connect another wire to one of
the input pins. Run the two wires to the tunable DC power supply (60mA) and apply a voltage



between +/- 3V. You should see it measured on the control panel.

Next you are going to load the basic ADC program onto the FPGA. First, copy the “DEO NANO ADC”
folder (and all of it’s contents) to your personal folder on the desktop. (you can find DEO NANO ADC
in “623/DEO-Nano/Demonstration/”). Go into the folder that you just copied, and open the
DEO NANO.qpf program, which should open the Altera Quantus software. This program
contains two sub-programs, DEO NANO.v and ADC CTRL.v. The first of these programs
(DEO NANO.v) basically defines all the pins and variable for the FPGA to interact with the
ADC, and the second program (ADC CTRL.v) contains all the real code that defines how the
ADC chips is interfaced. For this lab, we are only really going to be modifying the second file,
but the first file (DEO NANO.v) contains the main module from which the program is launched.

The basic ADC readout program should already be ready to go. Double click the ”Compile De-
sign” button to compile it, and afterwords double click the ”Program Device” field. Select the
program and hit ”Start”. Note that you may need to unplug and replug the board a few times
from the USB. Re-connect your variable DC power supply. You need to flip the dip switches on
the board to select the right pin that you are connecting your voltage to. Also, you may need
to hit the two buttons on the Nano board to reset it.

Question 1: How does the LED output pattern correlate with the applied voltage
as you vary the voltage to +/- 3V? Describe the binary to voltage decoding rule.

Figure 2: Pinout and connection buses between ADC converter and the Altera FPGA.

3 Averaging

Next, disconnect your variable DC power supply and hook up the ground and input pins to your
waveform generator. To begin with, create a square wave at 1Hz. Make sure that the signal



never exceeds +/- 3V. You can use an offset if you want, but the signal should not exceed +/-
3V. Describe how the LEDs behave now

Now begin increasing the frequency of the output wave and observe how the LEDs behave
At what frequency does the FPGA begin to output a non-sensical pattern on the
LEDs?.

Now, set the square wave frequency to 1kHz and make the lower limit 0V, and upper limit 2V.
What voltage does the LED pattern appear to indicate

Verilog Project #1: Change the code of the ADC CTRL.v file such that the voltage
output represents a time average over 40ms. Show that your code works to the
instructor to have this section of your lab checked off. Include the relevant section
of your code in you lab notebook, and be sure to include comments.

4 Reading Two Channels

Verilog Project #2: Change the code of the ADC CTRL.v file such that the voltage
output represents an average between two of the ADC inputs. To test your program,
use two of the variable 60mA DC voltage supplies. Show that your code works to
the instructor to have this section of your lab checked off. Include the relevant
section of your code in you lab notebook, and be sure to include comments.

5 Sum Two Channels and Average

Verilog Project #3: Finally, you are going to make a digital phase detector by
reading two of the ADC inputs, summing the signals together, and averaging the
sum over 40ms. Change the code of the ADC CTRL.v file accordingly. To test your
program, use two of the waveform generators to output a 1kHz square wave with a
0V minimum and a 3 volt maximum. Vary the phase of one of the waves to show
that your phase detector is working. Show that your code works to the instructor
to have this section of your lab checked off. Include the relevant section of your
code in you lab notebook, and be sure to include comments.

For this final section, you may find it useful to output the phase on only 1 LED at a time, rather
than giving a complicated binary signal. To this end you may want to call a decoder program
similar to the one below, which outputs a small number as 00000001 on the LEDs, and a big
number as 10000000, with 6 ranges in between.

module decoder(a, b);
input [7:0] a;
output [7:0] b;

assign b = (a<8’h20) ? 8’b00000001 :
((a>=8’h20) && (a<8’h40)) ? 8’b00000010 :
((a>=8’h40) && (a<8’h60)) ? 8’b00000100 :
((a>=8’h60) && (a<8’h80)) ? 8’b00001000 :



((a>=8’h80) && (a<8’ha0)) ? 8’b00010000 :
((a>=8’ha0) && (a<8’hc0)) ? 8’b00100000 :
((a>=8’hc0) && (a<8’he0)) ? 8’b01000000 :
8’b10000000;

endmodule


