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(b) Show that the general solution of equation (A) can be written in the form

(O - x= c¢(£)»
X

where c is an arbitrary constant. '

(¢) Use the result of (b) to show that the general solution (C) is also invariant under the
transformation (B).

(d). Interpret geometrically the results proved in (a) and (c).

2.3 Linear Equations and Bernoulli Equations

A. Linear Equations - o .

In Chapter I we gave a definition of linear as applied to differential equations in
general; we now consider the linear ordinary differential equation of the first order.

DEFINITION. A first-order ordinary differential equation is called linear if it can be
written in the form

226 Ly Py = 0.

- For example, the equation
2 4 ety =

is a first-order linear differential equation, for it can be written as
%-l—(l +}C)y=x2,

which is of the form (2.26) withkP(x) =14+ )lc and Q(x) = x2.

Let us write the equation (2.26) in the form
(2.27) [P(x)y — Q(x)ldx + dy = 0.
Equation (2.27) is of the form
v Mdx + Ndy = 0,

where M = P(x)y — Q(x) and - N =1.
. oM N
Since i P(x) and 5% = 0,

the equation (2.27) is not exact unless P(x) = 0, in which case Equation (2.26) degenerates
into a simple separable equation. However, the equation (2.27) possesses an integrating
factor which depends on x only and may easily be found. Let us proceed to find it.
Let us multiply equation (2.27) by u(x), obtaining
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(2.28) PGy — p(x) 0(X)dx + u(x)dy = 0.
By definition, x(x) is an integrating factor of Equation (2.28) if and only if Equation (2. 28)
is exact; that is, if and only if
0
5;[#(x)P(x)y = Q)] = —u(x)].
This condition reduces to

WOOPG) = 1)

or simply

—
(2.29) uP = 2%

Equatxon (2.29) is a separable equation in the dependent variable x and the independent
variable x, where P is a known function of x. Separating the variables, we have
dp
M

Integrating, we obtain the particular solution

In [u| = [ Pdx

= Pdx.

or

(2.30) = frdx '

Thus the linear equatlon (2.26) possesses an integrating factor of the form (2.30). Multi-
plying (2.26) by (2.30) gives

ffdxﬂ_’ Jrasp, . 0pfPds,
e dxv+ e TPy Qe

which is precisely

deA Qefrd\

Integrating this we obtain the solution of Equation (2.26) in the form
e!Pd,\' - /eIdede +e,

where c is an arbitrary constant.
Summarizing this discussion, we have the following theorem:

THEOREM 2.4. The linear differential equation
dy -
Z+ PRy = 0

has an integrating factor of the form

eJPix,
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The general solution of this equation is
y = e_j’rdx[ j’ ef“"de + c]..

We consider several examples.
Example 2.14.

(2.31) % + (2‘%‘_1)}, .
Here
_2x+1
P(x) = p

and hence an integrating factor is

2x4-1
efP(x)dx = ef( : )éx = e2rthnlxl = elrelnlxl = xe2x, -
Multiplying Equation (2.31) through by this integrating factor, we obtain
. & )
2x-L 2x . =
xe dx+e (2x+1)y x
or
g
a[xez"y] = X.
Integrating, we obtain the solution
. o
2XY) = a——
xely == +c

or

where c is an arbitrary constant.

Example 2.15. Solve the initial-value problem which consists of the differential
equation

(2.32) (x2 + 1)% +4xy = x

and the initial condition
(2.33) y2) =1.
The differential equation (2.32) is not in the form (2.26). We therefore divide by x2 + 1 to
obtain ' ' '
“d4x X
PO L |

@34 %Jr
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Equation (2.34) is in the standard form (2.26), where P(x) = x24—x

1 An integrating

factor is ‘
4xdx
ef”" = efﬁﬁ = elG2HD2 = (x2 4 1)2,
Multiplying equation (2.34) through by this integrating factor, we have
(x2 + 1)23-—';) + 4x(x2 4+ 1)y =x(x2 4+ 1)
or
_d_[(xl + 1)2y] = x3 + X
dx ’
We now integrate to obtain the general solution of equation (2.32) in the form
oxt o x?
2 2y = 2.4 2
(’x + 1)2y y + 3 +c.

Applying the initial condition (2.33), we have

25=6+c
Thus ¢ = 19 and the solution of the initial-value problem under consideration is
x4 | x2 :
2 2 = piuli «
2+ Dy =7 +5+19 :
Example 2.16. Consider the differential equation
(2.35) yidx + (3xy — Idy = 0.
Solving for d_y’ this becomes
de =
dy _ _»*
dx 1-3xy

which is clearly not linear in y. Also, equation (2.35) is not exact, separable, or homo-
geneous. It appears to be of a type which we have not yet encountered; but let us look a
little closer. Observe that in a first-order differential equation the roles of dx and dy are
interchangeable. Looking at equation (2.35) with this in mind, we write it as

dx _1-—3xy
dy  y?
or t
dx 3 1 -
2.36) Tt =X = —
(2.36) Sty

Now observe that equation (2.36) is of the form
dx ‘
e + P()x = QO’)

and so is linear in x. Thus the theory developed in this section may be applied to the
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equation (2.36) merely by interchanging the roles played by x 'an d y. Thus an integrating.
factor is : ' ' ‘ '

3
ef“" = ef;dy = elny3 = p3,
Multiplying (2.36) by y3 we obtain

yi‘g—; +3yx =y

.or

d

L3y =

=
Integrating, we find the solution in the form

‘ 2

yix = y? +c

or
1 c
X = '2; -+ ;;

where c is an arbitrary constant.

B. Bernoulli Equations :
We now consider a rather special type of equation which can be reduced to a linear
equation by an appropriate transformation. This is the so-called Bernoulli equation.

DEFINITION. An equation of the form

(2.37) | “j—ﬁ + P(x)y = Q(x)y"

is called a Bernoulli Differential Equation.

We observe that if n = 0 or 1, then the Bernoulli Equation (2.37) is actually a linear
equation and is therefore readily solvable as such. However, in the general case in which
n # 0 or 1, this simple situation does not hold and we must proceed in a different manner.
We now state and prove Theorem 2.5, which gives a method of solution in the general case.

THEOREM 2.5. Suppose n = 0 or 1. Then the transformation v = y1~» reduces the
Bernoulli equation

.37 Z—fc + P(x)y = Q(x)y"

to a linear equation in v.



2.3 Linear Equations and Bernoulli Equations 45

Proof. We first multiply Equation (2.37) by y~", thereby expressing it in the equivalent
form _

(239) 7L 4 Py = 0.

If weletv = y‘“", then %; = (1 — n)y‘"% and Equation (2.38) transforms into

2 ey = 0w

or, equivalently,
dv ' '
o + (1 — Py = (1 — mQ(x).

Letting

Pi(x) = (1 — n)P(x)
and. o |

Qi(x) = (1 = mQ(x),
this may be @ritten

2 + PGy = Qu(x),

which is linear in v. Q.E.D.

Example 2.17.

(2.39) A g‘f} Fy=xp

This is a Bernoulli differential equation, where n = 3. We first multiply the equation
through by y~3, thereby expressing it in the equivalent form

d .
(2.40) yf’d—i +y 2= x

A

o and Equation (2.40) transforms into the

dv
= yl-n = p~2 _— == —
If we let v y y - then ] 2y

linear equation

Writing this linear equation in the standard form

(2.41) ~ . % — 2y = —2x,

we see that an integrating factor for this equation is

JPax — o-J2dx _ pmax
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Multiplying (2.41) by e‘2-*',_ we find
dv
=2X e e —2Xp = — ~2x
e 2e~2xy 2xe
or
d
—Jo—2x = - —2x
dx[e v] 2xe~2x,
Integrating, we find

ey = %e‘2-f(2x +D+ec

or

1

v=x+ 3 4+ ce?x,
But
1
V==

y

Thus we obtain the solution of (2.39) in the form

1_ l 2x
;i—x+2+ce .

Exercises

Solve the given differential equations in Exercises 1 through 15. v

dy 3y
1. — 4+ = = 6x2,
T *

X

w
2, x*— 3y = 1.
x‘dx+2xy

6. (x2+x—2)%+3(x+l)y=x—l.

7. xdy + (xy +y — Ddx = 0.
8. ydx + (xy? + x = y)dy = 0.

9. g—;-i- rtqna = cosf.



