Physics 623 — Problem Set 6

NOISE:

Which is better for low-noise applications, bipolar or field-effect (FET) transistors? Answer the following questions.

1. Input noise specifications for two high-performance op-amps (both advertised as "Low-noise") are given as follows.

OP-27: Ultra-low noise bipolar op amp $e_{n-A} = 3 \text{ nV/sqrt(Hz)}$ $i_{n-A} = 0.4 \text{ pA/sqrt(Hz)}$

LF-357: Low-noise FET-input op amp $e_{n-A} = 15 \text{ nV/sqrt(Hz)}$ $i_{n-A} = 0.01 \text{ pA/sqrt(Hz)}$

miscellaneous useful data: Room temperature = 300 K, $k_B = 1.38 \times 10^{-23} \text{ J/K}.$

a) for each of these op amps, calculate the *Noise Resistance*, R_N , which is the value of the source resistance for which the *Noise Temperature*, T_N , is a minimum. (T_N is the physical temperature the source resistance would need to have for its Johnson noise to equal the total noise due to the amplifier, giving a *Noise Figure* of 3 dB. (Noise Figure, NF, is the ratio of total noise at the amplifier output to what it would be with an ideal amplifier with $e_{n-A} = i_{n-A} = 0$. This is usually expressed in dB.) Show your work!

OP-27: $R_{\rm N} =$ _____ ohms

LF-357: $R_{\rm N} =$ _____ ohms

b) Give the minimum value for the noise temperature, T_N , that can be achieved with each amplifier:

OP-27: $T_{\rm N} = _$ K for $R_{\rm S} = R_{\rm N}$

LF-357: $T_{\rm N} =$ K for $R_{\rm S} = R_{\rm N}$

c) Which op amp would be better (lower Noise Figure) for:

i) measuring the potential of a pH electrode with a source impedance of 5 Megohms?

best amplifier:

ii) measuring the voltage across a thermocouple with a resistance of 3 ohms?

best amplifier:

d) At what source impedance does the room-temperature Johnson noise of the source equal the volt	tage
noise of the OP-27?	C
	ohms

Is the current noise of the op-amp significant for this $R_{\rm S}$?	yes / no
Explain:	-

e) Using an LF-357, what bandwidth must be used to measure a 1 μ V r.m.s. signal to 1% rms precision if the source resistance is 10⁶ ohms?

_____Hz

About how long would it take to make one measurement with this bandwidth? _______ seconds

Could the measurement be made significantly faster with a better amplifier? <u>yes / no</u>

Explain: