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Preface 

One of the pleasures of teaching electronics is that few people doubt its importance 
and usefulness. We live in a society replete with radios, televisions, computers, and a 
plethora of other electronic gadgets. A knowledge of electronics is vital to a variety of 
occupations and useful to many more. No truly educated person can completely 
neglect the study of electronics. 

This book came about as a result of a course taught in the Physics Department at 
the University of Wisconsin in Madison. The students in the course are mostly Juniors 
majoring in physics or engineering, and it is assumed they have had a good 
introductory physics course and a course in calculus. No previous knowledge of 
electronics is assumed. 

The more advanced mathematical techniques ( differential equations, complex 
variables, and Fourier analysis) are explained in some detail where they are first 
encountered, and students with no previous exposure to these topics should be able to 
understand them without great difficulty. 

The book divides naturally into two parts. The first part (Chapters 1 to 5) covers 
linear circuits. The second part (Chapters 6 to 12) covers nonlinear circuits. 

The flavor of the text changes somewhat after Chapter 5, moving from a careful 
pedagogical treatment of linear circuit analysis techniques to a broad survey of some 
of the more important applications of the various nonlinear components. The goal is 
to make the student comfortable with the relatively straightforward analysis of linear 
circuits before launching into the more empirical, but more interesting and useful, 
aspects of nonlinear circuits. A too hasty treatment of linear circuits seems to be a 
considerable handicap to students as they advance to the more difficult topics. 

The first two chapters cover the fundamentals of direct-current ( de) circuits. 
Chapter 3 introduces the basic linear alternating-current (ac) components - the 
capacitor and the inductor - and then discusses transient circuits (i.e., circuits in 

. which the sources are de but are turned on or off abruptly). The equations describing 
such circuits are the simplest type of differential equations, and even students with no 
previous exposure to differential equations are able to learn to quickly solve such 
problems. Chapter 4 deals with sinusoidal ac circuits. The time-domain solution of 
one simple case is presented using differential equations, but the student is quickly 
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introduced to the use of complex impedance as a shortcut to reduce such ac circuits to 
circuits for which the techniques of de circuit analysis can be used. Chapter 5 
concludes the discussion of linear circuits with an introduction to Fourier methods 
and distributed circuits, with emphasis on transmission lines and waveguides. Thi's 
chapter is mathematically the most difficult of the book, requiring integration of 
complex variables, but the emphasis is on the physical ideas rather than the 
mathematical methods. 

In Chapter 6 the diode and its applications to rectifier circuits are covered. 
Chapters 7 and 8 deal with the basic nonlinear active components - vacuum tubes, 
field effect transistors, and bipolar transistors. The emphasis on vacuum tubes runs 
counter to the trend in modern electronics books, but it reflects my feeling that their 
operation is easier for the students to understand than semiconductors. Furthermore, 
vacuum tubes are far from being replaced in devices such as oscilloscopes, televisions, 
and high-power radio transmitters In Chapter 9 the operational amplifier is 
discussed, which is rapidly becoming the workhorse of analog electronics. The 
discussion of operational amplifiers is used as an opportunity to treat the important 
practical subjects of negative feedback, gain-bandwidth product, noise, and circuit 
isolation. Chapter 10 contains a collection of other useful nonlinear devices and 
circuits that the student is likely to encounter. Chapter 11 deals with digital and logic 
circuits that form the building blocks of digital computers. To treat this important 
and rapidly developing field in the depth that it deserves would have required a book 
considerably longer than I was willing to write. Consequently, this chapter should be 
viewed as the barest introduction to digital electronics. Most electronics textbooks 
conclude with a discussion of the digital computer as the most sophisticated 
application of electronics, and rightly so. It seemed a shame, though, for the student 
to complete a course such as this without knowing how a radio or television works. 
Consequently, a brief chapter at the end describes communications systems, 
including radar, in a very general way. 

The text was originally intended to contain just enough information for the 
average student to absorb comfortably in a one-semester course. During subsequent 
revisions, topics were added here and there, and a certain selectiveness would 
probably now be required. The student might be encouraged to read the entire book, 
but certain sections, such as the whole of Chapters 5 and 12 and most topics in 
Chapter 10, could be touched on lightly or not at all without great loss of continuity. 

Problems are an integral part of learning any technical subject such as 
electronics, and each chapter contains a number of problems designed to test and in 
many cases expand the student's knowledge of the subject. Problems in which the 
student can find the right equation and just plug in the numbers are largely avoided. 
The problems span a considerable range of difficulty. Answers to the odd-numbered 
problems are included in Appendix K, and a Solutions Manual for the text is 
available for instructors. 

The course is designed to be accompanied by a laboratory. Although electronics 
can be taught strictly from a book, there is no substitute for the kind of hands-on 
experience that a laboratory provides. At this level, the equipment required is very 
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modest and represents an excellent investment in the quality of teaching. Appendix L 
contains a number of suggested laboratory experiments that have been used for many 
years in my course at the University of Wisconsin. 

I am indebted to Professor Stewart Prager for a careful reading of an early 
version of the manuscript and for numerous helpful suggestions. Additional sugges
tions were provided by Tom Lovell, Kevin Miller, Don Holly, and Mike Zarnstorff. 
The laboratory experiments were in large part inherited from Professor Wilmer 
Anderson. The tedious task of typing the many revisions of the manuscript was 
capably performed by Mike Seldomridge and Kay Shatrawka. Finally, to my 
students, who have taught me more about electronics than they realize, I want to 

dedicate this book. 

Madison Wisconsin 

April, 1981 
J.C. Sprott 
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1.1 Current and Voltage 

chapter 1 
de Circuit 

Components 

The study of electronics is largely a study of the behavior and relationship of two 
quantities - current and voltage. It is crucial, therefore, that the meanings of 
current and voltage be clearly understood. 

Current is defined as the amount of electrical charge crossing a surface per unit 
time. In the International System, abbreviated as SI, from the French (formerly 
MKS), the unit of current is called the ampere (abbreviated amp or A) and is equal 
to 1 coulomb per second: 

1 A= 1 C/s 

Electrical currents are usually carried by electrons. By historical accident, the charge 
of the electron ( -e) was defined as being negative and is given by 

e=l.6xl0- 19 C 

Therefore, the electrical current always flows in a direction opposite to the direction 
in which the electrons move. In the study of electronics, one rarely worries about 
what electrons are doing, and it is usually more convenient to imagine positive 
charges which flow in the same direction as the current. A current of 1 A requires 
6.2 x 1018 electrons to cross a surface during each second. Since this number is so 
large, we normally don't notice the quantization of currents. 

Voltage is defined as the amount of energy required to move a unit of electrical 
charge from one place to another. In the SI system, the unit of voltage is called the 
volt ( abbreviated V) and is equal to one joule per coulomb: 

1 V = 1 J/C 

The use of "V" for both an algebraic quantity and a unit of voltage is a potential 
source of confusion in expressions such as V = 5 V. (Remember: the algebraic 
quantity is in italic.) Implicit in the definition is the fact that only voltage 
differences have meaning. To say that a certain point in an electrical circuit has a 
voltage of 12 Vis meaningless unless one designates a point in the circuit as a reference 
( zero voltage) point. Often such a reference point is ref erred to as a ground, because 
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it is usually connected to a metal case or chassis which encloses the circuit and is in 
turn connected electrically to the earth. The symbol for a connection to ground is +. 
Circuits are often grounded as a safety precaution to ensure that those parts of a circuit 
that the user is likely to touch are at the same voltage as the ground on which he or she 
is standing. 

Electrical energy has to be supplied to move a positive charge ( to make a current 
flow) toward a point with a higher (more positive) voltage. Current will tend to flow 
of its own accord from a high voltage to a lower voltage point, and in so doing will 
dissipate (convert into other forms) electrical energy. Other terms which are often 
used instead of voltage are potential and electromotive force (emf). 

A common analogy which is useful for visualizing the concepts of voltage and 
current is a water system in which a pump raises a mass m of water to a water tower at 
height h above the ground from which it flows back to ground level. The energy 
required to raise the water to the tower is given by mgh where g is the acceleration due 
to gravity (g = 9.8 m/s 2

). The gravitational potential (potential energy per unit 
mass) is proportional to the height above the ground and is analogous to the voltage 
in an electrical circuit. The flow rate, kilograms per second, is analogous to the 
current in an electrical circuit. 

1.2 Resistance 

If a rod of material has a voltage difference V between its ends, a current/ will flow 
through the rod. The current will flow from the high voltage end toward the end at 
lower voltage. To a very good approximation, the voltage and current are 
proportional: 

V=IR (1.1) 

where the proportionality constant R is called the resistance. Equation 1.1 is called 
Ohm's law, although on close examination it is never precisely obeyed. The 
resistance R has units of volts per amp which we call an ohm (abbreviated !l): 

1 Q = 1 V/A 

Typical resistor values range from about l Q to about 1 MQ (equal to 106 ohms). A 
related quantity is the conductance G, defined as l /R. The unit of conductance is the 
siemens (formerly called mho) and is abbreviated U. 

There is a vast difference between the resistance of different materials. Materials 
with very low resistance such as silver, copper, aluminum, and other metals are called 
conductors. Materials with very high resistance such as glass, rubber, and air are 
called insulators. A perfect or ideal conductor is one in which R = 0, and so accord
ing to equation 1. 1, an ideal conductor cannot have any voltage difference between 
its ends, even though a large current may be flowing through it. Certain metal alloys 
at temperatures near absolute zero ( -273°C) are ideal conductors and are called 
superconductors. A perfect or ideal insulator is one in which R is infinite ( or G = 0) ; 
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hence no current will flow, even though a large voltage difference may-exist. The only 
ideal insulator is a perfect vacuum. 

Some materials such as carbon have medium resistance and can be used to form 
electrical circuit elements called resistors. Composition resistors are produced by 
mixing small grains of carbon in an insulating resin and molding the composite into a 
short cylinder with conducting copper leads attached to each end. These leads are 
called terminals. By varying the amount of carbon, resistance values ranging from a 
few ohms to many megohms can be made. Resistors with resistance less than about 
100 kO can be made using a coil of wire of some poorly conducting alloy such as 
manganin (copper, manganese, and nickel). Such wire-wound resistors are more 
expensive, but they have higher stability and heat dissipation capabilities. The 
resistance value is commonly indicated by a color code as described in figure I. I. 

Black 0 
Brown 1 
Red 2 
Orange 3 
Yellow 4 
Green 5 
Blue 6 
Violet 7 
Gray 8 

Tolerance White 9 
Gold -1 
Silver -2 
No color 

5% tolerance 
10% tolerance 
20% tolerance 

Fig. 1.1 Resistor color code. The third band indicates the power of l 0 by which the first two 
digits are multiplied. A resistor with yellow-violet-red-silver would be 4700 n ± 10%. 

Real resistors don't precisely obey Ohm's law. When current passes through a 
resistor, it gets hot, and its resistance changes slightly. Also, the current does not 
change instantly when the voltage is abruptly changed, and vice versa. It is, 
nevertheless, useful to define an ideal resistor as one in which Ohm's law is exactly 
obeyed. An electrical circuit containing such ideal components can be analyzed in a 
systematic manner and usually behaves in a way that adequately approximates the 
behavior of the corresponding circuit with real components. 

The symbols used to represent ideal resistors are shown in figure 1.2. Variable 

-----'\AN',.,---
( a) 

~ 

T 
(c) 

Fig. 1.2 Symbols for ideal resistors. (a) 
Fixed. (h) Variable. (c) Potentiometer. 
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resistors are sometimes called potentiometers ("pot" for short). Note that a 
potentiometer is a three-terminal device in which the resistance between two of the 
terminals is fixed, but the resistance between the third terminal and either end is 
variable. The volume control in a radio receiver is a potentiometer with a logarithmic 
taper ( the angle of rotation is approximately proportional to the logarithm of the 
resistance). Most potentiometers, especially those found on scientific instruments, 
have a linear taper. A logarithmic taper is used for volume controls, because the ear 
has an approximately logarithmic response; that is, every doubling of the acoustic 
energy leads to a constant increment in perceived loudness. 

1.3 Power 

The ratio V/I is the resistance. The product VI is called the power. From the 
definitions of voltage and current, we see that power has units of volt-amps or 
joules/seconds and is called a watt (abbreviated W): 

I W=l VA=lj/s 

Power is the time rate of change of the electrical energy of the charged particles as 
they move through an electrical circuit. Since energy is conserved in nature, electrical 
energy can be produced only by depleting some other form of energy, such as 
chemical energy in a battery or mechanical energy in a generator. Electrical energy 
can be dissipated only by converting it to some· other form such as heat, light, or 
sound. A resistor converts electrical energy into heat, and the rate at which this 
happens is the power, 

( 1.2) 

where the last two forms are derived from Ohm's law. The amount of power that a 
resistor can safely dissipate without overheating is dependent, among other things, on 
its physical size. A typical resistor with a diameter about the size of a pencil can safely 
dissipate about l W of power. 

1.4 Sources 

Before proceeding further with our study of ~lectronics we must consider sources of 
electrical power and their properties. We have already mentioned batteries that store 
energy in chemical form and convert it into usable electrical energy on demand and 
generators that convert mechanical energy into electrical energy. Other examples are 
solar cells that convert light into electricity, thermocouples that convert heat into 
electricity, and microphones that convert sound into electricity. The most common 
type of source that is encountered is the power supply which converts one form of 
electrical energy into another. These sources often have a rather complicated 
relationship between the voltage and current they are able to supply. Therefore, it is 
useful to consider ideal sources which have well-prescribed mathematical properties. 

4 de Circuit Components 



These ideal sources represent limiting cases ofreal sources and are called the voltage 
source and the current source. The symbols we will use for these sources are shown 
in figure 1.3. The ideal voltage source has the property that the voltage across its 

(a) (b) 

Fig. 1.3 (a) Ideal voltage source. (b) 
Ideal current source. 

terminals is constant ( V) no matter what current flows through it. The ideal current 
source has the property that the current through it is constant (I) no matter what 
voltage appears between its terminals. In the ideal voltage source, the symbols+ and 
- only indicate which terminal is at the higher voltage. Since any reference can be 
chosen as zero volts, we don't know whether a terminal is positive or negative until we 
examine the circuit to which the source is connected and determine what point in th,e 
circuit is being used as the reference (ground). 

A battery is a reasonable approximation to a voltage source, and, in fact, 
batteries are sold according to their voltage rating ( 1.5, 6, 9, and 12 V are common 
examples). But in reality, the voltage across the terminals of a battery will decrease 
when a current flows out of its positive terminal. Conversely, the voltage will increase 
when current flows into its positive terminal, as when an automobile battery is being 
charged. Since a real battery does not behave in an ideal manner, we will reserve a 
special symbol for it, as indicated in figure l.4(a). A better approximation to a real 
battery is an ideal voltage source connected to an ideal resistor, as shown in 
figure l.4(b). As a current I flows out of the positive terminal of the source, it flows 
through the resistor r (called the internal resistance or the source resistance) 

1 
V-=-

T 
(a) (b) 

Fig. 1.4 (a) Battery. (b) Real source ap
proximated by an ideal voltage source and 
an ideal resistor. 
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producing a voltage drop Ir in the resistor so that the voltage at the terminals of the 
source/resistor combination is given by 

V= ~-Ir ( 1.3) 

For I= 0, the full voltage Vs appears, but the voltage decreases to zero and can even 
go negative if a sufficiently large current is produced by other sources in the circuit. 
When a battery "runs down," the voltage Vs decreases, but equally important, the 
internal resistance increases, until, finally, no power can be delivered to the circuit to 
which the battery is connected. Most batteries, such as the carbon-zinc dry cell used 
in flashlights and portable radios, run down gradually. Mercury batteries maintain a 
nearly constant voltage and resistance throughout most of their life and then stop 
providing power very abruptly. Nickel-cadmium batteries share the same property 
and have the additional advantage of being rechargeable. 

Equation 1.3 suggests how a reasonable approximation to a current source can be 
made. Solving equation 1.3 for I gives 

V-V l=-s __ 
r 

If r: is made very large ( ~ ~ V), then 

] c':::'. V
5
/r 

and the voltage source/resistor combination produces a nearly constant current of 
magnitude ~/r. A real source such as a battery thus has properties intermediate 
between an ideal voltage source and an ideal current source. These relationships are 
illustrated in figure 1.5, in which we plot the voltage across a resistor, an ideal voltage 

V 

Fig. 1.5 Voltage as a function of current for 
(a) resistor, (b) ideal voltage source, (c) ideal 
current source, and (d) real source. 
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source, an ideal current source, and a battery as a function of the current flowing 
through them. Any combination of ideal resistors and ideal sources will produce a 
straight line on such a graph. For this reason, these components are said to be linear, 
and circuits which contain only linear components are called linear circuits. The 
equations that describe the voltage and current in such circuits will always be linear 
equations, and hence the solutions are straightforward. In a resistor, the current 
always flows from positive to negative, but in a source, the relative direction of 
current and voltage can be either the same or opposite, depending on the rest of the 
circuit. By convention, the currer{t is considered positive when it flows out of the 
positive terminal of a voltage source. 

We are now ready to consider the simplest possible electrical circuit, as shown in 
figure 1.6. It consists of an ideal voltage source connected to an ideal resistor with 
ideal conductors. Recall that every point on an ideal conductor is at the same voltage, 
and so the resistor in figure 1.6 must have a voltage V across its terminals with the 

R 

Fig. 1.6 Ideal voltage source connected 
to ideal resistor. 

higher voltage at the top. From Ohm's law, a current I= V/R must then flow 
downward through the resistor. For de circuits, charge cannot accumulate at any 
point in the circuit, and so the same current must flow in a clockwise direction 
everywhere around the loop. A general feature of circuits is that currents can only 
flow in loops that are closed. In fact, that's why they're called circuits! Note that in 
this circuit, the current flows from negative to positive through the source, which will 
always be the case for circuits that contain a single source. But for circuits with two or 
more sources, one source can cause current to flow backward through another source, 
as is the case when a battery is being charged. 

In the circuit of figure 1.6, the source produces an electrical.power equal to VI. 
This power is transmitted to the resistor without loss. The power dissipated in the 
resistor is also VI or V2 /R ( equation 1.2). Note that as R approaches zero, the current 
and power both go to infinity. A real source cannot provide infinite power, and the 
internal resistance causes the voltage to drop as the current increases. Similarly, an 
ideal current source connected to a resistor will produce a voltage V = JR across a 
resistor, and the power (/ 2 R) will approach infinity as the resistor is made large. 
Therefore, just as it is unwise to connect the terminals of a battery (voltage source) 
together, it is unwise to leave the terminals of a current source unconnected. In one 
case, a large current flows. In the other, a large voltage develops. 

Circuits are often protected from the damage that could result from large 
currents by means of a fuse. A fuse is a low-resistance conductor that melts and 
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breaks the circuit when the current exceeds a prescribed value. It is then discarded 
and replaced. Fuses are commonly available with ratings ranging from a small 
fraction of an ampere to several hundred amperes. The symbol for a fuse is ~ . A 
closely related device is a circuit breaker which mechanically breaks the circuit 
when the current exceeds a prescribed value. The advantage of the circuit breaker is 
that it can be manually reset. Large voltages can be protected against by the use of 
devices called transient suppressors or thyrites. These devices have very high 
resistance up to some value of voltage at which the resistance drops abruptly. Note 
that none of these protective devices is linear, but in normal use the nonlinear 
behavior does not occur, and they can usually be treated simply as ideal conductors 
or insulators. 

1.5 Circuit Reduction 

The analysis of an electrical circuit normally consists of determining the current 
and/or voltage at one or more points in the circuit. A complicated electrical circuit 
can often be analyzed by reducing the circuit to a simpler circuit for which the 
solution is known. Consider, for example, the circuit in figure 1. 7. The two resistors 

+ 

V 

Fig. 1.7 Resistors in series add according 
to R=R 1 + R2 . 

R 1 and R 2 are said to be connected in series. The sum of the voltage drops across 
each resistor must equal the voltage of the source: 

Since the same current/ flows through each resistor, Ohm's law can be applied to 
each resistor to give 

The sum R 1 + R 2 is called the equivalent resistance for resistors in series: 

(1.4) 

The circuit of figure 1. 7 can thus be reduced to the simpler circuit of figure 1.6 by 
using the equivalent resistance. The voltage drop across one of the series resistors, say 
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R 1, can be determined from the current I using Ohm's law: 

(1.5) 

This equation is called the voltage divider relation, and is extremely useful. It says 
that for resistors in series, the voltage divides in proportion to the resistance. 

Another example is shown in figure 1.8 in which the two resistors are connected 

V 

Fig. 1.8 Resistors in parallel add according to 
1/R = l/R 1 + l/R 2 . 

in parallel. In this case, the current I divides between the two resistors in such a way 
that 

1=1 1 +1 2 

By applying Ohm's law and using the fact that the same voltage V appears across 
each resistor we obtain 

I= ~ + ~ = v(_!__ + -
1

) 
R1 R2 R1 R2 

The equivalent resistance for resistors in parallel is thus determined from 

( 1.6) 

For the special case of two resistors in parallel, equation 1.6 can be written in the 
convenient form 

Equations 1.4 and 1.6 can be generalized to any number of resistors: 

(series) 

~=I_!_ 
R i Ri 

(parallel) 

The current through one of the resistors, say R 1 , can be determined from the voltage 
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V using Ohm's law: 

V JR R21 
11 =-=-=----

Rl R1 R1 +R2 
( 1.7) 

This equation is called the current divider relation. Note the similarity of equation 
1. 7 and equation 1.5, but notice that in the current divider, the current in resistor 1 is 
proportional to R 2 rather than to R 1, as was the case with the voltage divider. 

Sources can also be connected in series or parallel as indicated in figure 1.9. 

I i / = 1, + 12 

+ 

f t V = V, + V2 

1 
(a) (b) 

Fig. 1.9 (a) Voltage sources in series add. (b) 
Current sources in parallel add. 

Voltage sources in series add according to 

Current sources in parallel add according to 

Ideal voltage sources cannot be connected in parallel unless they have the same 
voltage. Similarly, ideal current sources cannot be connected in series unless they 
have the same current. 

Sources can also be connected in series or parallel with resistors. The case of a 
resistor in series with a voltage source has already been considered in section 1.4. A 
resistor in parallel with a voltage source has no effect on the circuit to which it is 
connected, since the voltage produced by an ideal voltage source is independent of the 
current drawn from the source. For a similar reason, a resistor in series with a current 
source has no effect on the rest of the circuit. 

The case of a resistor in parallel with a current source is more interesting, 
however. In figure 1. IO, a current equal to Is - I must flow downward through 
resistor r, so that the voltage Vis 

V= (ls-l)r 
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Fig. 1.10 A resistor in parallel with a 
current source is undistinguishable from 
the same resistor in series with a voltage 
source ~ = lsr. 

This equation is identical to equation 1.3, provided we set 

~=1sr 
with r the same in the two circuits. The circuit in figure 1.10 is therefore 
indistinguishable from the circuit in figure l.4(b) if the above conditions are satisfied. 
The ability to switch back and forth between these two representations is a powerful 
tool for circuit analysis by successive reduction. For example, the circuit in 
figure l.ll(a) can be reduced to the circuit in figure l.ll(b) which is just a voltage 
divider. 

+ 

Ir V 

(b) 

Fig. 1.11 The circuit in (a) is equivalent 
to that in (b), which is just a voltage divider. 
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Occasionally, a circuit will possess a certain symmetry that greatly simplifies its 
analysis. Consider, for example, the problem of determining the equivalent resistance 
of the combination of resistors shown in figure 1.12. Since no two resistors are either 

4n 

1n 

Fig. 1.12 Example of a circuit whose 
symmetry can be exploited to yield an 
equivalent resistance of 4 0. 

in series or parallel, circuit reduction cannot be applied. Imagine, however, that the 
3-!l resistor were missing. Then the circuit becomes two voltage dividers, and any 
voltage applied between the two terminals will divide in such a way that points A and 
B are at the same voltage. Consequently, the 3-!l resistor can be put back in the 
circuit without having any effect, since no current will flow through it. In fact, the 
equivalent resistance of the circuit is the same if the 3-!l resistor were replaced with a 
resistor of any value. As an exercise, one might verify by circuit reduction that the 
equivalent resistance of the circuit in figure 1.12 is 4 n either with the 3-!l resistor 
replaced by an infinite resistance (no connection between points A and B) or with it 
replaced by a zero resistance (points A and Bconnected by a perfect conductor). 

Another type of circuit whose analysis can be greatly simplified is one in which a 
given pattern of circuit elements is repeated indefinitely. One link in the chain can be 
removed and the remaining chain is indistinguishable from the original chain. This 
analysis technique is actually quite useful for the distributed circuits which are 
described in Chapter 5. An example of this type of circuit is given in problem 1.9. 

1.6 Meters 

Meters are devices that measure current or voltage. An ideal am.meter has zero 
resistance and hence has no voltage drop across its terminals. An ideal voltmeter 
has infinite resistance and hence draws no current from the circuit to which it is 
connected. The ammeter produces a reading proportional to the current through its 
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terminals. The voltmeter produces a reading proportional to the voltage across its 
terminals. The symbols for ideal meters are shown in figure 1.13. An ideal ammeter 
can be connected in series with a circuit without disturbing it. An ideal voltmeter can 

~) ~) 

Fig. 1.13 (a) Ideal ammeter. (b) Ideal 
voltmeter. 

be connected in parallel with a circuit without disturbing it. An ideal meter consumes 
no power, since either I or Vis always zero. 

Just as real sources are intermediate between ideal voltage and current sources, 
real meters are intermediate between ideal ammeters and ideal voltmeters. A 
common type of meter is the D' Arsonval galvanometer, in which a current 
through an electromagnet produces a torque that rotates a spring-loaded needle 
through an angle that is proportional to the current. The coil of the electromagnet 
has some resistance, and hence a small. voltage drop occurs when current flows. 
Figure 1.14 shows two equivalent representations of a real meter in terms of ideal 

(a) (b) 

Fig. 1.14 Equivalent representations ofreal 
meters. (a) Ammeter. (b) Voltmeter. 

circuit components. Voltmeters are usually made by placing a large resistor r in series 
with a galvanometer, as shown in figure l. l 4(a). In such a case, the ammeter will 
read a current I= V/r, and it can be labeled to indicate the voltage V. A real meter 
always consumes power, since the product VI is never exactly zero. 

The sensitivity of a galvanometer is expressed in terms of the current required 
to produce a full-scale reading. A large sensitivity means a small current is required, 
and so the sensitivity is defined as the inverse of the current required for a full-scale 
reading. From Ohm's law, the units of inverse current are ohms per volt. The 
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sensitivity expressed in this way is a very useful number, because it tells how much 
resistance must be placed in series with a meter to use it as a voltmeter. For example, 
a typical galvanometer has a sensitivity of 20,000 0./V and an internal resistance of 
5000 11. In order to make such a meter read l 0 V full scale, a total series resistance of 
200 k11 is required. But the galvanometer already has 5000 0., and so an additional 
resistance of 195 k11 should be placed in series with the galvanometer. 

A galvanometer can also be used to measure currents larger than would normally 
produce a full-scale reading. This is done by placing a resistor ( called a shunt) in 
parallel with the meter to form a current divider, as shown in figure 1.15. If the 

R 

Fig. 1.15 A shunt (R) placed in parallel 
with a galvanometer permits a large current 
(/ 0) to be measured. 

galvanometer has a sensitivity of 20,000 0./V, the meter reads full scale when 
I= 50 µA. If we want the meter to read full scale when 10 = l A, the current divider 
relation ( equation I. 7) requires that R be chosen so that 

For r = 5000 11, the solution is 

Ir 
R= -- ~ 0.25 0. 

10 -I 

Perhaps the most useful piece of electronic test equipment is the multimeter or 
volt-oh.m-rni11iarnrnder (VOM), which typically consists of a sensitive galvan
ometer labeled with numerous scales and a variety ofresistors that can be inserted in 
series or parallel by a range setting on the instrument in order to permit various full 
scale readings for voltage and current. Several ohm scales are also usually provided 
for measuring resistors (see problem 1.20). More sophisticated instruments in
corporate a vacuum tube (vacuum tube voltmeter, or VTVM) or an FET (see 
Chapter 7) so that the meter is more nearly ideal. A type of vacuum tube or FET 
voltmeter with an exceedingly high internal resistance (often ~ 1014 0.) is called an 
electrometer. A particularly convenient device is the digital voltmeter (DVM) or 
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digital multimeter (DMM) in which the voltage and other quantities are 
displayed directly as a number, usually with three or four digits. 

A real meter always perturbs the current or voltage that is being measured. The 
more nearly ideal the meter, the less the perturbation. This does not mean that 
accurate measurements cannot be made with a real meter. If the internal resistance r 
of the meter is known, the effect of the meter can be taken into account, and 
the voltage or current in the absence of the meter can be inferred by analysis of the 
circuit to which it is connected. 

The quality of a meter is specified by three independent parameters. The internal 
resistance determines how nearly ideal the meter is and hence how much it perturbs 
the circuit being measured. The sensitivity is a measure of the current required to 

produce a full-scale reading. The accuracy is a measure of how nearly the meter 
reading corresponds to the actual current or voltage at its terminals. A meter that is 
accurate at one point on its scale but inaccurate at another point is said to lack 
linearity. An ideal meter can be quite inaccurate, especially if it has been abused. 
Similarly, a meter can be perfectly accurate but quite nonideal. 

Finally, note that an ideal ammeter connected in parallel with an ideal voltage 
source is a contradiction. Similarly, an ideal voltmeter cannot be connected in 
parallel with an ideal current source. Any attempt to make such a connection with 
real sources and meters will likely result in damage to the meter, the source, or both. 

1.7 Summary 

In this chapter the fundamental concepts of current and voltage have been defined. 
The ratio V/I is the resistance. The product VI is the power. The five basic, linear, 
ideal, de circuit components have been introduced: resistor, voltage source, current 
source, ammeter, and voltmeter. The technique of analyzing circuits by circuit 
reduction has been introduced. The rules for applying this technique are summarized 
in figure 1.16. 

The perceptive reader will notice that voltage and current play a symmetric role 
in many of the discussions in this chapter, as do series and parallel. Any statement in 
this chapter that contains the words "voltage" and "series" will also be true if 
"voltage" is replaced with "current" and "series" with "parallel," and vice versa. 
These terms are called conjugate pairs. Many more such conjugate pairs are 
introduced in the following chapters. The reader should be alert for these, as they 
simplify the study of electronics and ad1 to its beauty. 

(a) 
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(b) 

(c) 

V = Ir 

(d) 

V = Ir 

Fig. 1.16 Summary of circuit reduction rules. 

Problems 

1.1 Calculate the average velocity of the electrons in a copper w1re of 1 mm 
diameter carrying a current of 1 A. The density of free electrons in copper is 8.5 
x 1028 electrons/m j. 

1.2 If 1000 kg of water falls from a height of 10 m and its potential energy is 
converted to electrical energy with an efficiency of 10%, how many coulombs of 
charge can be raised through a voltage of 100 V? 

1.3 How much electrical power can be produced by a hydroelectric power plant if 
1000 kg of water per second falls through a height of 10 m and its energy is converted 
to electricity with an efficiency of 10%? 

1.4 Find the equivalent resistance of the circuit shown below: 
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R 1 10 f2 

1.5 Find the equivalent resistance of the circuit shown below: 

R1 = 1.5 kil R2 = 2.5 kil 

o__...,.CJ.,__-o 

1.6 Find the equivalent resistance of the circuit shown below: 

R 1 = 1 f2 

1.7 For the circuit below in which all the resistors are 1 n, calculate the equivalent 
resistance between points A and B. 

1.8 For the circuit below, calculate the equivalent resistance between points A 
and B. 

1n 
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1.9 Find the equivalent resistance R of the circuit below which extends indefinitely 
to the right with all resistors equal to R0 : 

1.10 Calculate the current 12 in the circuit below: 

R1 = 400 n 

5 V 
R = 2 
200 n 

1.11 Calculate the voltage V4 in the circuit below: 

R = 3 

300 n 

1.12 For the circuit in problem 1. 11 calculate the power produced by the current 
source and the power dissipated by R4 . 

1.13 In the circuit below, each of the resistors is rated for a maximum dissipation of 
2 W. What size fuse should be used to protect the resistors from damage? 

1.14 Calculate the voltage V2 in the circuit below: 

7 V R1 = 5 n 

4 V 
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1.15 Calculate the voltage V4 in the circuit below: 

1.16 In the circuit below, the current I is measured with a real ammeter (not 
shown) with a 100-0 internal resistance. If the meter reads 0.5 A, what is the current 
in the absence of the meter? 

1.17 In the circuit below, the voltage V2 is measured with a 10-V full-scale 
voltmeter that consists of a resistor in series with a 1000 O/V galvanometer. What 
voltage Vs is required to make the voltmeter read 5 V? 

R 1 = 3 k!2 

T 
.._ ___ R_

2

_=_2_.s_k_n_ l 
1.18 In each of the circuits below, the voltmeters are non-ideal, with a sensitivity of 
20,000 0 per volt and read 8 Von the 10-V scale, and the ammeters are nonideal and 
have internal resistances of 5000 n and read 160 µA. Calculate the values of R 1 and 
R2. 

V ;( 
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1.19 A galvanometer with 20,000 n per volt sens1t1v1ty and 5000 n internal 
resistance is used with an appropriate series or parallel resistor to make measurements 
in the circuit below. ( a; If the galvanometer is used as a voltmeter to measure V2 and 
the meter reads 0.5 Von a 1-V full-scale range, what is the voltage Vo[ the source? 
( b) If the galvanometer is used as an ammeter to measure I and the meter reads 
50 µA on a 100-µA full-scale range, what is the voltage V of the source? 

R 1 = 10 kn 

R2 = 20 krl V2 

1.20 The circuit below is commonly used as part ofa VOM to measure an unknown 
resistance R. The procedure is to first set R = 0 and adjust R 2 for full-scale deflection 
of the meter (50 µA). Then the unknown R is placed in the circuit and the current is 
measured without disturbing R2 . Show that the reading on the meter is independent 
of the voltage V so that a battery of unknown condition can be used without losing 
accuracy. What value of R will give a meter deflection of 1/2 scale if R 2 ~ R 1 ? Repeat 
for 1/10 scale and 9/ 10 scale. 

R 

R1 = 12 r2 

1.21 An ammeter with a 1-A full-scale range and an internal resistance of 0.1 n is 
connected in parallel with a 12-V battery that has an internal resistance of 0.2 n. 
Calculate the current that flows through the ammeter, and describe what is likely to 
happen to the meter and to the battery. 

1.22 The circuit below is called an Ayrton shunt. If the ammeter is ideal with a 
full-scale reading of 1 µA, what current must flow between terminal 1 and ground to 
produce a full-scale reading of the meter? Repeat for terminals 2, 3, and 4. 
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0.9R 

2 1 µA FS 

0.09R 

3 -:" 

0.009R 

4 

0.001R 

-:" 

1.23 Real meters can be connected in series or parallel to permit readings outside 
the normal range of the meters. Suppose you had two VOM's, each capable of 
reading up to I 000 V and 1 A. If meter 1 has a 20,000 0./V galvanometer and meter 
2 has a 5000 0./V galvanometer, show how you would connect the meters to read a 
voltage of 1100 V, and calculate the reading of each meter. 
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2.1 Kirchhoff's Laws 

chapter 2 
Circuit 

Theorems 

As useful as the circuit-reduction techniques of the last chapter are, some circuits 
require a more sophisticated analysis. For example, the circuit shown in figure 2.1 

A 

~ 
I 

,,J R, 

+ 

V 

',J R3 

Fig. 2.1 The Wheatstone bridge is an 
example of a circuit that cannot be ana
lyzed by simple circuit reduction. 

cannot be analyzed by simple circuit reduction. This circuit is called a Wheatstone 
bridge, and it has a number of important applications which will be discussed later. 
The most general method for analyzing circuits makes use of Kirchhoff's laws. The 
use ofKirchhofrs laws has the virtue that it always works whether the circuit contains 
linear or nonlinear elements, no matter how complicated. Kirchhofrs laws form the 
basis for all the theorems to be discussed in this chapter. 

Before stating Kirchhofrs laws, it is useful to define certain terms: 

Node: a point where three or more circuit elements are connected together. 

Branch: a circuit element or series of elements that connect two adjacent nodes. 

Loop: a circuit path that begins at a node, passes through one or more nodes, 
and ends at the same node at which it started. 
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Mesh: a loop that does not contain any branches in its interior (also called an 
elementary loop). 

These concepts are most easily understood by referring to figure 2.1. This circuit has 
four nodes labeled A, B, C, and D. It has six branches, five containing resistors and one 
containing a voltage source. There are a total of seven loops, but only three of these 
are meshes (ABC, BCD, and ABD). With these terms clearly in mind, we can state 
Kirchhoff's laws, which follow directly from the definitions of current and voltage: 

Kirchhoff's current law: 

Kirchhoff's voltage law: 

The sum of the currents flowing into a node is zero. 

The sum of voltage drops around a loop is zero. 

Kirchhoff's current law is a statement of the conservation of electric charge, because 
if the total current flowing into a node were other than zero, an infinite charge would 
eventually build up at the node. Kirchhoff's voltage law is a statement of the 
conservation of energy, because if a charge moving around a loop came back to its 
starting point at a voltage different from what it had initially, its energy would have 
changed. 

For the example in figure 2.1, Kirchhoff's current law yields four equations, one 
for each node: 

I = 11 + 12 

11 = /3 + 15 

12 + 15 = 14 

/ 3 + /4 = I 

These equations are not all independent, however. The fourth equation can be 
derived by substituting / 1 and / 2 from the middle two equations into the first 
equation. It will always be the case that Kirchhoff's current law gives one extra 
equation, and so any one of the nodes can be ignored. The reason for this is that the 
current is constrained to flow in closed loops, so that the current flowing into any node 
must be zero if the current flowing into all the other nodes are zero. 

Kirchhoff's voltage law yields seven equations, one for each loop, but, again, not 
all are independent, because many of the loops are the sum of smaller loops. In fact, 
examination of the circuit shows that all the loops can be constructed from various 
combinations of meshes, and so there are three independent loop equations, because 
there are three meshes: 

/ 1R1 +1 3R3 - V=O 

/ 1R 1 + 15R5 -1 2R2 = 0 

13R3 - /4R4 - 15R5 = 0 

One can circle a mesh either clockwise or counterclockwise, but either way, the 
voltage drop is positive if one goes in the same direction as the arrow and negative if 
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one goes opposite to the arrow. The arrows can be drawn in either direction, 
however. When the equations are solved, a positive solution for the current in a 
branch means the current flows in the direction of the arrow, and a negative solution 
means it flows opposite to the arrow. When one goes from negative to positive in a 
source, the voltage rises, and hence the voltage drop is negative, irrespective of the 
direction of the current. 

The number of unknowns in a circuit is always equal to the number of branches, 
because if the current in every branch is known, all the voltages can be calculated 
from Ohm's law. For the case in figure 2.1, there are six branches and hence six 
unknowns. Kirchhoff's laws give six independent equations ( three current and three 
voltage), and so a solution exists. Such will always be the case: 

Number of unknowns = number of branches 
= number of nodes - 1 + number of meshes 

Six linear algebraic equations in six unknowns can be solved by several means, all of 
which are somewhat tedious. One way is to eliminate unknowns one at a time by 
solving for them in terms of the other unknowns and substituting into the remaining 
equations until the system of equations is reduced to a single equation in a single 
unknown. That unknown is then calculated, and it can be substituted into the 
previous equation, and so on, until all the unknowns are determined. Another way is 
by the use of determinants as described in virtually all elementary calculus texts. 
Much of the tedium of solving systems of linear algebraic equations has now been 
relegated to computers, and a circuit designer with access to such a computer would 
be well advised to take advantage of its capabilities. 

A slight simplification results from using what is called the loop current 
technique. In figure 2.2, the Wheatstone bridge is redrawn, but rather than labeling 

~ R2 

+ 
Rs 

V "NVv 

R3 0') R4 

Fig. 2.2 Analysis of Wheatstone bridge 
using the loop current technique. 

each branch current, as was done in figure 2.1, we have defined a loop current for 
each mesh. The current in a branch is a sum of the loop currents flowing through that 
branch: 
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I =I,._ 

/1 =I,._ -1B 

12 =Is 

13 =I,._ -le 

l4=fc 

Is =lc-1B 

By defining loop currents in this way, Kirchhotrs current law is automatically 
satisfied, since every loop current that flows into a node also flows out of the node. 
The result is to reduce the problem to one of solving three equations in three 
unknowns. The penalty is that the equations are somewhat more complicated: 

(/,._ -1 8 )R 1 + (/,._ -lc)R 3 - V=O 

(I,._ - ls)R1 + Uc - ls)Rs - lgR.2 = 0 

(I,._ -lc)R 3 -lcR 4 - Uc -1 8 )R 5 = 0 

One final simplification results whenever a branch contains a current source. In 
such a case, the current in that branch is known, and the branch can be ignored when 
the number of meshes is determined, so that the number of loop equations is reduced 
by one. Once the current in every branch is determined, all the voltages can be 
simply calculated from Ohm's law. 

2.2 Superposition Theorem 

Although the use of Kirchhotrs laws is the most general way to analyze circuits, the 
amount of effort required can usually be greatly reduced by making use of one of the 
circuit theorems, to be discussed in the next few pages. These theorems apply only to 
linear circuits, but they are nevertheless extremely useful. The first such theorem is 
called the superposition theorem, and it is useful whenever a linear circuit 
contains more than one source: 

Superposition theorem: The current in a branch of a linear circuit is equal to 
the sum of the currents produced by each source, with the other sources set 
equal to zero. 

The proof of the superposition theorem follows directly from the fact that Kirchhotrs 
laws applied to linear circuits always result in a set of linear equations, which can be 
reduced to a single linear equation in a single unknown. The unknown branch 
current can thus be written as a linear superposition of each of the source terms with 
an appropriate coefficient. In fact, the superposition theorem seems so reasonable 
that it is often mistakenly applied to nonlinear circuits (see problem 2.6). 

The other trap in the application of the superposition theorem involves the 
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meaning of setting a source equal to zero. One is often tempted to set a voltage source 
equal to zero by removing it entirely from the circuit. Recall, however, that setting a 
voltage source equal to zero means that the points in the circuit to which its terminals 
were connected must be kept at the same potential. The only way to do this is to 
replace the voltage source with a conductor (called a short circuit). A current 
source, on the other hand, is set equal to zero by leaving unconnected the points to 
which it was connected (called an open circuit). A short circuit causes the voltage to 
be zero; an open circuit causes the current to be zero. 

These ideas can best be illustrated by means of an example. In figure 2.3(a) is a 
circuit containing a voltage and a current source. Although this circuit could easily be 
analyzed by circuit reduction or even by Kirchhoff's laws, we will use the 
superposition theorem to calculate the current / 2 . First, in figure 2.3(b) we set the
current source equal to zero by removing it. The current in / 2 due to the voltage 
source alone is just V divided by the equivalent resistance: 

V 
121 = R + R 

1 2 

This current is called the partial current in branch 2 due to source 1. In 
figure 2.3(c) the voltage source has been set equal to zero by short circuiting the 

t (a) 

(b) 

t (c) 

Fig. 2.3 The circuit in (a) can be analyzed using 
the supposition theorem by considering the simpler 
circuits in (h) and (c). 
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points to which it was connected. The resulting circuit is a current divider, and the 
resulting partial current given by equation 1. 7 is 

IR 1 I -----
22 - R + R 

1 2 

The superposition theorem then says that the total current is 

The current in R 1 could have been determined in a similar manner, with the result: 

2.3 Thevenin's Theorem 

Perhaps the most useful of the circuit theorems is Thevenin's theorem: 

Any linear, two-terminal, de network can be represented by a voltage source 
in series with a resistor. 

A network is a group of circuit components (sources, resistors, etc.) connected 
together in some fashion. A de (direct current) network is one in which the sources 
produce voltages and currents that are constant in time. A two-terminal network is 
one in which only two points in the circuit are available for observation and test. A 
linear network is one that contains only linear circuit components. , 

A way to visualize Thevenin's theorem is to imagine a black box (so as to conceal 
its contents) that contains an assortment of ideal sources and ideal resistors of 
arbitrary value connected in any complicated fashion. On the outside of the box are 
two terminals connected to any two points of the internal circuit. Such a network is 
depicted in figure 2.4(a). Thevenin's theorem says that no matter how complicated 

Linear 
de 

network 

(a) (b) 

Fig. 2.4 A linear, two-terminal, de network (a) can be repre
sented by a voltage source in series with a resistor (b). 
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the invisible network is, any measurements on the exposed terminals will be the same 
as that which would result if the network consisted ofa single source and a single series 
resistor, as shown in figure 2.4(b). The value of the voltage and resistance will, of 
course, depend on what is in the original network, but for a given network, there will 
be a unique value of VT (called the Thevenin equivalent voltage) and RT (called 
the Thevenin equivalent resistance). 

The proof of Thevenin's theorem follows directly from the superposition 
theorem. If we connect a voltage source to the terminals of the network, as indicated 
in figure 2.5(a), and measure the current drawn by the source as the voltage is varied, 

Linear 
de 

network 

(a) 

I 
~ 

(b) 

Fig. 2.5 The current/ is the same function of V for circuit (a) 
and circuit (b) if VT and RT are chosen appropriately. 

we know all that can be known about the circuit, short of opening the box and 
examining its contents. The superposition theorem says that the.current/ consists of 
two parts. If the external voltage V is set equal to zero, by short circuiting the 
terminals, the sources internal to the box will produce a partial current, called the 
short circuit current, lsc· If the internal sources are set equal to zero, all that is left 
in the box is some combination of resistors that can be reduced to a single equivalent 
resistance RT. The external source thus produces a partial current in the external 
branch given by -V/RT. The negative sign arises because the arrow was drawn into 
the positive terminal of the voltage source, in contrast to the usual convention. The 
superposition theorem then gives 

V 
l=lsc-R 

T 

(2.1) 

A circuit that gives exactly this relation of V and / is the Thevenin equivalent circuit 
of figure 2.5(b): 

provided VT is adjusted so that 

(2.2) 

The voltage that appears across the terminals of the network when the current / is 
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zero is called the open circuit voltage and is given by 

Voe = VT = fscRT (2.3) 

These quantities are indicated on the graph in figure 2.6. Note that a real voltage 
source [as in figure l.4(b)] is just a Thevenin equivalent circuit. 

I 

V 

Fig. 2.6 Graph of I versus V for a linear, 
two-terminal, de network. 

A corollary of Thevenin's theorem is the following: 

Any linear, two-terminal, passive, de network can be represented by a single 
equivalent resistor. 

By passive, we mean that the network contains no sources. In such a case, the open 
circuit voltage, and hence the Thevenin equivalent voltage, is necessarily zero. In 
such a case the equivalent resistance is just RT. 

Thevenin's theorem is most useful whenever the current in a particular resistor in 
a complicated linear network is to be calculated. We know that the circuit can be 
reduced to one in which the resistor whose current is to be calculated is connected to a 
Thevenin equivalent circuit. The resulting circuit is just a voltage divider, for which 
the solution is known. This fact, by itself, is oflimited use, except to encourage us to 
apply circuit reduction techniques in an attempt to reduce the circuit to a single source 
and a single resistor. 

The real usefulness ofThevenin's theorem comes from the fact that the Thevenin 
parameters VT and RT can be determined from the open circuit voltage and the short 
circuit current ~ 

(2.4) 

(2.5) 
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Alternately, Ry can be determined by turning off all the sources and calculating the 
resistance between the network terminals. 

As an example, we will use Thevenin's theorem to calculate the current in 
resistor R 5 in figure 2.1. First, the resistor R5 is removed from the circuit, and the 
points Band C become the terminals of a linear, two-terminal, de network. The two 
resistive branches of the resulting network are voltage dividers, and the open circuit 
voltage, and hence the Thevenin voltage, is 

(2.6) 

where the node at D is used as a reference point. 
The Thevenin resistance is calculated by setting V = 0, in which case the circuit 

reduces to the one shown in figure 2. 7 which has an equivalent resistance of 

B 

A 

C 

(a) (b) 

Fig. 2.7 The Thevenin equivalent resistance of the Wheatstone 
bridge can be determined by setting V = 0 (a) and redrawing the 
circuit as in ( b). 

The current in R 5 in figure 2.1 is then given by 

I - Vy 
5-

Ry+R5 

(2.7) 

(2.8) 

To derive this result from KirchhofPs laws would have required several pages of 
algebra. 
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2.4 Norton's Theorem 

A theorem closely related to Thevenin's theorem is Norton's theorem.: 

Any linear, two-terminal, de network can be represented by a current source 
in parallel with a resistor. 

The proof of Norton's theorem has already been provided in section 1.5, where it 
was shown that the relation between V and / is the same for a voltage source with a 
series resistor and a current source with a parallel resistor. Norton's theorem thus 
follows directly from Thevenin's theorem. 

Norton's theorem is used in the same way as Thevenin's theorem. The Norton 
equivalent current (/N) for the network is obtained by short circuiting the 
terminals: 

and the Norton equivalent resistance (RN) is obtained from 

R 
_ Voe 

N
fsc 

(2.9) 

(2.10) 

Note that in the two representations of a network, the following relations hold: 

(2.11) 

(2.12) 

Thevenin's theorem allows a circuit to be reduced to a voltage divider; Norton's 
theorem allows a circuit to be reduced to a current divider. Whenever one theorem is 
useful, the other is equally useful. The choice is largely one of taste. 

As an example of the use of Norton's theorem, consider the circuit in 
figure 2.8(a). If we wish to calculate the current in R 2 , we can remove R 2 and replace 
it with a short circuit. Since R 3 has no voltage across it and hence no current through 
it, the short circuit current and hence the Norton equivalent current is 

R, 

(a) (h) 

Fig. 2.8 The circuit in (a) can be reduced to a Norton equivalent circuit 
in (b) which is a current divider. 
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The Norton equivalent resistance is found by setting V equal to zero, which leaves R1 

and R3 in parallel: 

R1R3 
RN=----

R1 + R3 

Replacing the network with a Norton equivalent circuit and replacing R2 give the 
circuit in figure 2.8(b), which is just a current divider. The current in 12 is then given 
by the current divider relation: 

1NRN VR3 
12 = ---- = ---------

RN+ R2 R1R2 + R1R3 + R2R3 

One might attempt to solve this problem also by circuit reduction in order to verify 
the above result and to compare the amount of work required. 

2.5 Reciprocity Theorem 

The final theorem that we will consider is called the reciprocity theorem.: 

The partial current in branch I of a linear, de circuit produced by a voltage 
source in branch 2 is the same as the partial current that would be produced 
in branch 2 by the same source if it were placed in branch 1. 

The theorem is illustrated in figure 2.9, which shows a network with two pairs of 

Linear 
de 

circuit 

(b) 

Linear 
de 

circuit 

(a) 

CD 

CD 

Fig. 2.9 The reciprocity theorem says that 
the partial current/ 12 in circuit (a) is the same 
as the partial current / 21 in circuit (h). 
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terminals. A pair of terminals will be referred to as a port. Since the theorem involves 
only the partial currents produced by the external sources, a corollary of the 
reciprocity theorem is the following: 

In a linear, de circuit with a single voltage source and an ammeter, the 
ammeter reading will remain the same if the ammeter and voltage source are 
interchanged. 

It is assumed that both the voltage source and the ammeter are ideal. An alternate 
form of the reciprocity theorem is the same as the above but with "voltage source" 
replaced by "current source" and "ammeter" replaced by "voltmeter." 

Rather than prove the reciprocity theorem in its most general form, we will prove 
it for a special case which will also serve to illustrate its usefulness. First, consider a 
linear, three-terminal, passive de network. The three terminals can be paired off in 
three ways. Each pair of terminals must satisfy Thevenin's theorem and hence be 
representable as an equivalent resistance. Any circuit we can concoct that has the 
same three equivalent resistances as the actual circuit will be indistinguishable from it 
in terms of any external measurements we can make. The simplest representation for 
a three-terminal network must then contain three resistors, and there are only two 
ways these resistors can be connected. Figure 2.10 shows the so-called .1-connection 

B 

A 

(a) 

C B 

A 

(h) 

C 

Fig. 2.10 Representations of a three-terminal, de, passive network. (a) ~
connection. ( b) Y-connection. 

and the Y-connection. The resistance between each combination of terminals can be 
calculated for the two circuits: 

(2.13) 
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With a bit of algebra, the A-Y transformation can be derived from the above: 

R1R3 
RB=-----

R1 + R2+ R3 

R1R2 
Rc=------

R~ + R2 + R3 

RARB + RARc+ Rific R1=---------
RA 

RARB+ RARc+ RBRc 
R2=---------

RB 

RARB+ RARc+ RBRc R3=---------
Rc 

(2.14) 

(2.15) 

The equivalence of the A- and T-connection is sometimes a useful circuit reduction 
technique (see problem 2.12). 

A three-terminal network is a special case of a two-port network in which two of 
the terminals are common. In the two-port representation, the A- and T-connections 
are called the n-network and the· T-network, respectively. These networks are 
shown in figure 2.11. Now suppose that such a passive, two-port network is connected 
to a pair of voltage sources and a pair of ammeters, as shown in figure 2 .12. The 

CD CD 

(a) (bJ 

Fig. 2.11 Two-port network with a common terminal. (a) 1t-network. (b) T-network. 

---1' ..... ---+- -+----t j( ,__ _ __, 

G) 

Fig. 2.12 Circuit for determining the R-parameters of a 
network with two ports. 
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superposition theorem says that the current in each branch is a superposition of the 
partial currents produced by each of the two sources: 

(2.16) 

The constants Ru, R 12 , R21 , and R22 are called the R-parameters of the circuit. 
Inspection of equation 2.16 shows that the R-parameters are given by 

(2.17) 

The R-parameters are often written as a square matrix: 

Networks with n-ports can be described by an n x n matrix of R-parameters. 
One use of the reciprocity theorem is to reduce the amount of work required to 

calculate the R-parameters for a circuit. Since a source at port 1 produces the same 
partial current at port 2 as the same source at port 2 would produce at port 1, the 
ratio / 12 / V2 is the same as the ratio / 21 / V1 . This is equivalent to saying that R 12 = R21 . 

More generally, for a multi port network, the matrix of R-parameters is diagonally 
symmetric: 

(2.18) 

As an example, we will calculate the R-parameters for the n-network in 
figure 2.11 (a). In order to calculate Ru we set V2 = 0 by short-<?ircuiting the 
terminals in parallel with R2. Since R11 is the ratio of the voltage at port 1 to the 
current at port I with port 2 shorted, it is just given by the parallel combination of R 1 

and R3: 

R1R3 
Ru= R +R 

1 3 

Similarly, R 22 is determined by short-circuiting port 1 and calculating the resistance 
as seen by port 2 : 

R21 is determined by placing a voltage source at 1 and an ammeter at 2. In such a 
circuit, neither R 2 nor R 3 affects the reading of the meter, and the ;atio of current 
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measured to voltage applied is 

R21 =R1 

By the same argument, R 12 is also equal to Ri, and so the reciprocity theorem (R12 

= R21 ) is satisfied. 

2.6 Wheatstone Bridge 

Before concluding the discussion of de circuits, we will return to the Wheatstone 
bridge circuit mentioned earlier in the chapter. In figure 2.13, the Wheatstone bridge 
circuit of figure 2.1 is redrawn in a more customary manner, with resistor R5 omitted. 

Fig. 2.13 Wheatstone bridge circuit. 

Any network that can be drawn in such a diamond arrangement with a source 
connected ·at opposite nodes is called a bridge circuit. Bridge circuits are very useful 
in electronics. The Wheatstone bridge is one in which the bridge contains only 
resistors. The Wheatstone bridge is useful for making accurate resistance measure
ments, but it exemplifies a more general technique called the null method which is 
used throughout science and engineering for making highly accurate measurements. 

Consider the general problem of measuring accurately the value of a resistor. The 
simplest method would be to place a known voltage across the resistor and with an 
ammeter measure the current drawn. But sources of accurately known voltage and 
meters of high accuracy (say, better than ,.._, 1 %) are quite expensive. On the other 
hand, resistors of 0.1 % or better accuracy are ea~ily manufactured, and they retain 
their accuracy indefinitely if not grossly abused. The Wheatstone bridge thus allows 
an unknown resistor to be compared with a standard resistor in such a way that its 
value can be determined to an accuracy that approaches that of the standard. 

It has already been shown ( section 2. 3) that the circuit of figure 2. 13 1s 
equivalent to a Thevenin equivalent circuit with Thevenin parameters: 

(2.19) 
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The Thevenin equivalent voltage VT is zero whenever 

which can be rewritten as 

(2.20) 

Equation 2.20 is called the balance condition or null condition, and whenever it is 
satisfied the bridge is said to be balanced or nulled. The significance of the balance 
condition is that a meter placed across' the output terminals of the bridge will read 
zero whenever equation 2.20 is satisfied, and it doesn't matter whether the meter is a 
voltmeter or an ammeter or anything between. Furthermore, the meter need not be 
accurate, but it should have high sensitivity. Similarly, the voltage source need be 
neither ideal nor accurately known, but its voltage should not be too low. 

In practice, two of the resistors, say, R 1 and R 2 , would be matched to high 
precision so that 

R1 =R2 

One of the resistors, say, R 3 , would be a highly accurate variable resistor, and the last 
resistor, R4 , would be the unknown. The variable resistor would be adjusted until a 
galvanometer across the output of the bridge reads zero, at which point its value 
would just equal the value of the unknown. Since variable resistors of high accuracy 
are not common, a suitable substitute for R 3 would be a fixed resistor of high accuracy 
with a resistance slightly greater than required to balance the bridge. Another resistor 
of high value could then be added in parallel with it to achieve a balance. The value 
of this parallel resistor need not be known to such a high precision, since it contributes 
only slightly to the resistance of R 3 . 

Another use of a bridge circuit is to measure a small change in a quantity. 
Suppose we wish to determine how much the resistance of a resistor changes as a 
function of temperature. We could take a balanced Wheatstone bridge and keep all 
its resistors at a constant temperature except for one. If that one resistor, say, R 3 , were 
heated up so that its resistance changed by an amount 1JR3, a voltmeter at the output 
of the bridge would read a voltage 

V = V -----'- - ---( 
R3 + 1JR3 R4 ) 

o Rl + R3 + 1JR3 R2 + R4 

If, for simplicity, we take all resistors to be the same, 

the output voltage is 
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using the useful relation, 

(i + ~)" e: I+ n~R 

for jJRj ~ R, the output voltage is seen to be proportional to JR: 

1 JR 
V ~-v-

.o 4 R 

(2.21) 

(2.22) 

One could thus easily measure the fractional change in resistance JR/R versus 
temperature. Most resistors have a very small variation of resistance with tempera
ture ( <0.1 %/°C), but resistors especially made to exhibit a high-temperature 
coefficient of resistance are called thermistors. A Wheatstone bridge consisting of 
three high-precision resistors and a thermistor could be used as a thermometer with 
an appropriately calibrated meter at its output. 

2.7 Summary 

In this chapter, techniques were introduced which simplify the analysis of circuits. In 
analyzing a circuit, one usually first does obvious circuit reduction such as combining 
resistors or sources that are in series or parallel. If the remaining circuit contains more 
than one source, the superposition theorem will probably be useful. Otherwise, either 
Thevenin's or Norton's theorem should probably be used. Multiterminal resistor 
networks are completely described by a matrix of R-parameters, and the reciprocity 
theorem simplifies the calculation of these parameters. 

It is important to remember that the above theorems apply only to linear 
circuits. The last halfof the book is filled with circuits for which these techniques fail 
miserably. For such circuits, Kirchhofrs laws may provide the only way to proceed. 
For linear circuits, the use of Kirchhoff's laws is seldom the easiest way to analyze a 
circuit. But for a computer or for a persistent human being who would rather 
manipulate a lot of algebra instead of a tew ci~cuit symbols, they should always 
provide an answer. 

Problems 

2.1 For the circuit below, write a set of independent current and voltage 
equations: 
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2.2 Use the loop current technique to calculate the current Is in figure 2.1 for the 
special case in which Rs = 0. 

2.3 For the circuit in figure 2.3(a), use Kirchhoff's laws to write an independent 
set of current and voltage equations, and solve these equations for the current 12 . 

2.4 If the following equations are meshes of a certain circuit, can the circuit be 
reconstructed? Ifit can, then reconstruct it showing the direction of the currents and 
voltages. Write any other equations that are necessary for solving all the currents in 
the circuit. 

V1 = l1r1 + 11 R1 + l2R2 

13R 3 + 14R4 + lsRs -1 2R 2 = 0 

13R3 + 16R6 = 0 

lsRs - 17R7 = 0 

V2 = lsr2 + lsRs - l4R4 

2.5 Use the superposition theorem to calculate the current 13 in the circuit in 
problem 2.1, assuming V1 =30V, V2 =10V, R 1 =R 2 =100Q, R 3 =50Q, and 
R4 = Rs = 200 n. 
2.6 A certain incandescent lamp has a nonlinear characteristic that can be 
approximated by V = 280 12. Calculate the curr~nt in the lamp in the circuit below 
using Kirchhoff's voltage law, and compare your answer with the (incorrect) result of 
using the superposition theorem. 

4 V 

Lamp 

3 V 

2.7 Calculate the Thevenin parameters of the circuit in problem 2.1 as seen by the 
resistor R 3 using the values given in problem 2.5. Use these values to calculate the 
current in 13 for R 3 = 50 n. 
2.8 Find the Thevenin equivalent of the circuit to the left of terminals AB below. 
What current will flow through terminals AB if they are shorted together? 

100 n 
---------'\r,n,,,.-------u A 

200 n 100 n 
3 V 

----------------0 B 
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2.9 For the circuit below, show that the maximum power will be dissipated in R if 
R = RT. This result is extremely useful in the design of circuits that must deliver the 
maximum possible power. 

R 

2.10 Determine the Norton equivalent current and the Norton equivalent re
sistance for the circuit in figure 2.3(a) as seen by the resistor R 2 . Use Norton's theorem 
to determine the current 12 . 

2.11 Find the Norton parameters for the circuit below. What is the output voltage 

Voe? 

7 
4 n Voe 

20V J 
~-----<> 

2.12 Find the equivalent resistance R of the circuit shown below: 

1 n 

2.13 Calculate the R-parameters for the T-network in figure 2.11 (b). 

2.14 Calculate the R-parameters for the network below: 

1 kil 2 kil 

CD 2 kil 2 kil 

2.15 Construct a four-terminal network (two ports) cons1stmg of three resistors 
connected in a n-network and having the following R-parameters: 
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[ 
sn 

10n 
10n] 
sn 

2.16 Calculate values of R1, R2, and R3 below such that the voltage across the load ' 
resistor RL would be one-tenth the value it would have if the network in the box were 
omitted and such that the resistance seen by the source and by the load are the same 
as they would have been without the network. Such a circuit is called a T-pad, and it 
is useful for voltage attenuation. 

T -pad 

2.17 If the Wheatstone bridge in figure 2.1 is balanced, what is the resistance as 
seen by the source? 

2.18 In the bridge circuit below, calculate the balance condition. 

+ 

v, 

2.19 Draw the Thevenin equivalent circuit and calculate the values of VT and RT 
for the circuit below. 

2.20 The potentiometer circuit shown below provides a null method for 
comparing an unknown voltage V with a known voltage Vs provided by a standard 
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cell. The voltage can be determined to high accuracy, without causing a current to 
flow in either the unknown source or the standard cell, by first adjusting for a null 
reading on the meter with the standard cell connected (tX1) and then readjusting it for 
a null with the unknown connected ( l'.X2 ). Derive an expression for V, and show that 
the result is independent of V0 , ri, r2 , and R. 

Vs or V 

2.21 Shown in (a) below is a linear resistor network with three ports in which 
currents flow as indicated. With the network connected as shown in (b), calculate the 
current lsc· With the network connected as shown in (c), calculate the voltage Voe· 

~ 
1, = 100 mA 12 = 20 mA 
~ r---+------+---. 

CD 

G) 

+o-----

Voe G) 

@ 

(a) 

4V 

(b) 

4 V 

(c) 

5 V 
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3.1 Time-Dependent Sources and Meters 

chapter 3 
Transient 

Circuits 

In this chapter, we begin a study of circuits in which the currents and voltages vary in 
time. Most of the ideas encountered in the study of de circuits remain valid for time
dependent circuits, but a number of new concepts will be encountered. Linear, de 
circuits are described by linear, algebraic equations; whereas linear, time-dependent 
circuits are described by linear differential equations. Fortunately, for most of the 
cases of interest, these equations can be solved in a straightforward manner. In this 
chapter we will be concerned with a special case of time-dependent circuits in which 
the sources are de but are turned on or off abruptly. Such circuits are called transient 
circuits, since the voltages and currents throughout the circuit readjust to a new de 
value in a brief but nonnegligible time interval immediately following the change in 
state of the source. The initial condition is a de circuit; the final condition is a 
different de circuit; but the interval in between, while the circuit is readjusting to the 
new conditions, may exhibit complex behavior. 

Perhaps the simplest way to turn a source on or off is by means of a switch. 
Figure 3.1 (a) shows a voltage source connected to a resistor through a switch. The 

+ 

R R 

(a) 
(b) 

Fig. 3.1 Switches are useful for producing an abrupt change in a voltage 
or current. (a) Single-throw switch. (b) Double-throw switch. 

switch is shown in its open position. If at some instant of time, say t =0, the switch is 
closed, a current will immediately begin to flow with a value given by Ohm's law: 

l(t) = { O 
V/R 

t<O 

, ~o 
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This is an example of a single-pole, single-throw switch. Figure 3.1 ( b) shows an 
example of a single-pole, double-throw switch which at time t = 0 disconnects the 
resistor from V1 and connects it to V2 . In practice, it is never possible to disconnect 
one circuit at precisely the same time another circuit is connected. To know for 
certain which will happen first, switches are made in two types. A shorting switch 
connects one circuit before disconnecting the other. A nonshorting switch 
disconnects one circuit before connecting the other. This difference is sometimes of 
great importance. For example, if the switch in figure 3.1 (b) were a shorting type, an 
infinite current would flow through the switch briefly while the two sources are in 
parallel. In a circuit with real sources of low internal resistance, the large current 
could weld the switch contacts together and perhaps damage the sources as well. 
More complicated switches having multiple poles ( controlling several circuits 
simultaneously) and multiple-throw (more than two positions) are quite common. A 
switch that can be remotely activated by energizing an electromagnet is called a 
relay or contractor. 

Whereas the basic device for measuring de voltages and currents is the 
D'Arsonval galvanometer, the basic device for measuring time-dependent voltages 
and currents is the oscilloscope. The heart of the oscilloscope is the cathode ray 
tube (CRT) shown schematically in figure 3.2. A filament (a) provides heat, which 

(e) 

(d) 1 
(b) <;> I I 

::::::::i-~---------71
l'll -_/ __ --,--_7 

! 

---

(f) 

Fig. 3.2 Cathode ray tube. (a) Filament. (b) Cathode. (c) 
Control grid. (d') Focusing electrodes. (e) Deflection plates. 
(f) Fluorescent screen. 

boils electrons off the cathode (b). A control grid (c) controls the intensity of the 
electron beam, which is focused by other electrodes (d). The beam can be deflected in 
either of two dimensions by deflection plates (e), and it finally strikes the fluorescent 
screen (f), causing it to emit light at a spot. The position of the spot can be moved up 
and down by varying the voltage on the vertical deflection plates or right and left by 
varying the voltage on the horizontal deflection plates. In this way the variation of 
one voltage as a function of another can be displayed graphically on the CRT screen. 
If the horizontal plates are connected to a voltage that increases linearly with time, a 
plot of the voltage at the vertical deflection plates as a function of time can be 
produced. Special trigger circuitry is usually provided to synchronize the horizontal 
sweep of the beam with the closing of a switch or with some feature of a repetitive 
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waveform. The oscilloscope is thus basically a voltmeter with a high internal 
resistance ( typically I MO), but it can also be used as an ammeter with an appropriate 
low-resistance shunt. 

3.2 Capacitors 

All the circuits ·encountered so far respond to time-varying sources in exactly the same 
way as they do to· de sources, namely, ~he currents and voltages everywhere in the 
circuit readjust instantly to any changes in the sources_. All the equations written 
down so far are correct if we interpret all the variables as instantaneous quantities 
that may vary from one instant to the next. If that were the whole story, we would 
now be finished with the study of time-dependent circuits. However, two new circuit 
components enter the picture, and they greatly enhance the usefulness of electrical 
circuits. The first of these is called the capacitor ( or condenser in older texts). 

To understand the operation of a capacitor, imagine two large, parallel, 
conducting plates of area A separated a small distance d by an insulator which might 
be air but more typically is a dielectric such as paper, glass, plastic, oil, mica, or 
ceramic. Such a configuration is shown in figure 3.3. If a voltage Vis applied between 

Area A + + 

j_ 
d 

T 
Electric 

field 

+ + + 

Fig. 3.3 A parallel plate capacitor. 

T 
V 

l 
the plates, an electric field E = V/d will be produced. From Gauss's law, each plate 
must contain an equal and opposite electric charge given by 

eAV 
Q,=eAE=

d 
(3.1) 

where e is the permittivity of the dielectric. Free space has a permittivity given by 

Bo= 8.85 X 10- 12 C2 /N • m 2 

From the definition of current, 

dQ, eA dV 
l=-=--

dt d dt 
(3.2) 
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The constant cA/d is called the capacitance: 

cA 
C=

d 
(3.3) 

In the SI system, the unit of capacitance is the farad (abbreviated F), and is equal to 

1 C/V: 

1 F= 1 C/V 

Typical capacitor values range from about 1 picofarad (pF, 10- 12 farads) to about 
1000 microfarads ( 1000 µF, 10 - 3 F). 

Although the above derivation applies only to a particular configuration in 
which two large, parallel plates are separated by a small distance, any two 
conducting electrodes separated by an insulator will have a capacitance. The 
capacitance can be calculated exactly in only a few special cases such as the above. 
The capacitance is always the ratio of the charge on one of the electrodes to the 
voltage applied between the electrodes: 

(3.4) 

A circuit element constructed in this way constitutes a capacitor, and from 
equation 3.2, we see that the relationship of the current through the capacitor to the 
voltage across its terminals is given by 

dV 
l=C

dt 
(3.5) 

Although a real capacitor does not precisely obey the above equation, for a variety of 
reasons, we will define an ideal capacitor as one in which equation 3.5 holds exactly. 
Note the similarity to an ideal resistor in which Ohm's law is exactly satisfied. The 
symbols for an ideal capacitor are shown in figure 3.4. The quantity C dV/dt has 

1 
T I= C dV 

t# 

(a) (b) 

Fig. 3.4 Symbols for ideal capacitors. 
(a) Fixed. (b) Variable. 

units of current and is called a displacement current, although it does not 
correspond to a flow of charge. 

An ideal capacitor has several curious properties. First, note that if a constant 
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voltage is placed across its terminals, equation 3.5 says that the current is zero. In a de 
circuit, a capacitor thus behaves like an open circuit. On the other hand, if we try to 
change the voltage abruptly, the quantity dV/dt, and hence the current I, is infinite. 
Real circuits cannot have infinite currents, and so the voltage across a capacitor 
cannot change abruptly. In other words, for transients a capacitor behaves like a 
voltage source. A capacitor with zero voltage behaves transiently like a short circuit. 
Finally, energy cannot be dissipated in a capacitor. It can only be stored in the electric 
field, for later recovery. The energy stored in a capacitor is easily calculated: 

W= J Vldt= J vc! dt= J CVdV=½CV' (3.6) 

A capacitor with stored energy is said to be charged. A capacitor without stored 
energy ( V = 0) is said to be discharged. 

To conserve space, capacitors are usually made with numerous layers of 
conducting foil (usually aiuminum) sandwiched between thin layers of insulation. 
Alternate layers of the foil are then connected together to provide the two terminals. 
The insulating material is carefully chosen according to its permittivity, breakdown 
voltage, and resistive power loss. The relative permittivity, e/e0 is also called the 
dielectric constant. It varies typically from 2 for teflon to over 105 for some types of 
ceramic. The breakdown voltage for most dielectrics is several hundred volts 
per mil (1 mil= 0.001 inch). Capacitors are rated according to the voltage that 
can safely be applied across their terminals. Some dielectrics such as teflon and 
mica have extremely low power loss. Insulators with a large relative permittivity, 
such as some types of ceramic and most liquids, unfortunately have significant 
power loss. 

The electrolytic capacitor is an especially compact design that uses aluminum 
or tantalum plates immersed in a semiliquid chemical compound which forms a thin, 
insulating, oxide layer on one of the electrodes. In addition to having a relatively high 
power loss, the electrolytic capacitor must be used in a circuit in which the sign of the 
voltage across its terminals is always the same (usually indicated by a+ or - on the 
case of the capacitor). Such a capacitor is said to be polarized. Furthermore, the 
value of capacitance will vary considerably with voltage, temperature, age, and so on, 
for an electrolytic capacitor. But the cost per joule of energy storage capability is 
usually lower for an electrolytic capacitor than for any other type. 

3.3 Inductors 

A circuit element that behaves exactly opposite to the capacitor is the inductor, 
often called a coil or choke. To understand the operation of an inductor, imagine a 
circular coil of wire of area A with a constant number of turns per unit length (N/l) 
and a length long compared with its diameter. Such a coil, shown in figure 3.5, is 
called a solenoid. If a current J flows through the coil, Ampere's law allows us to 
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N turns 

Magnetic 
field 

Area A 

Fig. 3.5 A s0lenoidal inductor. 

calculate the magnetic flux: 

µ.NIA 
<l>=BA=-

l 
(3.7) 

where µ is the permeability of the material on which the coil is wound. For most 
materials (iron is a well-known exception) the permeability is close to the per
meability of free space: 

µ0 = 4n x 10- 7 N/A 2 

From Faraday's law, the voltage across the terminals of the coil is given by 

d<l> µ.N2 A di 
V=N-=---

dt l dt 

The constant µN 2A/l is called the inductance: 

µ.N2A 
L=--

l 

(3.8) 

(3.9) 

In the SI system, the unit of inductance is called the henry (abbreviated H) and is 
equal to one weber (a unit of magnetic flux; see Appendix D) per ampere: 

lH=lW/A 

Typical inductor values range from about 1 µH ( 10- 6 H) to about l H. 
As with capacitance, the above derivation applies only to a particular coil 

configuration, but the concept of inductance is a very general one. All real 
components, including capacitors and resistors, have a certain inductance. Recall 
that a wire-wound resistor is very similar to the solenoid described above. The 
inductance is always the ratio of the magnetic flux linkage (N<l>) to the current: 

(3.10) 

An ideal circuit component that contains only inductance is called an inductor, and 
from equation 3.8 we see that the relationship of voltage across the terminals of an 
inductor to the current through it is given by 
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di 
V=L

dt 
(3.11) 



(a) (b) 

V = L di 
dt 

Fig. 3.6 Symbols for ideal inductors. (a) 
Fixed. (b) Variable. 

The symbols for an ideal inductor are shown in figure 3.6. 
Like the capacitor, an ideal inductor has several curious properties. If a constant 

current passes through the inductor, equation 3.11 says that the voltage is zero. In a 
de circuit, an inductor behaves like a short circuit. On the other hand, if Vis to be 
finite, the current cannot change abruptly. For transients, the inductor thus behaves 
like a current source. Like a capacitor, an inductor cannot dissipate energy, but can 
only store it in the magnetic field. The energy stored in an inductor is 

w = J1v dt = f IL ~: dt = f LI di=½ LI' (3.12) 

To conserve space, inductors are often wound on a toroidal iron core. Iron has a 
relative permeability, µ/µ 0 , on the order of 1000. Unfortunately, an inductor with 
an iron core is far from ideal. To begin with, iron is an electrical conductor, and when 
a time varying current flows in the winding, a current is induced in the iron. This 
eddy current gives rise to resistive losses in addition to those of the wire used for the 
winding. Eddy currents can be reduced by laminating the iron and separating the 
laminations with an insulating varnish or shellac. Still better, the iron can be ground 
into a powder and mixed with an insulating binder. Some oxides of iron, nickel, and 
cobalt, called ferrites, also have a high relative permeability and a low electrical 
conductivity and thus have found widespread use in compact toroidal inductors. 

A second difficulty with iron is that its permeability is not constant, but varies 
with the strength of the magnetic field and hence with the current in the windings. In 
fact, at sufficiently high magnetic fields, the core will saturate and its relative 
permeability will drop to a value near unity. Not only that, but the magnetic field in 
the iron depends on the past history of the current in the winding. This property of 
remanence is essential in a permanent magnet, but in an inductor it gives rise to 
additional losses, called hysteresis losses. 

Variable inductors are -usually made in the form of a short solenoid with a 
powdered iron or ferrite slug that can be screwed into or out of the form on which the 
coil is wound. Sometimes the slug is made of a conducting material such as brass, 
which has a relative permeability near unity, in which case eddy currents flow on the 
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outside of the slug and eliminate magnetic flux from the center of the coil, reducing its 
effective area. 

It is possible for the eddy current and hysteresis losses to be so large that the 
inductor behaves more like a resistor. Furthermore, there is always some capacitance 
between the turns of the inductor, and under some circumstances an inductor may 
act like a capacitor. This is a characteristic of all real circuit components. Whether a 
given component behaves more like a resistor, capacitor, or inductor depends on how 
it is made and how fast the voltages and currents are changing in time. 

Both the ideal capacitor and the ideal inductor are, like the ideal resistor, linear 
components, since doubling the voltage doubles the current and vice versa. Note that 
we have now accumulated quite an assortment of conjugate pairs, as listed below: 

voltage/current 

series/parallel 

loop/node 

open/short 

capacitance/inductance 

charge/flux linkage 

The existence of such pairs is a direct result of the symmetry of Maxwell's equations, 
which describe all electromagnetic phenomena. 

3.4 Inductors and Capacitors in Combination 

Just as circuit-reduction techniques are extremely useful with de circuits, it is often 
possible to simplify circuits that contain more than one inductor or capacitor. 
Consider first the case of two inductors in series, as shown in figure 3.7(a). Since the 

.!.. = ...!.. + 1 
L L, L 2 

(a) (b) 

Fig. 3.7 Inductors in series (a) and parallel (b) 
add just as resistors do. 
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same current I must flow through both inductors, the total voltage drop is 

Two inductors in series are therefore equivalent to a single inductor with an 
equivalent inductance given by 

(3.13) 

Now consider the Cp.se of two inductors in parallel as shown in figure 3. 7 ( b). Since the 
same voltage V appears across each, the total current is 

l=-
1 

fvdt+~fvdt=(-
1 

+~)fvdt 
Ll L2 L1 L2 

Two inductors in parallel are therefore equivalent to a single inductor with an 
equivalent inductance given by 

(3.14) 

As with resistors, these relations can be generalized: 

(series) 

_!_=I~ 
L i Li 

(parallel) 

Now consider the case of two capacitors in parallel, as shown in figure 3.8(a). 
Since the same voltage V appears across each, the total current is 

1 
y.

C1 C2 r 
+ C2 IC: • ..!..+ 1 

C C1 C2 

(a) (h) 

Fig. 3.8 Capacitors in parallel (a) and series ( b) add 
opposite to the way resistors do. 
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Two capacitors in parallel are therefore equivalent to a single capacitor with an 
equivalent capacitance given by 

(3.15) 

Finally, consider the case of two capacitors in series as shown in figure 3.8(b). Since 
the same current I must flow through both capacitors, the total voltage drop is 

V = _!_ f 1 dt + _!_ f 1 dt = (_!_ + _!_) f 1 dt 
c1 c2 c1 C2 

Two capacitors in series are therefore equivalent to a single capacitor with an 
equivalent capacitance given by 

(3.16) 

These relations can be generalized to give: 

(parallel) 

~=I~ 
C i Ci 

(series) 

All these relations can easily be remembered simply by recalling that inductors 
combine the same way resistors do, but capacitors combine in the opposite (inverse) 
way. Similarly, one can form inductive and capacitive voltage and current dividers, 
provided the sources are time-dependent (see problem 3.4). 

3.5 Series RC Circuit 

We are now ready to consider circuits in which capacitors and inductors are 
combined with one another and with resistors. Since all these components are linear 
and since the relation of V and I for capacitors and inductors involve derivatives, the 
equations that result when Kirchhoff's laws are applied to such circuits are linear 
differential equations. The next few pages will review the techniques for solving such 
equations. 

Consider first the transient circuit shown in figure 3.9(a) in which the source is 

R 

~c 

(a) (b) 

Fig. 3.9 In the transient series RC circuit in (a) in which the switch is closed at t = 0, the 
voltages adjust to a new equilibrium as indicated in (b). 
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de, but at time t = 0 the switch is closed and remains closed until the circuit reaches a 
new equilibrium condition. Applying Kirchhoff's voltage law to the single loop that is 
formed after the switch is closed gives 

' 1 J V=IR+ C Idt 

As the first step in solving such an equation, we always eliminate any integrals by 
diff eren tia ting each term: 

dl l 
0=R-+-1 

dt C 

where we have used the fact that Vis a constant in this particular example. The next 
step always is to rewrite the equation in a standard form, in which all terms containing 
the unknown (I in this case) appear on the left of the equal sign with the highest 
derivative written first and without any multiplicative constants: 

dl l 
-+-1=0 
dt RC 

This is an example of a linear, first-order, homogeneous differential equation. It 
is linear because the unknown appears only once to the first power in each term. It is 
first order because the highest derivative is the first, and it is homogeneous because 
the right-hand side, which would contain any terms not dependent on the unknown I, 
1s zero. 

The solution to all linear, first order, homogeneous differential equations is of the 
form 

I= loeat 

where the constant a. is determined by substituting the solution back into the 
differential equation and solving the resulting algebraic equation: 

In this case the solution is 

I 
a+-=0 

RC 

I 
a.= --

RC 

The constant 10 is determined from the initial condition at t = 0. The initial condition 
is easily determined from the fact that the voltage across a capacitor cannot change 
abruptly, and thus if the capacitor has zero voltage before the switch is closed, it will 
also have zero voltage immediately after the switch is closed. The capacitor initially 
behaves like a short circuit, and the initial current is 

V 
1(0)=1 0 =

R 

3.5 Serles RC Circuit 55 



Therefore, the complete solution for the transient series RC circuit for an initially 
discharged capacitor is 

(3.17) 

The quantity RC is called the time constant, r, for the circuit, since it has units of 
time and represents a characteristic time for the circuit to reach a new equilibrium 
condition after the switch is closed. 

Once the current is known, the voltage across the resistor and capacitor can be 
easily determined: 

Ve= - I dt = V(l - e-t/RC) l I.' 
C o 

A graph of these quantities is shown in figure 3.9(b). Whenever a result such as the 
above is obtained, it is always wise to check the limits t = 0 and t = oo to make sure 
that the result agrees with what one would expect for the appropriate de circuits: 

V 
J(O) = R 

VR(O) = V 

Vc(O) = 0 

J(oo) =0 

VR(oo) =0 

Vc(oo) = V 

Inspection of the circuit shows that these values are just what one would expect, since 
a capacitor initially (t ~ RC) behaves like a short circuit, but after a long time 
(t ~ RC) it behaves like an open circuit. 

3.6 Series RL Circuit 

The next example of a transient circuit is the series RL circuit shown in 
figure 3.1 O(a). As was the case for the series RC, the source is de and the switch is 
closed at t = 0 and remains closed until the circuit readjusts to a new equilibrium. 

L 

(a) (b) 

Fig. 3.10 In the transient series RL circuit in (a) in which the switch is closed at t = 0, the 
voltages adjust to a new equilibrium as indicated in (b). 

56 Transient Circuits 



KirchhofI's voltage law gives for t 2 0: 

di 
V=IR+L

dt 

Rewriting in the standard form gives 

di R V 
-+-1=
dt L L 

This is an example of a linear, first-order, nonhom.ogeneous differential equation, 
since the right-hand side is not zero. The solution to a linear, nonhomogeneous 
equation always consists of two parts: 

I= lh + Ip 

The first part is called the bQm.ogeneous solution, and it is just the solution of the 
equation with the right-hand side set equal to zero: 

dlh R 
-+-lh=O 
dt .L 

We already know that such a linear, first-order, homogeneous equation has a solution 

lh = loea.r 

where rt in this case is given by 

R 
rt=--

L 

If the t.erm on the right-hand side of the nonhomogeneous equation is a constant 
independent of time, the particular solution, IP, is also a constant, and its value can 
be easily determined by substituting into the original equation: 

V 
l=-

P R 

It is true that for whatever particular solution one finds to the equation, the homo
geneous solution can always be added, since it gives zero when substituted into the 
left-hand side of the equation. It is usually needed, however, to satisfy the initial 
conditions. Putting the two parts of the solution together gives: 

The time constant -r for an RL circuit is given by -r = L/R in the same way that -r = RC 
for an RC circuit. All that remains is to calculate the constant 10 . To do that, we note 
that the current through an inductor cannot change abruptly, and the current just 
before the switch was closed was zero, and so 
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which gives 

V 

R 

The final solution for the current in a transient RL circuit is then 

The voltage across the resistor and inductor are easily calculated: 

VR =IR= V( 1 -e-Rt/L) 

di 
VL = L- = ve-Rt/L 

dt 

(3.18) 

A graph of these quantities is shown in figure 3.l0(b). The values of initial and final 
currents agree with what one would expect for the de circuits in which the inductor is 
initially an open circuit but becomes a short circuit after a long time: 

/(0) =0 

VR(O) =0 

VdO) = V 

V 

The reader should note the similarity of the RL and RC circuit behavior. 

3. 7 Series RLC Circuit 

We now begm consideration of circuits that contain both a capacitor and an 
inductor. Such circuits are called resonant circuits. One of the simplest of such 
circuits is the series RLC circuit shown in figure 3.11. An even simpler circuit would 
result if the resistor were omitted, but there is always some resistance in a real series 
LC circuit, and so it would behave like the circuit of figure 3.10 in the limit of small 
resistance. We could also consider a series RLC circuit with a source, but that would 
only change the initial conditions. The general behavior of the circuit is the same with 
or without sources. 

R 

L 

Fig. 3.11 Series RLC circuit. 
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Assume that the capacitor is charged to a voltage V0 , and then at t = 0 the 
switch is closed. Kirchhoff's voltage law gives for t ~ 0: 

- ldt+IR+L-=0 l f di 
C dt 

Rewriting in standard form gives 

d2 I R di 1 
-+--+-1=0 
dt2 L dt LC 

This is an example of a linear, second-order, homogeneous differential equation. It 
is reasonable to guess that the solution is of the same form as for the first-order, 
homogeneous differential equation encountered earlier: 

I= l
0

ea.t 

Substituting into the differential equation gives 

2 R l 
rx +-rx+-=0 

L LC 

Note that a solution of the form ea.t always reduces a linear, homogeneous differential 
equation to an algebraic equation in which first derivatives are replaced by rx and 
second derivatives by rx2 , and so forth. A linear, second-order, homogeneous, 
differential equation then becomes a quadratic algebraic equation, and so on. This 
particular algebraic equation has the following solutions: 

(3.19) 

Since either value of rx represents a solution to the original differential equation, the 
most general solution is one in which the two possible solutions are multiplied by 
arbitrary constants and added together: 

The constants 11 and / 2 must be determined from the initial conditions. An nth order 
differential equation will generally haven constants which must be determined from 
the initial conditions .. In this case the constants can be evaluated from a knowledge of 
/( 0) and dl/dt( 0). Since the current in the inductor was zero for t < 0, and since it 
cannot change abruptly, we know that 

1(0) =0 

Since the current is initially zero, the voltage across the resistor must be zero, and so 
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the initial voltage across the inductor is the same as across the capacitor. Hence 

di V0 -(0)=-
dt L 

From these relations, we get 

The solution for the current in the series RLC circuit is thus 

(3.20) 

where CL1 and et2 are given by equation 3.19. 
The solution in equation 3.20 has a quite different character, depending on 

whether the quantity under the square root in equation 3.19 is positive, zero, or 
negative. We will consider the three cases in turn: 

Case 1: Overdamped 

For R2 > 4L/C the quantity under the square root is positive, and both values of ex are 
negative with I ex2 I > I ex1 1- The solution is the sum of a slowly decaying positive term 
and a more rapidly decaying negative term of equal initial magnitude. The solution is 
sketched in figure 3.12(a). An important limiting case is the one in which R2 ~ 4L/C. 
In that limit the square root can be approximated as 

~ R [-:u: RI 
✓ 41! - LC = 2L ✓ l - R2c ~ 2L - RC 

and the corresponding values of ex are 

R 
and ex = --

2 L 

Then the current in equation 3.20 is 

I~ Vo (e-1/RC _ e-RtfL) 

R 
(3.21) 

In this limit the current rises very rapidly (in a time ~L/R) to a value near V0 /R and 
then decays very slowly (in a time ~ RC) back to zero. Such a circuit closely 
resembles the RC circuit studied earlier (figure 3.9), as would be expected, since L 
was assumed small at the outset (compared to R2 C/4). 

Case 2: Critically Damped 

For R2 = 4L/C, the quantity under the square root is zero and ex1 = ex2 . Equation 3.20 
is then zero divided by zero, which is undefined. Therefore, the method of solution 
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I 

I 

I 

/ 
/ 

R 2 > 4LIC 

R 2 = 4LIC 

(b) 

R2 < 4LIC 

(c) 

Fig. 3.12 Current versus time for a series 
RLC circuit. (a) Overdamped. (b) 
Critically damped. (c) Underdamped. 

outlined above fails. A more productive approach is to let 
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and take the limit of equation 3.20 as e-+ 0. Then 

R 
a 1 = - -+ e 

2L 
and 

R 
a=---£ 2 2L 

and equation 3.20 becomes 

Using the expansion 

for lxl ~ I, the above equation becomes 

Vt Rt 
I= - 0-e 2L 

L 
(3.22) 

The same result could have been derived using l'Hopital's rule (see Appendix E). 
This equation is sketched in figure 3.12 ( b). The shape of the curve is not very different 
from the overdamped case, except that it approaches zero as fast as possible without 
overshooting the t axis and going negative. 

Case 3: Underdamped 

For R 2 < 4L/C, the quantity under the square root is negative, and a can be written as 

where 

A j is used for the square root of -1 in electronics because the more usual symbol, i, is 
reserved for currents. Now it will be useful to define another symbol, w, which we call 
the angular frequency: 

w= ffeJ1-~7 
Note that for R 2 ~ 4L/C, the angular frequency is 

l 
w-=:::.--

jLc 

(3.23) 

and this approximation will usually suffice for most cases of interest. With these 
substitutions, equation 3.20 becomes 

V0 Rt . . 
I= -- e - 2L (e1w1 - e- 1rot) 

2jwL 
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We now make use of the mathematical identity 

ei 0 = cos 0 + J sin 0 

to express the current as follows: 

I=~ e-Rt/lL sin wt 
wL 

(3.24) 

(3.25) 

This solution is of a very different form than the others, since it is oscillatory, with the 
oscillation amplitude decaying exponentially in time, as shown in figure 3. l 2(c). 
Although w is referred to as the angular frequency, note that it has units of radians 
per second, and it is related to the usual frequency f which has units of cycles per 
second or hertz (abbreviated Hz) by 

w=2nj (3.26) 

Similarly, the period of oscillation is 

(3.27) 

It is instructive to consider what happens to the energy in an underdamped, 
series RLC circuit. At t = 0, all the energy is stored in the capacitor. As the current 
increases, energy is dissipated in the resistor and stored in the inductor until one
quarter of a cycle has elapsed, at which time there is no energy left in the capacitor. 
But as time goes on, the energy in the inductor decreases, and the energy in the 
capacitor increases until one-half cycle has elapsed, at which time all the energy 
except that dissipated in the resistor is back in the capacitor. The energy continues to 
slosh back and forth, until it is eventually all dissipated by the resistor. The damping 
of an RLC circuit involves the conversion of ordered energy (½CV2 and ½L/2 ) into 
disordered, thermal energy in the resistor, and so is just what would be expected from 
the second law of thermdynamics. 

The quality factor of a resonant circuit is defined as the energy stored divided 
by the average energy dissipated per radian of oscillation: 

where 

wW 
Q=-.-p 

P= - 12Rdt 1 lT 
T o 

(3.28) 

It is left as an excercise (problem 3.12) to show that for a series RLC circuit the Q is 
given approximately by 

wL 
Q~

R 
(3.29) 
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Yet another equivalent definition of Q, is the number of radians required for the 
stored energy to decay to 1/e of its original value. A series LC circuit without any 
resistance would have an infinite Q and would oscillate forever without damping. 
Real inductors always have some resistance, and circuits with Q greater than a few 
hundred are very difficult to construct. 

The type of differential equation that describes the series RLC circuit is a very 
important one, because it appears with different variables in many areas of science 
and engineering. More generally, the system described by such an equation is called a 
damped harmonic oscillator. The shock absorbers on an automobile, for 
example, are part of a mechanical harmonic oscillator which is designed to be nearly 
critically damped. A thorough understanding of the series RLC circuit will provide 
considerable insight into a wide variety of such phenomena. 

3.8 Summary 

Transient circuits are circuits in which the sources are de but are turned on or off 
abruptly. Transient circuits that contain only resistors behave in the same way as they 
would for de. Two additional linear circuit components, the capacitor and the 
inductor, play important roles in transient circuits. The ideal inductor is defined by 
the relation 

di 
V=L

dt 

and the ideal capacitor is defined by the relation 

dV 
l=C-

dt 

in the same way that an ideal resistor is defined by Ohm's law, 

V=IR 

Inductors in series and parallel can be combined in the same way as resistors. 
Capacitors are combined in the opposite (inverse) way. Circuits that contain 
capacitors and inductors can be analyzed using Kirchhoff's laws, which lead to a set 
of simultaneous linear differential equations. For transient circuits, the solution 
consists of a homogeneous part that is proportional to ea.

1 and a particular part that is a 
constant. The differential equations can be reduced to algebraic equations from 
which the values of a can be determined. Constants will always appear in the 
solutions, and these will have to be determined from .the initial conditions. The initial 
conditions are obtained from the circuit using the fact that the voltage across a 
capacitor and the current through an inductor cannot change abruptly. 
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Problems 

3.1 Suppose two strips of conducting foil 1 meter long x 1 cm wide are alternated 
with strips of insulator 0.1 mm thick and relative permittivity of 10, and that the strips 
are rolled up into a cylinder with many layers. Calculate the capacitance. 

3.2 Calculate the capacitance of two parallel plates each with an area of 100 cm 2 

separated by a distance of 5 mm in air. What would the capacitance be if a 4-mm
thick conducting sheet were inserted between the plates? 

3.3 Suppose an insulated wire with 1-mm diameter is close wound in a single layer 
on a 1-cm diameter X 10-cm-long iron core with a relative permeability of 1000. 
Calculate the inductance. 

3.4 In the capacitive voltage divider below, the voltage V varies in time. Calculate 
the voltage V1 across capacitor C1 . 

t 
+ 

V(t) 

v; 
I___,c, i 

C2 

3.5 Calculate the current /(t) and the voltage Vc(t) across the capacitor m-
figure 3.9(a), assuming the capacitor has an initial voltage V0 . 

3.6 In the circuit below, the switch is initially in position 1. At t = 0, the switch is 
moved to position 2. At t = 1 s, the switch is moved to position 3. Calculate Vc(t) for 
t ~ 0, and sketch the result. 

R2 = 100 k11 

R1 = 1 Mil 3 

10 V 
C = 1 µ.F 

3.7 In the circuit below, the switch has been open for a long time, and then at t = 0 
it is closed. Determine the current/ and voltage V3 just after the switch is closed (t = 0) 
and after a long time ( t-+ ro). 
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R, 

~ 
I 

L R2 

+ 

V 

7 
C R3 V3 

3.8 For the series RC circuit of figure 3.9, calculate the energy dissipated by the 
resistor and the energy stored in the capacitor as a function of time, and show that as 
t--+ 00 , the energy stored is equal to the energy dissipated, for any values of Rand C. 
Assume the capacitor is initially discharged. 

3.9 After being open for a long time, the switch in the circuit below is closed at 
t = 0. Calculate the current IL as a function of time for t ~ 0. 

L 

3.10 For the circuit in problem 3.9, assume the switch has been closed for a long 
time, and then at t = 0 it is opened. Calculate the voltage VL across the inductor as a 
function of time for t ~ 0. If V = 10 V, R 1 = 10 n, and R 2 = I k!l, what is the peak 
value of ~L? 

3.11 Before the switch in the circuit below is closed, the capacitor C1 is charged to a 
voltage V1 (0), and C2 is discharged, V2 (0) = 0. Calculate the final voltages V1 ( oo) 
and V2 ( oo). 

3.12 Show that for a series RLC circuit, the Q is given by wL/R for Q~ 1. 

3.13 Determine the differential equation that describes the current / in the circuit 
below, and indicate the appropriate initial conditions if the switch is closed at t = 0. 
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3.14 In the parallel RLC circuit below, the capacitor has an initial voltage V0, and 
the switch is closed at t = 0. Solve for the voltage Vas a function of time if R 2 ~ 4L/C. 

3.15 After being open for a long time, the switch in the circuit below is closed at 
t = 0. Write a set of linearly independent equations that completely specify the 
behavior of the circuit, and combine these equations into a single differential 
equation with JR as the only unknown. 

L 

R C 

3.16 In the circuit below, the switch has been open for a long time and then is closed 
at t = 0. Calculate IL and Ve as a function of time for t :2: 0. 

R, 

ao n 

R2 20 n 
+ R3 

10 V V 1 lit 
L 

2 H C Ve 
100 µF 

T 
3.17 In the circuit below, the current increases linearly with time starting at t = 0 
such that I= 0 for t < 0 and I= 0.0 I t for t :2: 0. Find the voltage across the capacitor 
and the voltage across the inductor if at t = 0 the capacitor is discharged. 
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C = 50 µF 

L = 10 H 

3.18 In the circuit below, the capacitor is initially charged to 1000 V, and both 
switches are open. At t = 0, switch S1 is closed. When the current in the inductor 
rt;aches its peak value, switch S2 is closed. Sketch the voltage across the capacitor and 
the current through the inductor as a function of time, and show values of voltage, 
current, and time on your sketch. What would happen if S2 were closed a_t a different 
time? Such a circuit is called a crowbar, and it is useful for producing intense, nearly 
constant, magnetic fields. 

C = 0.1 

r-<a 
Fl .,, 

T 
s} ~L=1mH 
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4.1 Basic Definitions 

chapter 4 
Sinusoidal 

Circuits 

In this chapter we will consider circuits in which the sources are sinusoidal functions 
of time. Such circuits are of particular importance because of the ease of producing 
sinusoidal time variations (as, for example, in the transient RLC circuits discussed in 
the preceding chapter), and because more complicated time variations can be treated 
as a superposition of sine waves (see the next chapter). The application of Kirchhoff's 
laws to such circuits will produce nonhomogeneous differential equations, but for 
linear circuits these equations can be transformed into complex, linear, algebraic 
equations. 

Consider the circuit in figure 4.1 (a) in which a sinusoidal voltage source, 

V, I 

l'c, cos wt rv R 

--r--4 

(a) (b) 

Fig. 4.1 A sinusoidal voltage source connected to a resistor (a) produces a 
current as in (b). 

V0 cos wt, is connected to a resistor R. Whether we choose a cosine or a sine dependence 
for the voltage is arbitrary, since the shape of the waves are identical, and the only 
difference is in what we call t = 0. The cosine is more convenient, however, for what 
will follow. According to Ohm's law, the current in the circuit has a sinusoidal time 
dependence given by 

V0 cos wt 
l=---

R 
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The voltage and current are shown in figure 4.1 (b). The period is the time required 
for the wave to repeat itself, and is given by 

1 2n: 
T=-=-

f w 
(4.1) 

The power dissipated by the resistor is a function of time. Of more interest is the 
average power. Since one cycle is representative of all others, we can average the power 
over a period to get 

P= !_ IT 12Rdt 
T o 

= !_ f T v~ cos
2 

wt dt = v~ 
T O R 2R 

This result looks very similar to the usual definition of power in a de circuit 
(equation 1.2) except for the factor of two. It is useful to define a root mean square 
(rms) voltage given by 

V,m,= [~ [ V
2
(t)dtr (4.2) 

For a sinusoidal voltage, the rms value is given by Vrms = V0 / .j2. ~ 0. 707 V0 . The 
significance of the rms voltage is that if such a voltage is applied to a resistor, the same 
power w1ll be dissipated as for a de voltage of the same value: 

(4.3) 

Thus when we say that a voltage is 115 V ac, we usually mean that its value is given 

by 115 j2 cos wt. 
A more interesting case occurs when the voltage source is connected to a 

capacitor, as shown in figure 4.2 (a). From the definition of an ideal capacitor, we can 
calculate the current: 

70 

dV 
I= C- = -wCV 0 sin wt 

dt 

C 

(a) (b) 

Fig. 4.2 A sinusoidal voltage source connected to a capacitor (a) 
produces a current as in (b). 
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The current has a maximum value (when sin wt= -l) of 

but the maximum current does not occur at the same time as the maximum voltage. 
The voltage and current are sketched _in figure 4.2(b). The ratio of peak voltage to 
peak current is like a resistance, since it has units of ohms, and it is called the 
reactance: 

The reactance of a capacitor is thus 

I 
Xc=

wC 

( 4.4) 

(4.5) 

The reciprocal of reactance is called susceptance, and, like conductance, is 
measured in units of siemens. 

Note that the de limit corresponds to setting w = 0, since cos(0) = 1, and for such 
a case the capacitive reactance is infinite, and the capacitor behaves like an open 
circuit. On the other hand, at high frequencies ( w ~ oo), the capacitive reactance is 
zero, and the capacitor behaves like a short circuit. Note also that the current can be 
expressed in tenns of a cosine by 

I= -1 0 sin wt=l 0 cos(wt+ </>) 

where </> is called the phase of the current relative to the applied voltage. For the 
above case, the phase is 90° ( n/2 rads). Note that phase, like voltage, is a relative 
quantity and that it can only be defined for two sinusoidal waves of the same 
frequency. 

The energy that flows into the capacitor per unit time averaged over a cycle can 
be calculated in the same manner as for the resistor: 

fi= ~ I: IV dt= - ~ I: wCV~ cos wt sin wt dt 

From the symmetry of the sine and cosine functions, we see that the energy that flows 
into the capacitor during the first and third quarter cycles is just balanced by the 
energy that flows out of the capacitor during the second and fourth quarter cycles, so 
that P = 0. The capacitor neither dissipates nor permanently stores energy under 
su_ch conditions, but just retains it temporarily and gives it back to the circuit a 
quarter cycle later. 

Not surprisingly, an inductor behaves just the opposite of a capacitor. A circuit 
with a sinusoidal voltage source and an inductor is shown in figure 4.3(a). From the 
definition of an ideal inductor, we can calculate the current: 

I=- Vdt=-smwt I J V0 • 

L wL 
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(a) (b) 

Fig. 4.3 A sinusoidal voltage source connected to an inductor (a) 
produces a current as in (b). 

In performing an indefinite integral such as the above, there will, in general, be an 
arbitrary constant of integration that must be added to the result. In this case the 
constant would be the initial current in the inductor, which we take equal to zero. 
The voltage and current are sketched in figure 4.3(b). The current has a maximum 
value 

and the reactance of an inductor is thus 

(4.6) 

In the de limit ( w = 0), the inductive reactance is zero, and the inductor behaves like 
a short circuit. At high frequencies (w--+ oo), the inductive reactance is infinite, and 
the inductor behaves like an open circuit. The de-limiting behavior of the capacitor 
and the inductor can easily be remembered by recalling their physical construction. 
As with the capacitor, the current in the inductor can be expressed in terms of a cosine 
by 

I= 10 sin wt= 10 cos (wt+</>) 

but in this case the phase is -90° ( -n/2 rads). In a capacitor the current leads the 
voltage by 90°. In an inductor, the current lags the voltage·by 90°. A useful way to 
remember this result, usually found in textbooks in which the symbol E is used for 
voltage instead of V, is with the phrase ·"ELI the ICE man," where L indicates an 
inductor and C a capacitor. As with the capacitor, the inductor does not dissipate 
power, but merely stores energy for release back to the circuit a quarter-cycle later. 

4.2 Time-Domain Solutions 

We are now ready to consider more challenging sinusoidal circuits such as the series 
RC circuit in figure 4.4(a). Applying Kirchhofrs voltage law to this circuit gives 

V0 cos wt=IR+ ~ f I dt 
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R 

C 

(a) (b) 

Fig. 4.4 In the sinusoidal series RC circuit in , a}, the current leads 
the voltage by a phase ¢ = tan - i (I/ wRC), as shown in ( b). 

As with transient circuits, we differentiate to eliminate any integrals and write the 
resulting equation in the standard form: 

di 1 wV 0 . - + - / = - -- Slil Wt 
dt RC R 

This is a linear, first-order, nonhomogeneous differential equation similar to those 
encountered in the preceding chapter, except that the driving term on the right-hand 
side has a time dependence. In general, such an equation will have both an 
homogeneous and a particular solution. The homogeneous solution is needed to 
satisfy the initial condition when the source is first turned on. However, if we assume 
that the source has been on for a long time (much longer than T = RC in this case), the 
transients, which decay exponentially, will have died away, and we need only be 
concerned with the particular solution. We might guess that the particular solution is 
either a sine or a cosine, but a quick inspection shows that neither of those, by itself, 
will satisfy the equation. A solution containing a bit of each is required: 

I= 11 sin wt+ 12 cos wt 

Substituting the above into the differential equation gives 

1 1 wV 0 
11 w cos wt - 12w sin wt+ RC / 1 sin wt+ RC 12 cos wt= - R sin wt 

The only way this equation can be satisfied for all values oft is if the coefficients of the 
sine and cosine terms separately add together: 

1 } 
l1w+ RC/2 =0 

1 1 _ wRV0 -l2w+ -/1 = 
RC 

A simple way to see this is to consider the cases wt= 0 and wt= n/2 for which the sine 
and cosine terms, respectively, vanish. Solving these two linear equations for / 1 and / 2 

gives: 
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I=_ wCV0 

i w2R2c2 + I 

w 2RC2 V. I - o 
2 - w2R2c2 + I 

The solution of the original differential equation is thus 

wCV0 
I= w2 R 2C2 + I (_wRC cos wt - sin wt) 

Note that in the limiting cases of R = 0 and Xe= 0, the above equation reduces to the 
results derived earlier for the circuits containing only a capacitor and only a resistor. 

The current can also be written in terms of the cosine function alone by using the 
following trigonometric identity: 

where 

A cos wt -B sin wt= J A 2 + B 2 cos(wt+ </>) 

B 
</> = tan- 1 -

A 

(4.7) 

The quantity tan -l (B/A) is called the inverse tangent of B/A and is an angle whose 
tangent is B/A. The result is 

where 

wCV0 I= --::======== cos (wt+ </>) 
Jw 2R 2C2+ 1 

</> = tan- 1 (-
1

) 
wRC 

A graph of the current and voltage for wRC = 1 is shown in figure 4.4(b). The voltage 
across the resistor and capacitor can now be determined: 

wRCV 0 VR = JR = --::===== cos (wt+ </>) 
Jw 2R 2C2+ 1 

Ve=~ f I dt = Vo sin(wt+ </>) 
C Jw2R2c2+ 1 

In performing the above indefinite integral for Ve, the constant of integration, 
which in this case corresponds to the initial voltage on the capacitor, has been taken 
equal to zero. If the capacitor had an initial voltage, it would decay to zero in a time 
1' = RC. The neglect of the constant of integration in such a case is thus equivalent to 
the neglect of the homogeneous part of the solution, which is always justified after a 
sufficient time has lapsed and the circuit has reached a steady state. 
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The method of solution outlined above is called a time-domain solution, since 
the time dependences were carried throughout the calculation. Any linear differential 
equation with a sinusoidal driving term will have a solution that is just the sum of a 
term proportional to the sine and a term proportional to the cosine, and the 
coefficients of the terms can be determined as shown. However, for more complicated 
circuits, this method of solution can become very tedious. Fortunately, a shortcut 
exists, and that will be the subject of the next section. 

4.3 Frequency-Domain Solutions 

The example in the previous section illustrates an important property of linear 
circuits with a single sinusoidal source, namely, that the voltages and currents 
everywhere in the circuit are also sinusoidal with the same frequency as the source, 
but that the phase will vary throughout the circuit. Since linear circuits with several 
sinusoidal sources of different frequencies can be analyzed using the superposition 
theorem, the above principle is very useful. What it means is that we need not go to 
the trouble of calculating the time dependence of the unknown current or voltage, 
since we know that it will always be of the form cos(wt+ </>). All we need do is 
calculate the peak value and phase of the unknown. Such a method of solution is 
called a frequency-domain solution, since the equations will contain the angular 
frequency w but not the time t. 

A convenient method of analyzing circuits in the frequency domain makes use of 
the mathematics of complex numbers. It should be emphasized at the outset that 
currents and voltages are always real. When we write them with real and imaginary 
components, we are only introducing a mechanism for keeping track of the phase. 
The final answer must always be converted back to a form that does not contain any 
imaginary numbers. 

Suppose we have a voltage source that produces a voltage V0 cos wt. \Ve can 
represent this voltage as the real part of a vector oflength V0 at an angle wt from the 
real axis in the complex plane, as shown in figure 4.5. The real part of such a vector 
will always be the length of the projection of that vector on the horizontal axis. The 
vector voltage is written as 

V= Voejwt 

and it rotates counterclockwise with angular frequency w. All the other voltages and 
currents in the circuit containing such a source can also be similarly represented as 
vectors in the complex plane. Their length will correspond to their maximum value, 
their real part to their instantaneous value, and their angle with respect to the source 
vector will correspond to their phase. Since all the vectors rotate with the same 
frequency, it suffices to take a snapshot of the scene at any convenient time, since we 
know that at time t later, the whole scene will just be rotated through an angle wt. 
Such a snapshot is called a phasor diagram, since the angles of the vectors represent 
phases. We usually choose to take the snapshot at time t = 0, when the source voltage 
V0eiwt lies along the real axis and the real part of V has its maximum value of V0 . 
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Im V 

Re V 

V0 cos wt 

Fig. 4.5 A sinusoidal voltage V can be 
represented as a rotating vector in the 
c?mplex plane. 

If we apply a voltage V0Jwt to each of the three basic linear circuit components, 
we can calculate the current in each: 

Resistor: 
V V0 . 

I= - = -e1w1 
R R 

dV . 
Capacitor: I= C- = jwCV 0 e1w

1 

dt 

Inductor: I= 2_ JV dt = Vo eiwt 
L jwL 

In each case the current has the same time dependence (eiwt), but only.in the case 
of the resistor does the phasor lie along the real axis. The capacitor current lies along 
the positive imaginary axis, and the inductor current lies along the negative 
imaginary axis (since 1 /j = -j). As the phasor diagram rotates in time, the current in 
the capacitor always leads the voltage by go 0

, but the current in the inductor always 
lags the voltage by go 0

• 

The ratio of voltage to current in this representation is independent of time (the 
Jwt will cancel), but it will, in general, be a complex number, and it will be a function 
of frequency. This complex ratio is called the impedance, and it has units of ohms. 
For the three basic linear circuit components the impedance is given by: 

Resistor: ,Z=R 

Capacitor: ,Z = 1/jwC 

Inductor: ,Z=jwL 

(4.8) 

For a resistor, the impedance is a real number equal to the resistance. For a capacitor 
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or inductor, the impedance is an imaginary number with a magnitude equal to the 
reactance. 

Capacitors and inductors, then, obey a relationship very similar to Ohm's law 
(equation 1.1), and it is sometimes called ac Ob.m's law: 

(4.9) 

The ac Ohm's law reduces to the de Ohm's law for circuits that contain only resistors, 
but for circuits with capacitors and inductors, the voltages and currents become 
complex numbers. 

The reciprocal of impedance is called admittance. Like conductance and 
susceptance, admittance is measured in siemens. Note that admittance, like ,imped
ance, is a complex number, and that the angle that the admittance vector makes with 
the real axis is equal and opposite to the angle that the corresponding impedance 
vector makes with the real axis (see problem 4.2). 

The usefulness of the impedance concept is. that all of the circuit-reduction 
techniques and circuit theorems for de circuits can be applied to linear sinusoidal ac 
circuits if the impedances of the various components are substituted· into the 
equations as if all the components were resistors. One need never solve a differential 
equation for steady-state, linear, sinusoidal circuits. The equations will be complex 
algebraic equations, and the solution will be a complex number corresponding to a 
vector in the complex plane. The length of the vector will be the peak value of the 
quantity, and the angle that it makes with the real axis will be the phase. 

As an example, consider the circuit in figure 4.6, in which a sinusoidal voltage, 

R 

Vo 
L 

(a) (b) 

Fig. 4.6 The circuit in (a) has a phasor diagram as in (b) where¢ 
= tan- 1 (-wL/R). 

represented by V0eiwt, is applied to a series RL circuit. Treating the resistor and 
inductor like two resistors and using ac Ohm's law, we can immediately write the 
phasor current: 

1 - Vo 
o- R+jwL 

Whenever a complex expression has aj in its denominator, we always multiply 
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and divide by the complex conjugate of the denominator. (The complex conjugate is 
the same expression with j replaced by -j): 

V0 (R-jwL) (R- jwL) V0 
10 = R + jwL R - jwL = R 2 + w2 L 2 

This trick will always reduce the expression to one of the form A+ jB, which can be 
written as 

A+ jB=JA 2+B 2 ei<I> (4.10) 

where 

A is the real part of the complex number, and Bis the imaginary part. For the above 
case, the phasor current is 

where 

-wL 
</>=tan- 1 --

R 

Transformation back to the time domain, after the result has been expressed in 
the form of equation 4.10, is always accomplished by simply replacing ei<I> with 
cos (wt+ </J), which in this case gives 

Vo 
I= J cos(wt+ </>) 

R2+ w2L2 

A phasor diagram of the voltage and current is shown in figure 4.6(b). Note that the 
current lags the voltage by an amount intermediate between the case of a resistor 
alone (0°) and an inductor alone ( -90°). The consideration of such limiting cases 
will help ensure that the sign of the phase has the correct value. 

A useful quantity in ac circuits is the power factor, defined as the ratio of the 
power dissipated by an impedance to the apparent power that would result from 
multiplying the rms voltage by the rms current. It is given by the cosine of the phase 
angle between the voltage and the current or by the ratio of the real part to the 
magnitude of the impedance: 

Re(Z) 
Pow.er factor = 7zj = cos </> 

The magnitude of a complex number is the square root of the sum of the squares of its 
real and imaginary parts: 
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It can also be determined by multiplying the number by its complex conjugate and 
taking the square root. 

The power factor is a fraction less than unity and is often expressed as a 
percentage. In power distribution systems a power factor near 100% is desired to 
provide the consumer with the maximum useful power while minimizing the ohmic 
losses in the transmission lines. 

4.4 Series RLC Circuit 

As another example of a frequency-domain solution, we will a~alyze the important 
case of a series RLC circuit connected to a sinusoidal voltage source, as shown in 
6gure 4. 7(a). The phasor current is just the source voltage divided by the total 
impedance: 

R 

Vo eiwt Iv 

C 

(a) 

Vo 
lo=-------

R+ jwL+ 1/jwC 

L 

(b) 

Fig. 4.7 The series RLC circuit in (a) exhibits resonant behavior as shown 
in (b). 

Multiplying and dividing by the complex conjugate of the denominator gives 

1 
= [ R - j ( wL - 1 / wC) ]V0 = V0 ei,J, 

0 R2 + (wL-l/wC) 2 jR 2 + (wL-1/wC) 2 

where 

,.1,. _ 1 (1/wC- wL) 
'Y = tan 

R 

In the time domain, the current is 

Vo 
I= ---;:::::::;=====~ cos (wt+ <P) 

j R2 + ( wL - 1 /wC) 2 
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Note that when R is small, the magnitude of the phasor current jJ0 I is large whenever 
w is equal to the angular resonant frequency, 

l 
Wo=--

ffe 
(4.11) 

For w = w
0

, the phase </> is zero, the current 1
0 

is V
0

/ R, and the circuit looks purely 
resistive. What has happened is that the impedances of the inductor (jwL) and 
capacitor ( l /jwC) exactly cancel, and their series combinati8n acts like a short circuit. 
Below resonance (w < w

0

) the circuit looks capacitive, and above resonance (w > w
0

) 

the circuit looks inductive. The magnitude and phase of the current are shown in 
figure 4.7(b). The smaller the resistance becomes, the narrower and higher becomes 
the curve of the current in figure 4. 7 (b). In fact, the width, L\w, of the curve at the 

points where the current is 1 / J2 ( ~ 70%) of its peak value ( called the half-power 
points, since P = 12R) is another measure of the Q of the circuit. It will be left as a 
problem ( 4.5) to show that for Q ~ l, the Q is given by 

(4.12) 

Although the capacitor and inductor combination behaves like a short circuit at 
resonance, this does not mean that no voltage appears across them individually. In 
fact, from the value of the current in the circuit, we can easily calculate the voltage 
across all three components at resonance: 

The voltage across the resistor is the same as the source voltage, but the inductor and 
capacitor have equal and opposite voltages 90° out of phase with the source and 
larger than the source voltage by a factor w

0

L/R. Hence another interpretation of Q 
is the ratio of the voltage across one of the reactive components to the voltage across 
the resistance in a resonant, sinusoidal, series, RLC circuit. The fact that a sinusoidal 
voltage can be greatly magnified by such a simple circuit often comes as a shocking 
revelation! 

One should note the relative algebraic simplicity of the sinusoidal series RLC 
circuit as compared to the transient series RLC circuit described in section 3. 7. This 
comparison illustrates the great usefulness of the impedance concept and serves as an 
apt reward for one who is not frightened by the use of complex numbers. Note, 
however, that impedance is a purely sinusoidal concept, and so it should not be 
applied to the transient circuits of the previous chapter. 
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4.5 Filter Circuits 

Linear circuit components can be used to construct circuits that pass certain 
frequencies while rejecting others. Such circuits are called filters, and their uses are 
numerous. We will consider here several common examples of filter circuits. 

Consider first the· ··:--ies RL circuit in figure 4.8(a) in which a voltage ~n = V0ejwt 

L 

R Vaut 

we_= RIL 

(a) 

R 

0 

0--Q -VVVv------1..----00 

ifn C Vaut I We ~o 1/RC 

(b) 

100 0.1 1.0 10 
0 t-------.---c::-~---,------,-

A 
(dB) 

20 

40 

<I> 

(c) 

wlwc 

(d) 

Fig. 4.8 The low-pass filters in (a) and (h) 
produce an attenuation (c) and phase (d') that 
vary with frequency. 
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is applied at the input. The output voltage can be calculated using the voltage divider 
relation: 

R~n R 2 - jwRL 
V =---=----V, 

out R+jwL R2+w2L2 m 

The ratio of the magnitudes of the two voltages is 

I 

V0 u1 1 R 1 
J?;n = JR 2 + w 2L2 =JI+ (wL/R) 2 

For w small ( ~R/L), the input voltage appears at the output unattenuated, 
( V0 u1 =Vin), but for w large ( ~ R/L), very little output voltage appears. Such a circuit 
is called a low-pass filter, and the quality R/L is called the angular cutoff 
frequency, 

R 
Wc=-

L 
( 4.13) 

since it is the angular frequency at which the output voltage drops to l / ,/2 (half 
power) of the input value. 

The series RC circuit in figure 4.8(b) can be analyzed in the same way with the 
result: 

I 

Vout I I 

J?;n =JI+ (wRC) 2 

This circuit behaves exactly the same, except the angular cutoff frequency is 

I 
Wc=-

RC 
(4.14) 

The ratio I V0 u1/ ~n I is called the attenuation and 1s often expressed in 
dimensionless units called decibels (abbreviated dB): 

A 
I 

Voutl dB= -20 log10 -. 
J?;n 

( 4.15) 

An attenuation of IO dB thus means that the power delivered to the load (which is pro
portional to V2

) is reduced by a factor of I 0. An attenuation of20 dB would correspond 
to a power reduction of 102 = 100, and so on. A graph of A versus the normalized 
angular frequency w/wc for the circuits described above is shown in figure 4.8(c). The 

point at which w =Weis called the 3-d.B point, sinceA = 20 log 10 ,/2 ::::::::'. 3 dB. At high 
frequencies, A increases by ~6 dB/octave or 20 dB/decade. An octave is a musical 
term meaning a factor of 2 in frequency. A decade is a factor of l 0. A change in sound 
level of l dB is about the smallest change that can be detected by the human ear. Note 
that decibels add, so· that ifa circuit with 10 dB of attenuation is followed by a circuit 
with 20 dB of attenuation, the total attenuation is 30 dB, provided the second circuit 
does not alter the attenuation of the first. 
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Another interesting quantity is the phase of the output relative to the input for 
the two circuits. For both cases the phase is 

-w 
</>=tan- 1 --

We 
(4.16) 

For w ~ We, the phase shift is negligible, but for w ~ We, it approaches -90°. At w 

= We, the phase shift is -45°. The phase as a function of w/we is plotted in 
figure 4.8(d). 

The opposite behavior is produced by the circuit in figure 4.9(a), for which the 

A 
(dB) 

0.1 

(a) 

(b) 

(c) 

1.0 
wlwc 

(d) 

10 100 

Fig. 4.9 The high-pass filters in (a) and (b) 
produce an attenuation (c) and phase (d) that 
vary with frequency. 
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output voltage is 

V = __ R_V_i_n -
out R+ 1/jwC 

The ratio of output to input voltage is 

I 
Voutl wRC 
v';n = J1 + w 2R2 C2 

For We = l / RC, the above expression becomes 

I 
Vout I 1 
Vin = J l + w~/w 2 

The circuit in figure 4.9(b) gives the same result provided 

R 

In these cases the phase shift is 

We= -
L 

1 We ¢=tan- -
w 

(4.17) 

which is opposite to the low-pass filter. These circuits are called high-pass filters, 
and their attenuation and phase are plotted in figure 4.9(c) and (d). 

More complicated filter circuits can be constructed which have almost any 
desired attenuation and phase characteristics, although a phase shift inevitably occurs 
whenever the attenuation varies with frequency. Two common examples are the 
resonant filter (problem 4.10) and the notch filter (problem 4.11). The art of 
filter design is highly developed, and digital computers are often used to optimize the 
design of filters for special applications. 

4.6 Integrators, Differentiators, and Attenuators 

The simple low- and high-pass filter circuits in the previous section can be used to 
produce an output voltage that approximates the integral or derivative of the input 
voltage. For example, applying Kirchhoff's current law to the RC circuit in 
figure 4.8(b) gives 

_V_in_-_V_o_ut = C-d_V_ou_t 
R dt 

If Vout /4 ~"' the term on the left is approximately v';n/ R, and the above expression can 
be integrated to give: 

(4.18) 
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Such a circuit is called an RC integrator. The circuit in figure 4.B(a) also produces 
an output proportional to the integral of the input (provided Vout ~ v;n) given by 

v .• , "' f I v,. dt ( 4 .19) 

RC integrators are more common than RL integrators, because capacitors are 
usually cheaper, smaller, and more nearly ideal than inductors. In both cases i-t is 
important that V

0
u 1 be kept small, and this is achieved by making the time constant 

( RC or L/R, respectively) very long compared to the period or duration of the signal 
that is to be integrated. 

In a similar manner the circuits in figure 4.9 can be used to produce an output 
voltage that approximates the derivative of the input voltage. Applying Kirchhoff's 
current law to the RC circuit in figure 4.9 (a) gives 

c d ( v;n - Vou1) = Vout 

dt R 

If Vout ~ v;n, the above expression becomes 

dv;n 
i-:ut'.'.:::RC-

dt 
(4.20) 

Such a circuit 1s called an RC differentiator. Similarly, the RL circuit in 
figure 4.9(b) also produces an output proportional to the derivative of the input 
(provided V0 u1 ~ v;n) given by 

V ~ £ dv;n 
out - R dt (4.21) 

Vout is kept small compared with v;n by making the time constant (RC or L/!?-) very 
short compared to the period or duration of the signal that is to be differentiated. It is 
important to realize that the integrator and differentiator work for any time 
dependent waveform and not just for sine waves. One should verify, however, that the 
low-and high-pass filters of the previous section do integrate and differentiate sine 
waves in the appropriate limit. 

Often it is desirable to attenuate a sinusoidal voltage by an amount that is 
independent of frequency. It will be shown in the next chapter that this is equivalent 
to reducing the size of a nonsinusoidal voltage without distorting its shape. In theory, 
one could simply use a resistive voltage divider, since its output voltage is independent 
of frequency. In practice, there is always some stray capacitance in a real circuit, and 
eventually a frequency is reached at which the voltage divider behaves like either a 
low- or a high-pass filter. This difficulty can be overcome by using the circuit in 
figure 4.10 which is called a compensated attenuator. At low frequencies the 
circuit behaves like an ordinary resistive voltage divider, but at high frequencies the 
capacitive reactance dominates, and the circuit behaves like a capacitive voltage 
divider. It is left as an exercise (problem 4.19) to show that the attenuation is 
independent of frequency, provided 

( 4. 22) 
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c, 

Fig. 4.10 In the compensated attenuator, the 
attenuation is independent of frequency provided 
R 1C1 =R 2C2 . 

In practice, one of the capacitors is usually variable, so that the attenuator can be 
adjusted to compensate for any stray capacitance. 

Such compensated attenuators are often used at the input of an oscilloscope to 
raise the input resistance and lower the input capacitance so as to make the 
oscilloscope into a more nearly ideal voltmeter. A necessary penalty, however, is a 
decrease in sensitivity of the oscilloscope to input voltage. Such tradeoffs of two 
desirable quantities are commonly encountered in electronic circuit design. 

4. 7 Transformers 

The list of circuit components considered so far is relatively short: sources, meters, 
resistors, capacitors, and inductors. In this section we introduce a new linear circuit 
component called the transformer. It differs from all the others in that it is a four
terminal rather than a two-terminal device. A transformer is nothing more than two 
inductors placed close enough together that some of the magnetic flux of one inductor 
links the other. 

Imagine two inductors wound on the same laminated iron core, as shown in 
figure 4.11. Iron is used to increase the inductance of the windings and to ensure that 

... , 
.,.> ...... ... 

' 
...... ... > ~ ... .,.,,,. 

,..> ..... . ,..I> ...... I":., ... 
,..I> I":.,~ ...... 
,,I> ...... 

... .... ... 

Fig. 4.11 A transformer can be made by winding two 
inductors on the same iron core. 

86 Slnuaoldal Circuits 



most of the magnetic flux is shared by both windings. The iron is laminated to reduce 
the eddy currents that would otherwise flow in the conducting iron. Eddy-current 
losses increase with the square of the frequency and with the square of the thickness of 
the laminations. By contrast, hysteresis losses (see section 3.3) are proportional to 
frequency. Transformers are normally designed so that the ohmic losses in the 
windings and the core losses are comparable at the highest frequency that is to be 
used. At high frequencies ( ~ 100 kHz), a ferrite or air core would normally be used. 
Usually, transformers are made with the windings directly on top of one another 
rather than as shown in figure 4.11 to ensure good coupling between the windings. 

If we arbitrarily designate one of the windings as the primary and connect it to 
an ac voltage source, Vin, a magnetic. flux is produced in the iron core: 

<I>= J Vin dt 
NP 

where NP is the number of turns on the primary. But according to Faraday's law, this 
flux produces a voltage in the other winding (called the secondary) given by 

where Ns is the number of turns on the secondary. Combining the above two 
equations gives 

= (4.23) 

A transformer thus has the property of producing an output voltage proportional to 
the input voltage with a proportionality constant that is independent of frequency 
and equal to the turns ratio. 

If the secondary is open circuited, the primary current is given by 

I _ Vin 
M-

jwLP 
(4.24) 

where LP is the primary inductance. This current is called the magnetizing 
current, and it is usually small in a properly designed transformer. Since IM always 
becomes large at very low frequencies (w-+O), a transformer is inherently an ac 
device. It is useful to define an ideal transformer as one in which equation 4.23 holds 
exactly and in which the primary inductance is sufficiently large that the magnetizing 
current is negligibly small for the frequencies of interest. The symbols for an ideal 
transformer are shown in figure 4.12. 

One use for a transformer is for impedance matching. Imagine that the 
secondary of an ideal transformer is connected to a resistor RL and the primary to a 
sinusoidal voltage source with an rms value VP. The rms voltage across RL will be 

V = NsVp 
s N 

p 
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(a) (b) 

Fig. 4.12 Symbols for ideal transformer. (a) Air core. 
(b) Iron core. 

and the power dissipated by the resistor is 

vi Ni vi 
P=~=-s __ P 

RL N;RL 

Since an ideal transformer cannot dissipate power (for the same reason that an 
inductor cannot), the same power must be supplied by the source, so that the rms 
current in the source, and hence in the primary, is 

I = !_ = N;VP 
p VP N;RL 

The source therefore thinks it is connected to a resistor with a value 

R= VP= (Np)iRL 
Ip NS 

(4.25) 

The same result holds for an arbitrary impedance ZL at the secondary: 

(4.26) 

Matching the source impedance to the load impedance is important as a means 
of transferring the maximum power to the load (see problem 2.9). When the load is 
partly reactive, the maximum power is delivered when the source impedance is equal 
to the complex conjugate of the load impedance (see problem 4.21). In such a case 
the source and load reactances cancel, and the current in the load is maximum. 

Real transformers depart from this ideal behavior in a number of ways. In 
addition to the finite inductance,. the windings also have resistance and capacitance, 
and the coupling between windings is never perfect. A more realistic representation of 
a transformer in terms of ideal components is shown in figure 4.13, in which GP, RP 
and Cs, Rs represent the capacitance and resistance of the primary and secondary 
windings, respectively. The resistor Re represents the core losses. Unlike an ordinary 
resistor, its value is dependent on the frequency. The quantity k is called the 
coupling coefficient and varies from zero for two isolated inductors to one for an 
ideal transformer. It is just the fraction of the magnetic flux produced by the primary 
that links the secondary. A well-designed iron core transformer might have k ~ 95%. 
The quantity ( 1 - k2 LP) is called the leakage inductance. 

The construction of a real transformer always involves a compromise. One would 
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Rp (1-k 2 )Lp Rs 

:~r !3 
Np Ns 

Fig. 4.13 Representation of real transformer in terms of ideal 
components. 

like a large primary inductance to reduce the magnet1zmg current, but then the 
leakage inductance becomes large, since the coupling coefficient is always somewhat 
less than one. Transformers can be made that are reasonably ideal over two or three 
decades of frequency; which makes them barely suitable for use in high-fidelity audio 
equipment. Not shown in figure 4.13, but often of importance, is the capacitance 
between the primary and secondary windings. Again, a compromise is required, 
because a transformer constructed to have a small leakage inductance will generally 
have a large interwinding capacitance. Sometimes transformers are designed with an 
interwinding conducting shield that can be grounded to prevent capacitive coupling 
between the primary and secondary. Such a shield will, however, enhance the 
capacitance between each winding and ground. 

The ability of a transformer to convert ac voltages from one level to another with 
negligible ( .:$ a few%) loss of power illustrates one of the reasons why ac circuits are 
normally preferred over de circuits in power distribution systems. Since the resistive 
power losses in the lines that run from the power plant to the consumer increase with 
the square of therms current, it is a distinct advantage to operate such systems at high 
voltages and low currents. Transformers at the power plant increase the voltage to 
values in excess of 100 kV, and transformers reduce the voltage at the other end 
to values that are safer and more convenient. Alternating currents are also easier to 
produce using rotating machines (generators). Although ac voltages are more 
convenient for many applications such as synchronous motors (as used in electric 
clocks, turntables, and tape drives), it is often necessary to convert the ac to a de 
voltage. Circuits for performing this function are described in Chapter 6. 

4.8 Summary 

Linear circuits which contain sources that vary sinusoidally in time are described by 
linear differential equations that have solutions of the form cos (wt+ </>), where </> is 
the phase. The simplest way to analyze such circuits is to transform into the frequency 
domain where all voltages and currents are represented by stationary vectors, called 
phasors, in the complex plane. The length and direction of a phasor specify the 
magnitude and phase of the quantity that it represents. In the frequency domain an 
inductor is represented by an impedance jwL, and a capacitor is represented by an 
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impedance 1 /jwC. The rules for combining impedances for ac circuits are the same as 
the rules for combining resistances in de circuits. 

These techniques were used to analyze series RC, RL, and RLC circuits. The RC 
and RL circuits are useful as filters and as integrators and differentiators. The RLC 
circuit can be used as a resonant filter. Compensated attenuators can be made which 
have an attenuation that is independent of frequency. A new linear circuit element, 
the transformer, was introduced. It is useful for changing the magnitude of an 
impedance. 

The analysis of sinusoidal ac circuits is, in principle, no more difficult than de 
circuits, except that one calculates with two-dimensional vectors ( called phasors) 
rather than with scalars. Kirchhoff's current law for ac circuits says that the sum of 
the vector currents flowing into a node is zero. Kirchhoff's voltage law for ac circuits 
says that the sum of the vector voltage drops around a loop is zero. But a vector is just 
a set of scalars that represent its components. The use of complex numbers is a 
convenient way to express the components of a two-dimensional vector. Although the 
mathematical expressions are often long and unwieldy, the algebra involved is quite 
straightforward. 

Problems 

4.1 Calculate the current I(t) for t ~ 0 in the circuit in figure 4.4, assuming the 
source is turned on abruptly at t = 0 with the capacitor initially discharged. 

4.2 Suppose that the impedance of a circuit is given by Z =A+ jB. Show that the 
admittance Tis given by I YI= 1/IZI and that the angles that rand Z make with the 
real axis are equal and opposite. 

4.3 Calculate the current for the circuit in figure 4.4, using a frequency-domain 
solution, assuming the source has been on for a long time. 

4.4 Calculate the impedance of the circuit below. At what angular frequency is the 
circuit purely resistive? 

4.5 Show that equation 4.12 is consistent with an earlier definition of Q. = wL/R 
for a series RLC circuit provided Q. ~ 1. 

4.6 Calculate the peak value of the voltage across the inductor in figure 4. 7 (a), 
assuming V0 = 10 V, w = 2n: x 103 s- 1

, R = 1 !l, L = 25 mH, and C= 1 µF. 

4.7 Calculate the phase of the voltage across the inductor relative to the source in 
figure 4. 7 (a) for the values given in problem 4.6. 
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4.8 Determine the resistances RL and Re such that the impedance Zin the circuit 
below is real for all frequencies. Determine the phase between the driving voltage and 
the current through RL at a frequency f = ( 1000/27!) Hz. 

4.9 For the circuit below calculate the Thevenin equivalent voltage and the 
Thevenin equivalent impedance. Show how the Thevenin equivalent circuit could be 
constructed using individual circuit elements (resistors, inductors, etc.) in series, and 
indicate the required values. 

R = 100 n 

L = 1 H 

4.10 Calculate and sketch the ratio I J:u,/~
0

1 and the phase¢ of the output relative 
to the input as a function of angular frequency for the resonant filter shown below: 

C L 
0 I 

R 

4.11 Calculate and sketch the ratio I i:u,/ ~n I and the phase ¢ of the output relative 
to the input as a function of angular frequency for the notch filter shown below: 

L 

C R 
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4.12 An electric motor has a power factor of80% and draws an rms current of 10 A 
when connected to a 120-V, 60-Hz power line. What value of capacitor should be 
placed in parallel with the motor to minimize the current drawn from the line? What 
rms current is drawn from the line with the capacitor installed? 

4.13 Calculate the 3-dB point We of the low-pass filter shown below: 

R 

C 

4.14 Calculate the 3-dB point We and the number of dB per decade attenuation for 
w ~ We for the filter below: 

L 
0 ~ J 

0 

V;n voot 

I 0 0 

4.15 The input circuit of an oscilloscope often has a switch as shown below that 
allows only the ac component of a voltage to be observed. Calculate the lower and 
upper 3-dB points if the oscilloscope is ac coupled to a source with a l 000-0 internal 
resistance. 

de 

I 
0 

II ac 
0 I r( 

20 pFI lMn ½v 
Input 0.01 µF GND 
0 

I 
0 

4.16 The circuit below is called an all-pass filter or phase shifter. Calculate 
I V0 u,/ ~n I and the phase </> of the output relative to the input as a function of angular 
frequency. What value does </> have for w = 0, 1 /RC, and oo? 
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4.17 The circuit below is called a Wien bridge, and it is useful for measuring small 
changes in frequency. Calculate the balance conditions. 

Vo eiwt rv 

4.18 The circuit below is called a twin-tee. It is useful because it exhibits resonant 
behavior without the use of an inductor. Calculate the frequency f at which the 
current/ is zero. What is the phase of I relative to V0 for a frequency just below the 
resonance? 

2 Mn 2 Mn 

0.5 µF 0.5 µF 

1 Mn 

4.19 Show that if R 1 C1 =R 2 C2 in the circuit in figure 4.10, the attenuation 1s 
independent of frequency and is given by the usual voltage divider relation. 

4.20 In the circuit below an ideal transformer is used to connect the output of a hi-fi 
amplifier to a speaker. The amplifier can be considered as a Thevenin equivalent 
circuit with a 200-0 source resistance and the speaker can be considered as an 8-0 
resistive load. What turns ratio will result in maximum power delivered to the 
speaker? If the amplifier delivers 8 W to the speaker, what is the rms current in the 
primary for the above calculated turns ratio? 

Amplifier 
(200n output) 

Speaker (Sn) 
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4.21 Calculate the value of L for which the current I is in phase with the source 
voltage for the ideal transformer shown below. For this value of L calculate the rms 
value of the current /. 

~ 
I 

L 

R1 =511 

C = O.Q1 µF 

1: 10 

4.22 Show that the coupling coefficient of an otherwise ideal transformer can be 
determined by connecting the primary to an ac voltage source and measuring the 
ratio of the primary current with the secondary open circuited to the primary current 
with the secondary short circuited. 

4.23 In the circuit below estimate the values of LP and k required such that the 3-dB 
points of V will occur at 20 and 20,000 Hz. (Hint: In the low-frequency limit the 
leakage inductance can be ignored. In the high-frequency limit the magnetizing 
current can be ignored.) 

R1 = 1 kil (1 -k 2 ) Lp 

GT 
V 

1 
10: 1 
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chapter5 

Nonsinusoidal and 
Distributed Circuits 

5.1 Fourier Series 

In this chapter we will consider linear circuits in which the sources are time 
dependent but not sinusoidal and circuits in which the circuit elements are not 
discrete components but where the inductance, capacitance, and resistance are 
distributed in a continuous manner. A time-dependent voltage or current is either 
periodic or nonperiodic. Figure 5.1 shows an example of a periodic waveform with 
period T. The wave is assumed to continue indefinitely in both the + t and -t 

directions. A periodic function can be displaced by one period, and the resulting 
function is identical to the original function: 

V(t ± T) = V(t) 

A periodic waveform can be represented as a Fourier series of sines and cosines: 

a co 

V(t) = 
2
° + n~l (a" cos nw 0 t + b" sin nw 0 t) (5.1) 

where w0 is called the fundamental angular frequency, 

2n 
Wo=y (5.2) 

-----T--______,,..,.I 

Fig. 5.1 Example of a periodic voltage with period T. 
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2w 0 is called the second harmonic, and so on. The constants an and bn are 
determined from 

2 JT/2 
an= - V(t) cos nw0 t dt 

T -T/2 
(5.3) 

2 JT/2 
bn = - V(t) sin nw 0 t dt 

T -T/2 

(5.4) 

The constant term a0 /2 is the average value of V(t). The superposition theorem then 
allows us to analyze any linear circuit having periodic sources by considering the 
be~avior of the circuit for each of the sinusoidal components of the Fourier series. 
Although most of the examples that we will use have voltage or current as the 
dependent variable and time as the independent variable, the Fourier methods are 
very general and apply to any sufficiently smooth function, f(t). 

For the same reason that it was useful to describe sinusoidal voltages and currents 
as complex numbers, it is useful to express a general periodic waveform as a sum of 
complex numbers: 

CX) 

V(t) = L enejnwot (5.5) 
n=-oo 

This representation is equivalent to equation 5.1, as can be seen by substituting 
ei0 = cos 0 + j sin 0 into equation 5.5 (see problem 5.5). By allowing both positive and 
negative frequencies (n > 0 and n < 0), it is possible to choose the en in such a way 
that the summation is always a real number. The value of Cn can be determined by 
multiplying both sides of equation 5.5 by e-jmwot, where mis an integer, and then 
integrating over a period. Only the term with m = n survives, and the result is 

(5.6) 

Note that C_n is the complex conjugate of en, and so the imaginary parts of 
equation 5.5 will always cancel, and the resulting V(t) is real. Then= 0 term has a 
particularly simple interpretation. It is just the average value of V(t): 

1 JT/2 
Co= T V(t) dt 

-T/2 
(5.7) 

and corresponds to the de component of the voltage. Whether .the integrals in the 
above expressions are over the interval - T/2 to T/2 or some other interval such as 0 
to Tis purely a matter of convenience, so long as the interval is continuous and has 
duration T. 

As an example of a Fourier series, consider the square-wave voltage in 
figure 5.2. The constants en can be determined from equation 5.6 by breaking the 
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V(t) 

Vo 

T T 
-2 2 

-Vo 

Fig. 5.2 Square wave voltage with period T. 

integral into two parts for which V(t) is constant: 

en = - ( - Vo) e - incoot dt + -I Io I f T/2 

T -T/2 T 0 

= ~ (2 -ejncooT/2 -e-jnco 0 Tf2) 

1nw0 T 

Since w 0 T = 2n, the above equation can be written as 

Vo . . 
en=--. (2 -e 1nn -e-Jnrt) 

2nnJ 

Voe-jncoor dt 

With the use of equation 3.24, the above equation becomes 

Vo 
en=-. (1-cosnn) 

my 

t 

Note that cos nn is+ 1 for n even (0, 2, 4, ... ) and -1 for n odd ( 1, 3, 5, ... ), so that all 
the even values of en are zero. Any periodic function that when displaced in time by 
half a period is identical to the negative of the original function: 

v0 ± ;)= -V(t) 

is said to have half-wave symmetry, and its Fourier series will contain only odd 
harmonics. The square wave is an example of such a function. If the wave remained 
at + V0 and -V 0 for unequal times, the half-wave symmetry would be lost, and its 
Fourier series would then contain even as well as odd harmonics. 

In addition to its half-wave symmetry, the square wave shown in figure 5.2 is an 
odd function, because it satisfies the relation 

V(t) = -V( -t) 
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This property arises purely out of the choice of where with respect to the wave the 
time origin (t = 0) is assumed to occur. It is not a fundamental property of the wave. 
For example, if the square wave in figure 5.2 were displaced by a time of T/4, the 
resulting square wave would be an even function, because it would then satisfy the 
relation 

V(t) = V( -t) 

Note that an odd function can have no de component, since the negative parts exactly 
cancel the positive parts on opposite sides of the time axis. The cosine is an even 
function, and the sine is an odd function. Any even function can be written as a sum of 
cosines ( bn = 0 in equation 5.1), and any odd function can be written as a sum of sines 
(an=O in equation 5.1). Most periodic functions (such as the one in figure 5.1) are 
neither odd nor even. The Fourier series calculation can often be simplified by adding 
or subtracting a constant to the value of the function or by displacing the time origin 
so that the function is even or odd or so that it has half-wave symmetry. One should 
practice recognizing these three types of symmetries as they occur throughout the 
remainder of the book. 

The odd-numJ:>ered coefficients of the Fourier series representation of the square 
wave are given by 

and the Fourier series is 

2V. 00 1 . 
V(t) = ~ L -eJnwot 

'TCJ n= -oo n 
nodd 

With the use of equation 3.24 and the fact that sin 0 = -sin ( -0) and cos 0 = cos 
( -0), the above equation becomes 

V(t) = 4V0 I sin nw 0 t 
'TC n=l n 

n odd 

The first three terms of the above series (n = 1, 3, 5) along with their sum are plotted 
in figure 5.3. Note that the series, even with as few as three terms, is beginning to 
resemble the square wave of figure 5.2. 

For waveforms more complicated than a square wave, the integrals are more 
difficult to perform, but it is still usually easier to calculate a Fourier series for a 
periodic voltage than to solve a differential equation in which the same time
dependent voltage appears. Furthermore, tables of Fourier series for the most 
frequently encountered waveforms are available and provide a convenient shortcut 
for analyzing many circuits. Some common waveforms and their Fourier series are 
listed in figure 5.4. 
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Fig. 5.3 First three terms of the Fourier sen es for the square wave m 
Figure 5.2. 

Vo Vo 

Ti2 T 4V 0 
00 

V(t) V(t) = 7r ~ n sin nw 0 t 

n = 1 
n odd 

-Vo - Vo 

(a) 

Vo 

V(t) 
BV0 ~ J_ V(t) = - "?°" n2 

cos nw 0 t 

n = 1 
n odd 

-Vo 

(b) 

Vo 

Vo Vo 
ao 

1 
V(t) 

T 
V(t) = 2 7r ~ n 

sin nw 0 t 

n = 1 

(c) 

Vo Vo Vo 
V(t) = """ir + 2 sin w0 t 

V(t) 2V0 

~ 
COS 11Wot 

Ti2 T 7r n 2 - 1 
n = 2 

(d) 11 even 
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T/2 T 

(e) 

2V 0 
V(t) = -rr-

4V 0 

rr 
~ COS I/Wot 

~~ 
II= 2 

11 even 

Fig. 5.4 Fourier series of some common periodic waveforms. 

5.2 Square Wave RC Circuit 

As an example of how the Fourier series is used to analyze a circuit with a periodic 
source, consider the series RC circuit in figure 5.5 (a), in which the voltage source is a 

R 

C 

(a) (/,) 

Fig. 5.5 A square wave applied to a series RC (a) produces a 
capacitor voltage as shown in (b). Also shown is the sum of the first 
three terms of the Fourier series for Vc(t). 

square wave. Since the source is periodic, the current l(t) is also periodic with the 
same period, and it can be written as a Fourier series: 

00 

J(t) = L c: ejnwol 

n= -oo 

Each C~ is a phasor current representing one frequency component of the totai 
current in the same way that each C" represented a component of the phasor voltage 
in the previous section. The relationship between the two phasors is determined by 
dividing by the circuit impedance: 

Substituting the value of C" derived earlier for the square wave gives 

C' = 2V0 

" nn(jR + l/nw 0 C) 
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for n odd. For n even, C~ is zero, since C" is zero for even n. The corresponding current 
is then 

With the use of equation 3.24, the above current can be written as 

( 
• 4w0 CV0 Loo cos nw0 t + nw0RC sin nw0 t 

It)=--
n n= 1 n2w5R 2C2 + 1 

n odd 

The voltage across the resistor and capacitor can be determined from the definition of 
an ideal resistor and an ideal capacitor: 

4w0RCV0 ~ cos nw0 t + nw0 RC sin nw0 t 
VR(t) = I(t)R = n n~l n2w~R2c2 + 1 

n odd 

The sum of the first three terms .of the Fourier series for Ve( t) is shown in figure 5.5 ( b) 
for w0RC = 1. For nw0RC ~ 1, this circuit is an integrator, and the voltage across the 
capacitor is 

4 V0 ~ cos nw0 t 
Vc(t) '.::: --- L. 2 

nw 0 RC n= 1 n 
n odd 

which has a shape as shown in figure 5.4(b). 
Although the square wave was chosen to illustrate the use of a Fourier series in 

circuit analysis, circuits with square-wave sources can also be analyzed as transient 
circuits. During a half period (such as O < t < T/2) when the source voltage is 
constant, the voltage across the capacitor in figure 5.5 (a) has the form 

Vc(t) =A+ Be-tfRC 

The constants A and B can be determined from 

Vc(oo) =A= V0 

Ve( T/2) =A+ Be-TflRC = -Vc(O) = -A - B 

The first equation comes from the fact that if the source remains at+ V0 forever, the 
capacitor would charge to voltage V0 . The second equation is required to ensure that 
the function has half-wave symmetry. The values of the constants are thus 

A= V0 

2V0 
B = - l + e-T/2RC 
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The capacitor voltage is then 

for O < t < T/2. The waveform repeats itself for t > T/2 with each half cycle 
alternating in sign. The voltage determined from the above equation is shown in 
figure 5.5 (b) for w0Re = 1. 

5.3 Fourier Transforms 

Voltages and currents that are not periodic can also be represented as a superposition 
of sine waves as with the Fourier series, except that instead of a summation over a set 
of discrete, harmonically related frequencies, the waves have a continuous spectrum 
of frequencies. A nonperiodic function can be thought of as a periodic function with 
an infinite period. One must wait forever for the wave to repeat itself. The 
fundamental angular frequency, which was w0 = 21t/ T for the Fourier series, 
approaches zero as the period approaches infinity, and we will represent it as dw to 
remind us that it is an infinitesimal quantity. The various harmonics are separated by 
the infinitesimal dw, so that all frequencies are present. If we represent V(t) as a 
summation, as was don-e for the Fourier series, we can write 

00 00 

V(t) = I I 
n= -oo n=-oo 

where we have used the fact that w = nw0 and T dw = 21t. Since dw is infinitesimal, 
the summation can be replaced with an integral: 

As before, en is given by 

e --_l JT/2 

n T -T/2 
V ( t) e - jwt dt 

However, since Tis infinite, we can write 

C_T= J:ro V(t),-;w<dt 

Although Tis infinite, en T may be (and usually is) finite. The quantity Cn T, which, 
after integration, is only a function of w, is called the Fourier transform of V(t), 
and it is written as V(w). The following two equations are called a Fourier 
transform pair: 

V(t) = - V(w)eiwt dw l f00 

21t -oo 
(5.8) 
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il(w) = J:
00 

V(t),-;w, dt (5.9) 

Note the symmetry of the equations. In fact, V(w) is sometimes defined as CnTf fo 
to make the symmetry even more perfect. 

Note also that, like the coefficients of the Fourier series ( equation 5.6), the 
Fourier transform V(m) is generally a complex quantity, unless V(t) happens to be an 
even function of time. In fact, if V(t) is an odd function of time, the Fourier transform 
V(w) is entirely imaginary. Consequently, it is customary when plotting the Fourier 
transform to plot either its magnitude I V(w) I or the square of the magnitude I V(w) 12 , 

called the power spectrum, as a function of w. 
As an example of the meaning of the Fourier transform, consider the non periodic 

voltage V(t) given by 

V(t) = Voe-,211:2 

This function is called a gaussian, and it is shown in figure 5.6(a). From 
equation 5.9, the Fourier transform can be calculated by completing the square, with 
the result: 

V(t) v<w> 

(a) (b) 

Fig. 5.6 The Fourier transform ofa gaussian (a) is another gaussian (b) whose width is 
inversely proportional to the width of the first. 

Note that the Fourier transform of a gaussian happens to be another gaussian, as 
shown in figure 5.6(b). The gaussian is the~only function for which this occurs, but it 
serves to illustrate an important property of Fourier transforms. The widths of the two 
curves are related in such a way that when one is narrow, the other is broad, and vice 
versa. It is a general feature of Fourier transforms that the products of the widths is a 
number of order unity. The exact value depends on the functions and on how the 
widths are defined. It is generally true that a circuit that attenuates or amplifies a 
nonsinusoidal signal without distortion must have a passband at least as wide as the 
reciprocal of the fastest time variation represented in the signal. To amplify a 1-µsec-
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wide pulse without distortion requires a circuit with a bandwidth of about 1 MHz. 
Recall that the RC low-pass filter has a negligible attenuation up to an angular 
frequency of l/RC, and that the circuit responds to an abrupt voltage change in a 
time of RC, so that the product of the widths is unity. 

As another example we will calculate the Fourier transform of the square pulse 
shown in figure 5. 7 (a) and given by 

V(t) = {O 
Vo 

t < -1:/2 and t > 1:/2 

-r/2 st s r/2 

From equation 5.9 the Fourier transform is 

J
t/2 

V(w) = V
0 

e-Jwt dt 
-r/2 

2V0 . wr 
=-s1n-

w 2 

The magnitude IV ( w) I is plotted as a function of w in figure 5. 7 ( b). As before, 
most of the Fourier spectrum is a band of frequencies within about 1/r of zero. 

V(t) I V(w) I 

---+---Vo 

-r/2 0 r/2 2tr O 2tr w 

T T 
(a) (b) 

Fig. 5.7 Fourier transform of a square pulse. 

It appears that the Fourier transform of even simple functions can be quite 
complicated. The Fourier transform of a periodic function consists of narrow spikes 
(called delta functions) at harmonically Telated frequencies. The frequency 
spectrum of a periodic wave is zero almost everywhere. As with the Fourier series, 
tables of Fourier transforms are available that greatly simplify the calculations. 

Note that the Fourier-transform method is limited to functions that go to zero at 
large negative and positive times so that the integrals are finite. In practice, this is not 
a serious limitation, since one can usually integrate to a large but finite time without 
introducing significant error. A similar technique for analyzing waveforms that start 
or stop abruptly but continue to infinity in either the positive or negative direction 
makes use of the Laplace transform, in which eJwt is replaced with the more 
general ea.t where ex is a complex quantity. The Fourier transform then becomes a 
special case of the Laplace transform in which ex is purely imaginary. 
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5.4 Circuit Analysis with Fourier Transforms 

The Fourier transform is used in the analysis of circuits with nonperiodic sources in 
the same way that the phasor was used for sinusoidal circuits and the coefficients of 
the Fourier series were used for other periodic circuits. As an example, suppose we 
wish to calculate the current in a capacitor that has a gaussian voltage as shown in 
figure 5.6(a) applied. across its terminals. Figure 5.B(a) shows the circuit. For this 

___,,_ 
I(t) 

V(t) C 

(a) 

(b) 

Fig. 5.8 For the circuit in (a) a gaussian 
voltage pulse produces a current as shown 

in (b). 

case, the solution can be written down immediately, without resorting to any Fourier 
methods: 

The result is shown in figure 5.8 (b). But just for practice, and to illustrate that it really 
works, we will derive the above result using a Fourier transform. We first write the 
Fourier transform of V(t), which was calculated in the previous section: 

V(w) = Vot Jn e-(wr/2)2 

From the voltage we can get the Fourier transform of the current using the 
impedance: 

(5.10) 
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For the case of a capacitor with a gaussian voltage, 

The current as a function of time is determined using the inverse Fourier transform: 

l(t) = ~ f c.o l(w)eiwtdw 
2n -c.o 

'CV, fc.o J o'l' -(wt/2) 2 jwt d = r:: we e w 
2 y 7C -c.o 

If we define a new variable, 

WT jt 
x=---

2 r 

the above integral can be written as 

I ( t) = l__,!}__ e-tlfr 1 xe-x 1 dx + ./.!.. e-xi dx 2 'CV, ( f c.o • f c.o ) 

Jrr r -c.o r -c.o 

The first integral is zero by symmetry, and the second is a frequently encountered 

integral with a value Jrr. The final result is, then, 

/( ) 
_ 2CV0 t -rl/r 2 

t - ---e 
!2 

which is the same result derived by simply differentiating the voltage. 
The use of Fourier transforms for this particular problem is like cracking a peanut 

with a sledge hammer. For problems only slightly more complicated, however, the 
Fourier transform, cumbersome as it is, provides the easiest method of solution. 
Analyzing a circuit by this method consists of three parts: ( 1) converting to the 
frequency domain by calculating the Fourier transform of the sources from' 
equation 5.9; (2) using the circuit impedances to determine the Fourier transform of 
the unknown from equation 5.10; (3) converting back to the time domain by 
calculating the inverse Fourier transform of the unknown from equation 5.8. 
Although the integrals will be difficult, they will usually be less difficult than solving 
the corresponding differential equation with a time-dependent source. 

5.5 Spectrum Analyzers 

It is often useful to have a device that will display the Fourier transform I V(w) I of a 
voltage as a function of frequency. Such a device is called a spectrum analyzer. 
Suppose we had an ideal filter circuit with a ratio of I V0 u 1/v;nl given by 

106 

I 
V~u,1 = {o v;n 1 

w < w 0 - dw/2 and w > w 0 + dw/2 

Wo - dw/2 s w s Wo + dw/2 
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where w0 is a constant that we can adjust and llw ~ w0 . This function is illustrated in 
figure 5.9 (a). From equation 5.8 the output voltage is 

= - ~
0
(w)eiwt dw 

1 J wo+llw/2 

2n wo-llw/2 

1 - . 
~ - V: (w ) e1wot llw 

21t In 0 

Wo 
(b) 

w 

Fig. 5.9 The ideal bandpass filter response in (a) can be approximated by the 
series RLC circuit whose response is shown in (b). 

Th~ magnitude of the output voltage is then proportional to the Fourier transform of 
Tl;n(t): 

By measuring I V0u1(t) I as a function of w0 , one could then determine the Fourier 
transform of the input voltage. Such ideal filters are not readily available, however. A 
reasonable substitute would be a series RLC circuit, as shown in figure 4. 7. If the 
output is taken across the resistor (see problem4.10), the circuit has a bandpass 
characteristic as shown in figure 5.9 (b). In that case, the angular frequency w0 is 

and the bandwidth llw is 

1 
Wo= Jic 

w R 
llw=-=-

Q L 

If the angular frequency w0 is varied by changing C while keeping R and L constant, 
the magnitude of the voltage across the resistor is proportional to I ~ 0 (w0 ) j. If the 
frequency is automatically swept over the range of interest, the output signal can be 
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displayed on an oscilloscope. One must be careful not to change the frequency too 
abruptly, however, since the current in the resonance circuit requires a time ~ 1/'1.w 
to build up its steady-state value. When high resolution (small '1.w) is desired, slow 
sweep rates are required. When high sweep rates are desired, the resolution is 
necessarily poor. Commercial spectrum analyzers are somewhat more complicated 
than this situation, since they usually contain a superheterodyne (see section 12.5), 
but the basic ideas are the same. 

5.6 Transmission Lines 

Before concluding the discussion of linear circuits, we will consider two examples of 
linear circuit components that have properties that are rather different from all the 
components studied so far. In the circuits previously encountered, the circuit 
elements occurred in discrete lumps connected together by ideal conductors. At high 
frequencies where the physical size of the circuit is comparable with the distance 
traveled by a light wave during a period of the wave, the stray capacitance and 
inductance of the circuit cannot be neglected. The capacitance and inductance here 
are said to be distributed rather than lumped. In this section we will consider one 
important example of a distributed circuit component, the transmission line. 

Transmission lines come in many forms, but one of the most common is the 
coaxial cable shown in figure 5.10. In the coaxial cable the current flows through 

Fig. 5.10 A coaxial transmission line connecting a sinusoidal 
voltage source to a resistor. 

the center conductor and returns in the coaxial outer conductor. One virtue of such an 
arrangement is that the electric and magnetic fields are confined inside the cable, and 
so capacitive and inductive coupling to other parts of the circuit are eliminated. The 
coaxial cable, however, unavoidably has a capacitance per unit length of 

, C 2m: 
C =-=--

l ln(h/a) 
( 5.11) 

where a is the radius of the inner conductor, his the radius of the outer conductor, and 
£ is the permittivity of the medium between the conductors. Similarly, the inductance 
per unit length is 

L' = ~ = _µ_ln_(h_/a_) 
l 2n 

(5.12) 

where µ is the permeability of the medium between the conductors. 
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A lumped circuit representation of the transmission line is shown in figure 5.11. 
If the line is infinitely long ( in the x direction), the impedance as viewed from the 
terminals on the left can be calculated by removing one of the LC sections, leaving the 
impedance unchanged, as shown in figure 5.12. This is equivalent to cutting a short 

L' tJ.x L't:..x L' tJ.x 

Fig. 5.11 Representation of a transmission line in terms of discrete circuit 
components. 

L't:..x 

z~ c'Ax 

Fig. 5.12 Circuit for calculating the im
pedance of an infinite transmission line. 

piece off the end of the line, which, if the line is infinitely long, still leaves one with an 
infinitely long line. The input impedance is 

7 = ·wL' ~x + Z!JwC' Lil' 
"'- J Z + l /jwC' Lll 

= 'wL'~x+ Z 1 l + jwC'ZAf 

Solving for Z with Lil' small gives 

(5.13) 

This is called the characteristic impedance of the line. The fact that Zo is a real 
number is quite surprising, because it implies that the line behaves like a resistor 
despite the fact that it was assumed to have only inductance and capacitance. When a 
sinusoidal voltage is applied to the line, a current in phase with the voltage flows at 
the input of the line. The source delivers power indefinitely, but for a line without 
resistance there is no mechanism for dissipating power. What has happened is that 
since the line is infinitely long, it can store an unlimited amount of energy. One might 
object that such an infinite line is unphysical, but note that if the line is finite and 
terminated with a load resistance equal to Zo, it will behave as if it were infinite. The 
ability of a properly terminated transmission line to eliminate the reactance due to 
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stray capacitance and inductance at all frequencies is -one quality that makes the 
transmission line so useful. For a coaxial line, the characteristic impedance can be 
determined by substituting equations 5.11 and 5.12 into 5.13 to obtain 

Zo = _!_ ~ ln (~) 
2n ✓-; a 

(5.14) 

A typical coaxial line has a characteristic impedance of~ 50 0. 
As a sine wave propagates down the line, the phase of the voltage and current 

will vary with position along the line. If a voltage V0eiwt is applied at one end of the 
line, as shown in figure 5.10, the voltage a distance At- down the line can be 
calculated using the voltage divider in figure 5.12. 

( 
jwE At-) jwt V= 1---- V0 e 

Zo 

The phase change A</J is 

( 
wL'At-) A</>= tan- 1 

-~ 

Since At-is small, ll<p can be written as 

WL Ax ;,,;:; 
ll<p = - -- = -Wy EC At-

Zo 

The speed with which a wave proceeds down the line is given by 

At- mAt- 1 
V = --= ---=---

P At A</> ffe 
(5.15) 

This is called the phase velocity, since it is the rate at which a point of constant 
phase moves. For the coaxial line the phase velocity is 

vP= ~ (5.16) 

which is just the velocity of light in the medium. If the medium is a vacuum (or air, 
which has almost the same value of e and µ), the velocity is 

1 
c= r,:-::-= 3 x 108 m/s 

yeoµo 

A typical dielectric used in cables is polyethylene, for which the phase velocity is 
about two-thirds the velocity of light or ~20 cm/ns. Stray capacitance and 
inductance can never be completely eliminated from a circuit. If they could, then a 
signal would be able to propagate faster than the velocity of light, which is 
impossible. 

Since the phase velocity given by equation 5.15 is independent of frequency, it 
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follows that the various Fourier components of a nonsinusoidal wave will propagate 
at the same speed down the line, and, on reaching the load, will add together to give a 
wave of the same shape, except delayed in time. If the phase velocity varies with 
frequency, the line is said to have dispersion, and the shape of the wave would be 
distorted as it propagated along the line. 

If a transmission line is terminated with a resistance other than Zo or with an 
impedance having a reactive (imaginary) component, the impedance at the input 
will, in general; also have a reactive component and will be a complicated function of 
the load impedance, the characteristic impedance, and the electrical length of the 
line. Electrical length is a dimensionless number obtained by dividing the line length 
by the wavelength corresponding to the frequency in use: 

l 
). 

wt 
(5.17) 

Note that A is, in general, different from the free space wavelength, since vP is usually 
different from c. Several special cases are worth considering. For a line with a length 
equal to an integral number of half-wavelengths, 

l n 
;: = 2 (n = 1, 2, 3, ... ) 

the magnitude of the volt~ge and current at the two ends of the line are the same, and 
the impedance of the load is reflected back to the source without change. For a line 
with a length equal to an odd number of quarter-wavelengths, 

l n 
;:= 4 (n= 1, 3, 5, ... ) 

the impedance as seen by the source is 

Z=Z~IZL (5.18) 

The result is reasonable when one considers that a short-circuited transmission line 
(ZL = 0) must always have zero voltage and maximum current at the shorted end. A 
quarter-wavelength away the voltage is maximum, and the current is zero. Hence a 
quarter-wave shorted line looks like an open circuit. Conversely, an open-circuited 
line (ZL = oo) will have zero current and maximum voltage at the end. A quarter
wavelength away, the opposite is true, and the line looks like a short circuit. A 
transmission line can thus be used like a transformer to alter the impedance of a load, 
but the degree of alteration depends on frequency, unlike an ideal transformer. 

For a line of arbitrary length, terminated with an arbitrary impedance Zv the 
input impedance has a more complicated form: 

ZL cos 2nl/ A+ iZo sin 2nl/). 
Z = Zo Zo cos 2nl/A + iZL sin 2n//}. 

(5.19) 

One should verify that the special cases previously discussed are correctly predicted 
by equation 5.19. • 
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Whenever a transmission line is terminated with an impedance other than Zo, a 
wave propagating down the line will be partially reflected when it reaches the load. 
The reflected wave adds to the incident wave at every position along the line, 
producing a standing-wave pattern as illustrated in figure 5.13. The ratio of 

X 

Fig. 5.13 Illustration of standing waves on an improperly 
terminated transmission line. The VSWR is equal to 
Vmaxf Vmin· 

maximum to minimum rms voltage as a function of position along the line (provided 
the line is at least a quarter-wave long) is called the voltage standing wave ratio 
(VSWR). Therms current also varies with position, and in fact has the same ratio of 
maximum to minimum value as the voltage. A VSWR of l: 1 thus means that the line 
is properly terminated and there is no reflected wave. A lossless line terminated with 
either a short or open circuit gives total reflection of the wave and so has an infinite 
VSWR and thus presents a purely reactive load to the source. 

Now imagine that a source at one end of a transmission line produces a wave 
(called the forward wave) of voltage VF. When the wave reaches the opposite end of 
the line at which a load with ZL -=f= Zo is connected, a reftected wave with voltage VR 
appears and propagates back toward the source. From the definition, the VSWR is 
given by 

VSWR = VF+ VR 
VF-VR 

(5.20) 

Since the power transported by the two waves is proportional to V2
, the VSWR can 

also be written in terms of the forward and reflected power as 

ID+ f"p 
VSWR = yIF yIR 

JP;-~ 
(5.21) 
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\Vith a bit of algebra, the ratio of reflected power to forward power becomes 

PR (VSWR-1)
2 

PF= VSWR+ I 
(5.22) 

This reflected power is not lost, however, provided the source impedance is properly 
matched to the input impedance of the transmission line. Rather, it is reflected back 
again by the source and becomes a part of the forward wave. Note that to achieve an 
optimum match of the source to the line in such a case requires that the source 
impedance generally be different from the characteristic impedance of the line. In 
fact, to achieve maximum power transfer to the load, the source impedance should 
equal the complex conjugate of the input impedance of the line. This condition is, in 
general, possible at only a single frequency, unless a very elaborate matching network 
is employed. 

A large VSWR does, however, increase the losses inherent in the line itself. A line 
without resistance or dielectric losses could tolerate an infinite VSWR without 
affecting the ability of the source to deliver all its power to the load, provided the 
breakdown voltage of the line is not exceeded. In a real transmission line, losses occur 
because of the conductor resistance and dielectric conductivity. The conductor losses 
tend to increase with the square root of the frequency, and the dielectric losses 
increase linearly with frequency. Since the mean square voltage and current along 
the line increase with increasing VSWR for a constant power delivered to the load, the 
line losses become increasingly serious as the VSWR rises. The attenuation of a 
transmission line is normally expressed in decibels per unit length for a VSWR of 1: 1, 
and the variation of attenuation with frequency is usually given. A typical 
polyethylene coaxial cable with an outside diameter of ,....,,5 mm has a breakdown 
voltage of ,....,,2000 V and an attenuation of~ 1.5 dB/100 ft at 10 MHz, rising to 
~20 dB/100 ft at 1000 MHz. 

The transmission line is a very important component for the circuit designer, 
especially in circuits that operate at ·high frequencies. Whenever electrical signals 
have to be transmitted from one point to another an appreciable fraction of a 
wavelength away, the inevitable stray capacitance and inductance can lead to quite 
unexpected and often undesirable results. One is therefore well advised to use a 
properly terminated transmission line in such a circumstance or at least to use a line of 
known, constant impedance and length so that the effect of the stray capacitance and 
inductance can be accurately predicted. 

5. 7 Waveguides 

An interesting extension of the transm1ss1on line concept, useful at microwave 
frequencies ( ~ 109 

- 1012 Hz), is the waveguide. To understand the operation of a 
waveguide, consider the parallel plate transmission line shown in figure 5. l 4(a). As in 
a coaxial line the voltage between the conductors and the current in the conductors 
varies with position along the line. A voltage that is sinusoidal in time will also vary 
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(a) 

j_ 
d 

(c) 

l_ 
d 

T~w-4 

E~ 
(d) 

Fig. 5.14 If a parallel plate transmission line (a) is attached 
to two quarter-wave channels (b), a waveguide configuration 
results (c) in which the electric field is strongest at the center 
and falls to zero at the edges ( d). 

sinusoidally with position along the line with a wavelength A. If the separation d of the 
conductors is small compared with their width w, most of the electric and magnetic 
field energy will reside in the space between the conductors. If the width w is small 
compared with the wavelength l; the fields will be nearly constant in a plane 
perpendicular to the direction of propagation of the wave, but some of the electric 
and magnetic field will fringe out into the regions surrounding the conductors. 

Now, if one wanted to· ensure that the fields are entirely confined between the 
conductors, use could be made of the fact that a quarter-wave shorted transmission 
line looks like an open circuit, and two channel-shaped pieces could be attached to 
the edges of the transmission line, as shown in figure 5.14(b), without greatly affecting 
the fields near the center of the line. The result, shown in figure 5. l 4(c), is the basic 
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waveguide configuration. Note that the electric field is essentially the same as in the 
parallel plate transmission line, except that it goes to zero at the edges, as shown in 
figure 5.14(d). The shape of the magnetic field is also shown in figure 5.14(c). 

The lowest frequency that will propagate in such a rectangular waveguide is 
called the cutoff frequency, and it occurs when the wavelength is twice the width of 
the guide [ corresponding to shrinking the width of the center section of figure 5. l 4(b) 
to zero]: 

V 
ic=_L 

C 2W 
(5.23) 

For the usual case in which the interior of the guide is empty, the phase velocity vP is 
equal to the speed oflight, c. For frequencies below cutoff, the waves do not propagate 
in the guide but decay exponentially with distance along the guide. The wave energy 
is mostly reflected back to the source. Not'e that the thickness d does not affect either 
the shape of the electric fields or the cutoff frequency. The thickness does affect the 
resistive losses and the power handling capability, however. 

Actually, the case considered is only one of an infinite number of modes that can 
propagate in a waveguide. It is called the TE 10 mode, TE means the electric field is 
everywhere transverse (perpendicular) to the direction of propagation. The subscript 1 

means that the field varies by one-half wavelength across the width of the guide. The 
subscript O means that there is no variation of the electric field in the other direction 
perpendicular to the propagation of the wave. The TE 10 mode is important, because 
it is the mode with the lowest cutoff frequency for a given guide ( called the dominant 
mode), and hence it is the mode that allows the smallest guide for a given frequency. 
TM modes can also be produced in which the magnetic.field is everywhere transverse to 
the direction of propagation. The waves in an ordinary two-wire transmission line, 
such as the coaxial cable of the previous section, are TEM waves, since both the 
electric and the magnetic field are transverse to the direction of propagation. TEM 
waves can also exist in free space but not in waveguides. Waveguides are usually 
designed with d:::::::.w/2 andfc:::::::.O.Bfso that only the dominant mode will propagate 
and the attenuation is reduced from the large value that it has near the cutoff 
frequency. Nonrectangular waveguides are also frequently encountered, and the 
circular waveguide is a particularly common type. 

An alternative description of the waveguide operation is to imagine that the 
wave, in propagating down the guide, is continually reflected between the side walls 
of the guide so that the direction of propagation of the wave is always at an angle 0 
with respect to the axis of the guide, as shown in figure 5.15. For the wave electric 
field of the dominant mode to go to zero at the boundaries, the angle 0 must be such 
that there is exactly one half-wave across the width w of the guide, so that a crest of 
the wave and a trough of the wave occur at opposite sides in the same plane along the 
length of the guide. From figure 5.15 it can be seen that 

2 
sin 0=-

2w 
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I Axis 
of 

guide 

Fig. 5.15 Diagram showing a wave 
propagating at an angle 0 with respect to 
the axis of a waveguide. 

In the direction parallel to the axis of the guide, the distance between crests and 

troughs of the wave is Ag/2, so that 

A 
tan()= _g 

2w 

Using the two trigonometric relations, 

and 

one can solve for Ag: 

() 
sin 0 

tan =-
cos() 

A= A 
g l-(A/2w) 2 

(5.24) 

The quantity Ag is called the guide wavelength, and it is the wavelength that one 
would measure along the guide if standing waves were present. Note that Ag is always 
longer than A and that it approaches infinity at the cutoff frequency. For a very large 
waveguide (w ~A), the guide wavelength is equal to A, as if the waveguide were 
absent. Note also that the velocity ofa point of constant phase moving parallel to the 
axis of the guide is greater than the actual phase velocity of the wave by the factor 
Ag/A, so that if the guide is empty (vp = c), the wave appears to propagate down the 
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guide with a velocity greater than the velocity of light. This is a familiar result to 

anyone who has watched carefully an ocean wave incident on a beach at a slight 
angle. This result does not violate any principle of physics, because information 
transmitted down the guide will travel at a slower speed, called the group velocity, 
which must not exceed the velocity of light. Finally, it should be pointed out that 
since the component of the phase velocity parallel to the axis of the guide is a function 
of A, and hence frequency, the waveguide exhibits dispersion, especially near the 
cutoff frequency, and nonsinusoidal waves propagating down the guide do not 
maintain their original shape. 

One may wonder why a waveguide would be used in place of a coaxial 
transmission line. The reason is that, at microwave frequencies, the resistance in the 
conductors of a transmission line and the dielectric, which is required to keep the 
center conductor out of contact with the outer conductor, produce an unacceptable 
attenuation over large distances. One may also wonder how a waveguide is connected 
to an ordinary discrete circuit component such as a resistive load. This is usually 
done by blanking off the end of the guide and inserting a capacitive stub or inductive 
loop at the proper place in the guide to couple to the electric or magnetic field. 

5.8 Summary 

For linear circuits the superposition theorem allows us to calculate the response of a 
circuit to a nonsinusoidal source by representing the source in terms of sine waves. 
For a periodic wave the frequencies are discrete and harmonically related. Although 
there are an infinite number of terms in the Fourier series, the wave can usually be 
adequately approximated with a few of the lowest frequency components. 

For a nonperiodic source a continuous spectrum of frequencies is present. The 
Fourier transform allows us to calculate this spectrum. Thereafter all calculations are 
done in the frequency domain, using the impedance of the circuit components. 
Finally, one must convert back to the time domain, using the inverse Fourier 
transform. The spectrum analyzer is a device that allows measurement of the Fourier 
spectrum of a time-dependent voltage. 

The transmission line is a linear circuit component that has distributed 
capacitance and inductance. In addition to being a necessity for carrying high
frequency signals over appreciable distances, transmission lines can also be used as 
impedance transformers. At microwave frequencies, a form of tra.1smission line called 
a waveguide can be used, in which the concepts of voltage and current give way 
almost entirely to the more general description in terms of propagating electric and 
magnetic fields. 

Problems 

5.1 Calculate the Fourier series for the periodic voltage shown below: 

Problems 11 7 



V(t) 

Vo 

T 3T 
2 T 

T 
I 

T t 
4 

-Vo 

5.2 Calculate the rms value of the voltage in problem 5.1. 

5.3 Derive the Fourier series for-the waveform shown in figure 5.4(e). 

5.4 You have a voltmeter calibrated to read rms voltage, but it responds to the 
average magnitude of the applied voltage so that it reads correctly only for sine 
waves. If a square wave voltage is applied to the voltmeter and it reads 1.0 V, what is 
therms value of the square wave? 

5.5 Show that equation 5.5 is equivalent to equation 5.1 and that equation 5.6 is 
equivalent to equations 5.3 and 5.4. Calculate Cn in terms of an and bn. 

5.6 State which of the waveforms in figure 5.4 are odd, which are even, and which 
have half-wave symmetry. 

5.7 Assume the voltage in figure 5.4(b) is applied at Vin in the integrator circuit 
below in which R/L = 10- 3w0 . Calculate the Fourier series of the output voltage Vout· 

5.8 Suppose a voltage source with voltage as in figure 5.4(d) is connected to an RC 
low-pass filter. Calculate the value of w 0RC such that the peak-to-peak variation of 
the lowest (nonzero) Fourier component of the output is 1000 times smaller than the 
de component of the output. 

5.9 Calculate the Fourier transform V(w) of the voltage pulse shown below and 
sketch its magnitude I V ( w) I as a function of w. 

V(t) 

--- .. Vo 

T 

-T 

.-Vo,__ __ _. 
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5.10 Use your intuition to sketch as accurately as possible the Fourier transform of 
the voltage below: 

V(t) 

5.11 Write but do not attempt to evaluate the Fourier integral that describes the 
current in a series RLC circuit with an applied voltage of the form shown in 
figure 5. 7 (a). 

5.12 Starting with Maxwell's equations (see Appendix D), derive equations 5.11 
and 5.12 for the capacitance and inductance per unit length of a circular coaxial 
cable. 

5.13 Calculate the phase shift at 10 MHz in a 3-m length of coaxial cable with 
t:= 2t:0 andµ= µ0 . 

5.14 Calculate the impedance of an infinitely long transmission line having a series 
resistance R' per unit length. 

5.15 Suppose a transmission line of characteristic impedance Zo has an electrical 
length of 3/4 wave and is terminated with a series RL with values RL and LL. Show 
that the impedance at the input looks like a parallel RC circuit, and calculate the 
values of R and C. 

5.16 Calculate the impedance of a 5/8 wave, 100-Q transmission line that is 
terminated with a resistance equal to twice the characteristic impedance of the line. 
Is the impedance inductive or capacitive? 

5.17 Starting with Maxwell's equations (see Appendix D), derive expressions for 
the capacitance per unit length C', the inductance per unit length E, and the 
characteristic impedance Zo of the parallel plate transmission line shown in 
figure 5. l 4(a), assuming d ~ w ~ A. 

5.18 What width and thickness would be desired for propagation of the TE 10 mode 
in a rectangular waveguide filled with a dielectric with t:/t:0 = 9.0, if the operating 
frequency is 1000 MHz? Calculate the wavelength A and the guide wavelength Ag. 

5.19 The group velocity is defined by vg = dw/dk where, for a waveguide, k = 21t/Ag. 
Calculate the group velocity for the TE 10 mode in a waveguide of width w, and show 
that it is always less than the velocity of light. 
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6.1 Vacuum Diodes 

chapter 6 
Diodes and 

Rectifiers 

The remainder of this book will deal primarily with nonlinear devices and circuits. 
The first and perhaps the simplest nonlinear device that we will consider is the diode. 
We will discuss two types of real diodes and then define an ideal diode in terms of a 
simple but nonlinear relationship between voltage and current. One should be 
constantly aware that many of the techniques for analyzing linear circuits are not 
applicable for circuits with nonlinear components. 

The first type of diode we will consider is called a vacuum diode and consists of 
an evacuated tube with two electrodes (hence the name diode), as shown in 
figure 6.1. The tube is evacuated so that electrons can travel without colliding with 

Anode 

Evacuated 
tube 

Plate 

(a) (b) 

Fig. 6.1 Vacuum diodes. (a) Heated 
cathode. (b) Heated filament. 

gas molecules. One electrode is called the cathode. It is kept at a high temperature 
by a heater or filament, which is essentially a resistor that converts electrical energy 
into heat. The cathode is coated with a material of low work function such as 
barium oxide so that it readily emits electrons. The second electrode is called the 
anode or plate. If the anode is positive relative to the cathode, the electrons that boil 
off the cathode will be drawn to the anode and collected. Hence an electrical current 
flows from anode to cathode (opposite to the electron flow) in a diode. On the other 
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hand, if the anode is negative relative to the cathode, the electrons are repelled, and 
no current flows. An alternative version of the vacuum diode makes use of the 
electrons emitted directly by the filament, as shown in figure 6. 1 ( b). 

The relationship between current and voltage in the vacuum diode is shown in 
figure 6.2. For small positive voltages the electric field that draws electrons away from 

I 

V 

Fig. 6.2 I versus V characteristic of a 
vacuum diode for various cathode tem
peratures. (a) Space charge limited region. 
(b) Emission limited region (T 3 > T 2 > T1). 

the cathode is partially shielded by the cloud of electrons that surrounds the cathode. 
This is called the space charge-limited region, and the current in amperes is given 
approximately by Child's law: 

I= 2.33 x 10- 6 AV312/d2 (6.1) 

where A is the area of the cathode in square meters and d is the separation of the 
cathode and anode in meters. For large positive voltages the electric field is strong 
enough to collect all the electrons emitted by the cathode, and the current is 
independent of voltage but depends strongly on the absolute temperature T, as 
described by Richardson's equation: 

(6.2) 

where k is Boltzmann's constant, 

k = 1.38 X 10- 23 J/K 

</> is the work function of the cathode (typically, a few volts, depending on the 
material), and A is the area of the cathode. This is called the emission-limited 
region. A diode operated in the emission-limited region can be used with a voltage 
source to produce a good approximation to a current source. The vacuum diode is 
thus a very nonlinear device. 
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6.2 pn Junction Diodes 

Although the vacuum diode was the first widely used diode, for most applications it 
has been replaced with the pnjunction diode. The pn junction is formed by placing 
a P-type and an n-type semiconductor ( usually silicon or germanium, lightly doped 
with an appropriate impurity) in contact with one another, as shown in figure 6'.3. 
Actually, the process .is not quite so simple as merely placing the semiconductors in 
contact with one another, since small irregularities in their surfaces would degrade 

+ + + 
p-type (anode) 

➔ + + + t V E V"" 0 
n-type 

+ (cathode) 
I= 0 
~ 

(a) (b) 

Fig. 6.3 pnjunction diode. (a) Reverse-biased, I~ 0. (b) Forward
biased, V ~ 0. 

the quality of the junction. In practice, a pn junction is formed by growing a 
semiconductor crystal with one type of impurity and then abruptly changing to a 
different impurity while the crystal is still being formed. An n-type (negative) 
semiconductor has a surplus of conduction electrons, and a p-type (positive) 
semiconductor has a deficiency of conduction electrons. The absence of an electron is 
referred to as a hole. In such a junction the p-type side is called the anode, and the n
type side is called the cathode, by analogy with the vacuum diode. 

The appearance of a low-current diode is similar to a resistor - a short cylinder 
of a few millimeters in diameter, with conducting leads at each end. The cathode is 
usually marked with a painted band around one end of the cylinder. 

If the anode is made n~gative relative to the cathode, as shown in figure 6.3 (a), 
an electric field exists across the junction in the direction shown. This electric field 
produces a thin layer near the junction which is called the depletion region, since it 
is largely depleted of charge carriers. This depletion region is typically about a 
micron (10- 6 meters) thick, but it has a very high resistance and hence opposes the 
flow of current across the junction. Such a junction is said to be reverse-biased, and 
the current is very small, just as in the vacuum diode with the anode negative relative 
to the cathode. On the other hand, if a current source is connected to the junction as 
shown in figure 6.3(b), the electrons and holes are pushed towards the junction where 
they combine, thus causing a current to flow. Such a junction is said to be forward
biased, and the voltage across it is quite small. 

The current that flows through a pn junction as a function of the voltage across 
the junction is given approximately by 

(6.3) 
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where 10 is a small constant called the reverse current. The quantity kT/e has units 
of volts and is about 0.026 V at room temperature. The reverse current for a 
germanium diode is in the microampere (10- 6 A) range, and the reverse current for 
a silicon diode is in the picoampere ( 10- 12 A) range. The reverse current itself is a 
sensitive function of temperature. At room temperature, a 10°C increase in 
temperature will approximately double the reverse current in a germanium diode, 
and a 6°C increase will approximately double the reverse current in a silicon diode. 
Figure 6.4 shows the I versus V relation for a germanium and a silicon diode at room 

Ge Si 

1.0 

V (volts) 

Fig. 6.4 I versus V characteristic for german
ium and silicon diode at room temperature. 

temperature. Note that the forward voltage drop is relatively constant and is about 
0.2 V for a germanium diode and about 0.6 V for a silicon diode. This forward 
voltage drop decreases with increasing temperature. At large values of current, 
there is an additional voltage drop caused by the resistance of the semiconductor 
material and its leads. This voltage drop is given by 

vohmic = lrohmic 

so that the total voltage across the terminals of the diode is 

V = kT ln (!_) + lrohmic 
e 10 

(6.4) 

For most purposes it suffices to neglect the reverse current and· to assume the forward 
voltage drop is constant. 

We will now define an ideal diode as a device with the following properties: 

1=0 

V=0 

If V<0 

lf1>0 } (6.5) 

An ideal diode behaves like an open circuit for negative voltages an8 like a short 
circuit for positive currents. The symbol for an ideal diode is shown in figure 6.S(a). 
The arrow points in the direction of current flow. 
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Anode 0.2 V 0.6 V 

Cathode 

(a) (c) 

Fig. 6.5 (a) Ideal diode. (b) Germanium 
diode. (c) Silicon diode. 

A germanium and a silicon diode can be approximated as an ideal diode in series 
with a constant voltage source, as shown in figure 6.5(b) and (c). It appears from 
these considerations that the germanium diode is more nearly ideal than the silicon 
diode. This is not the case, however. Although the silicon diode has a larger forward 
voltage drop than the germanium diode, it has a smaller reverse current, and as a 
result the variation of reverse current with temperature is less noticeable. Silicon 
diodes are normally used in high-current applications, whereas germanium diodes 
are used for low-voltage applications. An ideal diode cannot dissipate power, since 
the product VI is always zero. A germanium diode dissipates a small power, a silicon 
diode dissipates about three times as much power at the same forward current, and a 
vacuum diode dissipates even more power. Although the silicon diode dissipates more 
power than the germanium diode, it is nevertheless invariably used in high-current 
applications because it can operate at much higher temperatures (up to ~200°C) 
without having an unacceptably high reverse current. By contrast, germanium diodes 
are worthless above about 85°C. 

High-current diodes are often mounted on a heat sink to reduce their operating 
temperature. Real diodes can also be placed in parallel to increase their current
carrying capacity, although care must be taken to ensure that their V-I characteristics 
are closely matched so that the current divides evenly. Alternately, a small resistor 
can be placed in series with each diode to help equalize the currents. Real diodes also 
have a maximum allowable reverse voltage called the peak reverse voltage (PR V) 
or peak inverse voltage (PIV), above which a large current will flow. When the 
PRV is exceeded, the diode is usually instantly and permanently destroyed. Diodes 
typically have a PRV ofup to several hundred volts. For higher voltages, diodes can 
be placed in series, although, again, care must be taken to ensure that the diodes are 
closely matched so that the reverse voltage divides equally. Alternately, a large 
resistor can be placed in parallel with each diode to equalize the reverse voltages. 
With ac voltages, small equalizing capacitors are sometimes used as well to overwhelm 
any differences in the junction capacitances. 

The superiority of the pn junction diode over the vacuum diode is readily 
apparent. It is more nearly ideal; it doesn't require extra power to heat a filament or 
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cathode; it is mechanically rugged, has a much longer life expectancy, and is less 
costly to manufacture. Nevertheless, vacuum diodes are still sometimes found m 
equipment such as X-ray machines where very high voltages are involved. 

6.3 Rectifier Circuits 

One important use of diodes is in circuits that convert ac voltages to de voltages. Such 
circuits are called rectifiers. Since commercial power lines are usually 60 Hz ac (in 
the United States) and since most electronic circuits require de voltages, nearly every 
electronic device contains diode rectifiers. 

The simplest rectifier circuit is the half-wave rectifier shown in figure 6.6(a). 

7 
~(t) 

l'o 

Vo sin wt '\I R VR 

~ 
11!.. 
w 

(a) (b) 

Fig. 6.6 The half-wave rectifier (a) produces an output voltage as in (b). 

The diode conducts during the half cycle when the source voltage is positive, and the 
voltage across the resistive load is the same as the voltage across the source. During 
the negative half cycle the diode behaves like an open circuit, the current is zero, and 
the voltage across the resistor is zero. The output voltage for the half-wave rectifier is 
shown in figure 6.6(h). If the diode were silicon, the peak voltage would be ~ V0 

-0.6, and the output voltage would be present for less than half a cycle. The voltage 
across the load has a de component given by the average of V(t) over a period: 

V. IT/2 V. 
vdc = ; 0 sin wt dt = no (6.6) 

This result is the same as the zero frequency component of the Fourier series in 
figure 5.4(d). The half-wave rectifier also has Fourier components at frequencies of w, 
2w, 4w, 6w, and so on. A rectifier is thus nearly always used in conjunction with a 
low-pass filter to attenuate the ac frequency components (see the next section). 

A drawback of the half-wave rectifier is the fact that half of the cycle is missing. 
This problem is overcome in the full-wave rectifier shown in figure 6. 7 (a), in which 
a transformer with a center-tapped secondary is used. The diodes alternately conduct 
for a half-cycle each, producing a current in the load resistor that is always in the 
same direction. The output voltage for the full-wave rectifier is shown in 
figure 6. 7 (h). Note that the peak voltage across the load is V0 /2 if a transformer with a 
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1: 1 

(a) (b) 

21T w 

Fig. 6.7 The full-wave rectifier (a) produces an output voltage as in (b). 

1: 1 turns ratio is used. This is because only half the secondary is used at a time. By 
using a transformer with a different turns ratio, any output voltage can be achieved. 
1he de component of the voltage across the load is the same as for the half-wave 
rectifier, in agreement with the zero-frequency component of the Fourier series in 
figure 5.4(e). The full-wave rectifier also has Fourier components at frequencies of 
2m, 4m, 6m, and so on. The component at frequency mis missing, and this relaxes the 
requirements on the low-pass filter that attenuates the ac components. 

A circuit that has all the advantages of the full-wave rectifier but which does not 
require a transformer is the bridge rectifier of figure 6.8 (a). It does, however, 
require two extra diodes. During the positive half cycle, the upper-right and the 
lower-left diodes conduct. During the negative half cycle, the upper-left and the 
lower-right diodes conduct. The current in the resistor is thus always from right to 
left, and the voltage across the resistor is as shown in figure 6.8 (b). The voltage is 

(a) (b) 

21T 
w 

Fig. 6.8 The bridge rectifier (a) produces an output voltage as in (b). 

twice as large as in the full-wave rectifier, but it has the same spectrum .of Fourier 
components. If silicon diodes are used, the peak voltage at the output would be ~ V0 

- 1.2, since two forward-biased diodes are in series during each half cycle, and there 
would be brief intervals during which the output voltage remains at zero. 

Bridge rectifier units are manufactured with all four diodes internally connected. 
Such a device is a four-terminal component with one terminal pair for the ac input 
and a second terminal pair for the de output. 
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6.4 Filter Circuits 

The main use for rectifier circuits is to convert an ac voltage to a de voltage. The 
circuits discussed in the previous section produce voltages with a de component, but 
their output also contains ac components. Consequently, a low-pass filter is nearly 
always used with a rectifier circuit. The lowest (nonzero) Fourier component of the 
output is usually the largest, and so if we design a low-pass filter that reduces the 
lowest frequency component to an acceptable level, the higher components will 
generally be of no concern. It also follows that in a well-designed filter the output will 
consist of a de component and a much smaller sinusoidal component with a 
frequency equal to the lowest Fourier component of the rectified waveform. The 
sinusoidal part is called the ripple, and the percentage ripple is the ratio of the peak
to-peak value of the sinusoidal part to the de component. 

Low-pass filters were discussed in Chapter 4, and it is tempting to use the 
relations derived there and the ·Fourier series of Chapter 5 to predict the percentage 
ripple of various filters. Such a method will often give a reasonably good approxi
mation, but is is usually not precise because of the nonlinear nature of the diodes. The 
reason is that the output of the rectifier does not look like a voltage source. The 
resistance is low when the diodes are conducting, but high when they are not 
conducting. Therefore, the Fourier m~thods, ,which were derived for linear circuits, 
are not strictly applicable. 

The simplest filter consists of a capacitor in parallel with the load, as shown in 
figure 6.9 (a). If wRC ~ l, the diode conducts only very briefly once each cycle, and 

~ 

T 
C R~ 

j_ 

(a) (b) 

Fig. 6.9 A rectifier with capacitive filter (a) produces an output as in (b). 

the voltage thereafter decays exponentially with r = RC, as shown in figure 6.9 ( b). 
For wRC ~ l, the de voltage is ~ V0 , and the peak-to-peak ripple voltage is 

21tV. 
<>V~ V: (l -e-T/RC) ~--o 

0 wRC 
(6.7) 

With a full-wave or bridge rectifier, the capacitor is recharged twice each cycle, and 
so the percentage ripple is about one-half as much as with the half-wave rectifier. 
Equivalently, to achieve the same percentage ripple requires a capacitor only half as 
large. Notice that the ripple is zero if R is infinite and that it increases linearly with 
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the de current ( V0 / R) in R. It is a general feature of filter circuits that the ripple 
increases as the de output current rises. One drawback of this type of filter is that a 
large surge current flows through the source and diode. The same number of 
coulombs must flow into the capacitor during the brief charging interval as flows out 
during the much longer discharge interval. The source must then have a very low 
internal resistance, and the diode must have a large surge current rating (see 
problem 6.9). 

The surge current produced by the capacitive filter can be reduced by adding a 
resistor in series with the capacitor, as shown in figure 6.10 (a). However, such a series 

R 

C (a) 

L 

C (b) 

L 

c, (c) 

Fig. 6.10 • Some commonly used filters for rectifier circuits. 
(a) RC. (b) LC. (c) 7t-section. 

resistor reduces the de output voltage and wastes power. If the resistor is replaced 
with an inductor, as in figure 6. lO(b ), no power is wasted in the filter, but the de 
output voltage is still low. By adding a capacitor at the input of the LC filter, as in 
figure 6. IO(c), the de output voltage is raised, but the surge current reappears. When 
used with a half-wave rectifier, such a filter provides an attenuation of 1/w2LC2 in 
addition to that given by equation 6. 7, so that the total ripple is • 

(6.8) 
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For a full-wave or bridge rectifier, the dominant Fourier component of the ripple is at 
an angular frequency of 2w, so that the percentage ripple is one-eighth of that given 
by equation 6.8. For this reason, full-wave or bridge rectifiers are usually used when 
low ripple is desired. 

One necessary precaution in the design of LC filters is to ensure that the resonant 
frequency of the filter is somewhat lower than the lowest Fourier component of the 
rectifier output ( w2 LC Z 2) to avoid resonance effects that might actually enhance 
the ripple and produce large voltages and currents that could damage the 
components (see problem 6.10). Since large values of capacitance are desired in these 
filter circuits, and since the voltages are always of the same polarity, electrolytic 
capacitors are normally used. 

A common feature of all real rectifier/filter circuits is the fact that the de output 
voltage varies with the resistance of the load. The voltage regulation is expressed as 
the percentage drop in de output voltage between the no-load and the full-load 
conditions. For the same ripple, RC filters have worse regulation than LC filters. 

The regulation can be improved by placing a fixed resistor across the output of 
the power supply in parallel with the load resistor. Although such a resistor will waste 
power, it will make the output voltage less sensitive to changes in Rv especially when 
RL is large. Such a resistor also serves to discharge the filter capacitors after the ac 
power is removed, and so it is called a bleeder resistor. For applications in which 
good regulation is required, special regulator circuits must be used (see sec
tions 6.7, 8.7, and 9.5). 

6.5 Voltage Multiplier Circuits 

Sometimes it is useful to have circuits which produce a de voltage that is higher than 
the zero-to-peak voltage of the available ac source. Although the usual procedure in 
such a case is to use a transformer of appropriate turns ratio before the rectifier, an 
alternate approach is to use a voltage multiplier circuit. An example of such a 
circuit, called a voltage doubler, is shown in figure 6.11 (a). Such a circuit can be 
considered as two half-wave rectifiers, each of which charges one of the capacitors to 
the peak voltage V0 . The capacitors are placed in series so 'that an output voltage of 
2 V0 is obtained. 

A variation of the voltage doubler is the charge pump circuit of figure 6.11 (b). 
Diode D 1 charges capacitor Ci to a de voltage of V0 just as with the half-wave 
rectifier. The voltage across Di is thus the sum of the source voltage ( V0 sin wt) and 
the capacitor voltage ( V0 ). The voltage across Di then has a peak value of 2 V0 , and 
the diode D2' conducts as required until C2 is charged to the peak value of 2V0 . 

The circuit is called a charge pump, because during the negative half-cycle the 
source pumps charge into Ci through Di with D 2 open-circuited, and then during the 
positive half cycle Di becomes an open circuit, D2 becomes a short circuit, and some 
of the charge in Ci flows into C2 . The process continues until enough charge is 
pumped into C2 to raise its voltage to 2V0 . The diodes behave much like the valves in 
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(a) 

(b) 

Fig. 6.11 Voltage doubler circuits. (a) Conventional 
doubler. (b) Charge pump. 

a water pump, alternately .opening and closing each half-cycle. One advantage of the 
charge pump over the conventional voltage doubler of figure 6.11 (a) is that one side 
of the source and one side of the output are common and hence can be grounded. 

The charge-pump concept can be extended to any number of stages, as in the 
voltage multiplier in figure 6.12. In operation, the capacitors can be regarded ,as 
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(n - 2)C 

(n - l)C 

nC 

Fig. 6.12 Voltage multiplier circuit. 
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being in parallel for the ac charging current but in series so far as the de voltage is 
concerned. Such circuits can be used for producing de voltages as high as several 
hundred kilovolts. 

A serious limitation of voltage multiplier circuits is their relatively poor voltage 
regulation and low output current capability. 

6.6 Other Diode Applications 

Another use for diodes is in clipping circuits, which limit the voltage to some 
prescribed value. Such circuits are useful for protecting circuit components against 
damage by overvoltage and for generating special waveforms. Consider the circuit in 
figure 6.13 (a). Whenever the magnitude of the source voltage exceeds V1 , one of the 
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Fig. 6.13 The. clipping circuit in (a) produces an output voltage as in (b). 

diodes conducts, and the output voltage is limited to Vi, as shown in figure 6.13 (b). If 
V0 ~ Vi, the output voltage resembles a square wave. Hence such a circuit is useful for 
producing square waves. If a voltage Vi = 0.2 or 0.6 V is satisfactory, the de sources 
can be omitted, and germanium or silicon diodes used, respectively. For higher 
voltages, diodes can be placed in series. The output has Fourier components other 
than the one produced by the source, and such is usually the case with nonlinear 
circuits. Clipping action often occurs, but is highly undesirable, in audio circuits. The 
extraneous Fourier components show up as distortion of the audio signal, and in 
extreme cases they can make the sound unintelligible. 

Diodes can also be used to protect circuit components against overvoltage when 
an inductive load is suddenly switched off. Suppose, for example, that the switch in 
figure 6.14 has been closed for a long time so that a current / = V0 / R is flowing 
through the inductor. The diode is reverse-biased and so has no effect. When the 
switch is opened, the current in the inductor would drop abruptly to zero if the diode 
were absent, and a large voltage VL = Ldl/dt would develop across the inductor and 
across the switch. With the diode, however, the same current that was flowing 
through the source before the switch was opened would flow through the diode 
afterward. The current would then decay to zero in a timer= L/R, and the voltage 
across the inductor and across the switch would never exceed V0 . Such a circuit is 
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Fig. 6.14 Crowbar circuit in which a diode is used 
to protect the switch and inductor against a destruc
tive overvoltage when the switch is opened. 

called a crowbar ( cf problem 3.18). The diode would need a PR V rating of V0 and 
peak current rating of V0/R. 

Sometimes it is useful to take a periodic ac signal that oscillates between positive 
and negative values and displace it so that it is either always positive or always 
negative. Such a circuit is called a diode clamp, and it need consist of nothing more 
than a capacitor and a diode, as shown in figure 6.15 (a). The circuit is the same as the 

0 II 

0 

(a) (b) 

Fig. 6.15 (a) Diode clamp circuit which displaces an input voltage 
so that it is always positive (b). 

half-wave rectifier except that the capacitor and diode are interchanged.Just as with 
the half-wa~e rectifier, the capacitor charges up to a de voltage equal to the zero-to
peak value of Vin• The capacitor is made large enough so that it looks like a short 
circuit for the ac components of Vin• If, for example, Vin is a sine wave, Vout will equal 
the sum of Vj0 and the de voltage on the capacitor ~ shown in figure 6.15 ( b). Of 
course, the input voltage need not be a sine wave, but for whatever shape it has, the 
output voltage will be identical except displaced upward so that it just touches the 
V = 0 axis at its lowest point. By reversing the diode, the input wave can be displaced 
downward so that it is always negative. Furthermore, by placing a voltage source in 
series with the diode, the output can be clamped to any desired voltage. Note that the 
charge pump described in the previous section is a diode clamp plus a half-wave 
rectifier with a capacitive filter. 

A circuit closely related to the diode clamp is the baseline restoration circuit 
shown in figure 6. l 6(a). In the absence of the diode, the circuit is just a high-pass RC 
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Fig. 6.16 The baseline restoration circuit (a) pre
vents the baseline of an input signal ( b) from drifting 
downward (c) as the capacitor charges up. 

filter such as might be used to observe a small fluctuating voltage superimposed on a 
larger de component. Imagine that the signal to be observed consists of a finite string 
of positive pulses, as shown in figure 6.16(b). Although the cutoff frequency of the 
filter is such as to pass the Fourier components of an individual pulse without causing 
significant distortion, there is, nevertheless, a low-frequency component arising from 
the fact that all the pulses are positive and hence do not average to zero. Without the 
diode, the baseline would thus drift slowly downward in an attempt to eliminate the 
low-frequency component from the output, as shown in figure 6. l 6(c). In fact, when 
viewed over a sufficiently long time, the area of the function V0 ut(t) below the axis 
must exactly equal the area above the axis. Otherwise the capacitor would end up 
with more charge and hence more voltage than it began with, which would be 
inconsistent with the de nature of the circuit at t = -oo and t = oo. The diode, 
however, provides a low-resistance path for the capacitor to discharge quickly 
without causing any current to flow in the negative direction through the resistor. 
Consequently, each pulse finds the capacitor in the same discharged condition as 
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the previous pulse, and there is no tendency for the baseline to drift downward. If the 
pulses to be observed were negative, then it would be necessary to reverse the 
direction of the diode to avoid a corresponding upward shift of the baseline. 

As a final example of. the many uses of diodes, we will consider how an ac 
voltmeter or ammeter could be constructed using a D' Arsonval galvanometer. 
Perhaps the most obvious way to make an ac meter is to use a rectifier and filter to 
convert the ac to a de voltage or current which is then connected to a de meter. 
Figure 6.17 (a) shows perhaps the simplest such circuit. It is just a half-wave rectifier 
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Fig. 6.17 Circuits for using a de volt
meter to measure an ac voltage (a) Peak 
reading voltmeter. (b) Average reading 
voltmeter. 

with a single filter capacitor. The capacitor will charge up to the peak value of the 
input voltage. Such a circuit is thus called a peak-reading ac voltmeter. If the 

input is a sine wave, the voltmeter will read a value V0 = j2 Vrms· In addition, the 
nonideal character of the diode is often important, especially at low voltages. An ac 
voltmeter of this type would normally have a scale labeled in rms voltage and be 

calibrated to take into account the factor j2 as well as the nonideal character of the 
diode. One must thus exercise great caution in using such a meter on waveforms tha_t 
are not sinusoidal (see problem 6.18). 

A more usual type of ac_ meter uses a bridge rectifier and omits the filter 
capacitor, as shown in figure 6.l 7(h). If the meter movement has sufficient inertia, it 
will not respond to the ripple at the bridge output but rather will give a reading 
proportional to the average magnitude of the applied voltage or current. If the input 
is a sine wave with a 1-V peak value, the average magnitude is given by 

-- 2 JT/2 2 I VI = - sin (2nt/T) dt = - = 0.637 V (6.9) 
T O n 
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For comparison, remember that the rms value of a 1-V zero-to-peak sine wave is 
0. 707 V, so that an 11 % correction is required in addition to that caused by the 
nonideal diodes for the meter to read the rms value. Such a meter is called an 
average reading ac voltnieter, and the same precautions apply when a non
sinusoidal voltage is being measured. The same circuit can also be used to read ac 
current by simply replacing the de voltmeter with a de ammeter, while making sure 
that the diodes have sufficient current-carrying capability. By using operational 
amplifiers (see Chapter 9), it is possible to construct voltmeters and ammeters which 
read the true rms (TRMS) value. 

&. 7 Zener Diodes 

If the voltage across a reverse-biased pn junction is too large, breakdown occurs and 
the diode conducts. Normally one wants a diode to have a breakdown voltage that is 
higher than the peak-reverse voltage that the diode encounters in the circuit to which 
it is connected. On the other hand, a diode with a well-defined, stable, and relatively 
small, nondestructive breakdown voltage can be a useful circuit element. Such a 
diode is called a Zener diode, avalanche diode, or reference diode, and its 
symbol, V-1 characteristic, and equivalent circuit are shown in figure 6.18. In the 

V 

(a) (b) (c) 

Fig. 6.18 (a) Symbol for ideal Zener diode. (b) V-I Charac
teristic of real Zener diode. (c) Equivalent circuit for ideal 
Zener diode. 

forward direction a Zener diode behaves like any other diode (i.e., V ~ 0.6 V for Si, 
etc.). In the reverse direction the current increases rapidly when the voltage reaches 
the breakdown voltage V8 . An ideal Zener diode is like any ideal diode, except that 
the current goes to minus infinity abruptly at V = -VB. Zener diodes typically have 
VB in the range of a few volts to a few hundred volts, although such diodes can be 
placed in series for higher voltages. 
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Fig. 6.19 The Zener diode regulator in (a) produces an input voltage 
as in (b) that is constant so long as the output current is small. 

The main use of the Zener diode is as a voltage regulator, as shown in 
figure 6.19 (a). The Zener diode draws as much current as necessary to keep the 
voltage at VB, even though the input voltage Jlin may vary considerably. If too much 
current flows to the load, (i > ( Vin - VB) /R) the voltage will drop below VB, and the 
circuit will cease regulating, as shown in figure 6.19 (b). For good regulation over a 
wide range of input voltages and output currents, the input Jlin must be considerably 
larger than VB and/or the resistor R must be small. Unfortunately, both of these 
remedies results in wasting considerable power in the diode. Unlike an ordinary 
diode, a Zener diode has a significant simultaneous voltage and current, and so must 
dissipate power. For the circuit in figure 6. l 9(a)° with I= 0, the diode dissipates a 
power, 

(6.10) 

The Zener diode regulator is closely akin to the clipping circuits previously described. 

6.8 Varicap Diodes 

Another useful property of real pn junction diodes is the capacitance that appears 
across the junction when it is reverse-biased. This capacitance arises because of the 
thin depletion region and is typically in the range of ,_, 10-100 pF. Normally such 
capacitance would be undesirable 'in a diode, but sometimes it can be used to 
advantage. The usefulness of the effect comes from the fact that the capacitance 
changes as a function of voltage in proportion to ( V + V0 )- 112 where V0 is a positive 
constant on the order of the forward voltage drop (0.6 V for silicon). The reason for 
this behavior is that the width of the depletion region increases with increasing 
reverse voltage. Although any diode will exhibit this behavior, diodes especially made 
to enhance the effect are called varicaps or varactors. A typical varicap has a 
capacitance that varies over about a factor of 10 in the picofarad range. One of the 
uses for varicaps is in controlling the resonant frequency of an LC circuit by means of 
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a voltage that may be a rapidly varying function of time. If the voltage change JV is 
small compared with the de voltage V which is in turn much larger than the constant 
V0 , the capacitance change is an approximately linear function of bV: 

C 
t5C= - -JV 

2V 
(6.11) 

Such a voltage-dependent capacitor is a nonlinear circuit element, but it behaves in a 
nearly linear manner if the ac component of the voltage across its terminals is small 
compared with the de component. The nonlinear character of the varicap is often 
used to advantage in the construction of frequency multiplier circuits. 

The capacitance of pn junction diodes often becomes significant and poses 
difficulties when diodes are used at very high frequencies. For such applications point
contact diodes are normally used. A point-contact diode has a thin anode wire 
(called a catwhisker) which touches a tiny p-type region formed under the contact 
on a larger block of n-type semiconductor which serves as the cathode. Such diodes 
typically have a junction capacitance of :S 1 pF, but because of the small area of 
contact, they are limited to very low currents. 

6.9 Summary 

A diode is a nonlinear device that conducts current in one direction but not the 
other. Two common types of diode are the vacuum diode and the pn junction diode. 
The vacuum diode has a rather complicated V-1 characteristic with a space
charge-limited and emission-limited region. The pn junction diode is more nearly 
ideal. A germanium diode has a forward voltage drop of ~0.2 V and a silicon diode 
has a forward voltage drop of ~0.6 V. Both types of diode have a small reverse 
current. 

The main use for diodes is in rectifier circuits that convert ac to de. Three 
common rectifier circuits are the half-wave, the full-wave, and the bridge rectifier. To 
reduce the ripple from a rectifier circuit, some form of filter must be used. Diodes and 
capacitors can be connected as a voltage multiplier to produce large de voltages. 
Diodes can also be used to limit the amplitude of a voltage and to modify waveforms 
in a variety of ways. A Zener diode is useful as a voltage regulator, and a varicap is 
useful for controlling the resonant frequency of a circuit by means of a variable 
voltage. 

Because the diode is nonlinear, many of the circuit-analysis techniques pre
viously used must, at best, be applied with considerable caution. There is simply no 
systematic way to attack a nonlinear circuit in the way that could be done with linear 
circuits. Each circuit poses a unique problem, and one must usually be content with 
an approximate solution except in certain cases where Kirchhoff's laws can be 
applied to the circuit and the resulting nonlinear equations solved exactly. 
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Problems 

6.1 Consider a vacuum diode with a cathode of 1 cm 2 area, a work function of 
2.0 V, and a temperature of 1000 K with an anode 3 mm away. Calculate the 
emission-limited current, and estimate the voltage at which the transition from 
emission-limited to space-charge-limited behavior occurs. 

6.2 Calculate the reverse current in a germanium and in a silicon diode at room 
temperature if the forward voltage drop at 100 mA is 0.2 V and 0.6 V, respectively. 

6.3 Over what range does the forward voltage drop of a silicon diode vary as the 
current is varied from 1 mA to 1 A at room temperature, assuming 10 = 10 pA? 

6.4 If the diode in figure 6.6(a) is germanium and V0 = l V, what is the maximum 
value of VR, and over what fraction of the cycle does the diode conduct? 

6.5 Calculate the average power dissipated in a 100-!l load resistor for the half
wave rectifier and for the bridge rectifier, .assuming ideal diodes and a sinusoidal 
source with a peak value of 10 V. 

6.6 In the circuit below in which the diode is silicon, sketch the voltage VR(t), and 
calculate its maximum value. 

R 

+ 

2V 

6.7 Describe the symptoms that would result if one of the diodes in the bridge 
rectifier in figure 6.8(a) failed by becoming an open circuit. What symptoms would 
result if it failed by becoming a short circuit? 

6.8 What minimum PRV rating is required for the diodes in figures 6.6, 6. 7, and 
6.8 if V0 = 100 V and if a capacitive input filter is used? 

6.9 Show that the ratio of the surge current to average current in the diode in 

figure 6.9 is given by 2 J nwRC for wRC ~ 1. 

6.10 Ifan LC filter is designed with an LC product that is too small, it can actually 
do more harm than good. For the circuit in figure 6. lO(b) with RL = oo, L = l H, and 
C = 2 µF, calculate the output ripple voltage if the input consists of a de component 
and a 120-Hz, 1-V sinusoidal ac component. 

• 6.11 Suppose you have a power supply that can be represented as a Thevenin 
equivalent circuit with VT= 20 V and RT= 4 n. Calculate the percentage regulation 
over the range of output currents from O to 1 A. 

6.12 For the circuit below use reasonable approximations to estimate the de output 
voltage, the percentage ripple, and the percentage regulation: 
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115 V,ms 

60 Hz 

R = 1 kD 

C1 = 100 µF C = 2 
200 µF 

6.13 A bridge rectifier with an RL filter as shown below can be analyzed using 
Fourier techniques, because two of the diodes are always in conduction. Using the 
Fourier series of figure 5A(e), calculate the de component of the voltage VR and the 
\'alue of L required to make the percentage ripple in Ti~ about 1 %-

6.14 Suppose in figure 6.11 (b) that C2 = 10C1 and that the source is turned on at 
t = 0 with both capacitors discharged. Sketch the output voltage for the first few cycles 
of the source. 

6.15 Design a clipping circuit using ideal components and a sinusoidal source that 
will produce a periodic output voltage close to the one shown below: 

10 V 

-0.05 -0.01 0.01 0.05 t (seconds) 

6.16 What is the maximum current that can flow through an ammeter with a 
20,000 0./V sensitivity and 5000 0. internal resistance if it is connected in parallel 
with a silicon diode? Could a germanium diode be used to protect the meter without 
disturbing its accuracy? 

6.17 In the circuit below, the capacitor is initially charged to 100 V and the switch 
is open. At t = 0, the switch is closed. Sketch the voltage across the capacitor and the 
current through the inductor as a function of time, and show values of voltage, 
current, and time on your sketch ( cf problem 3.18). 
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L = 1 H 

6.18 Suppose you have a peak-reading ac voltmeter, an average-reading ac 
\·oltmeter, and a true rms voltmeter, all calibrated for use with sine waves. What rms 
voltage would each meter indicate if connected to a triangular wave voltage source, 
as shown in figure 5.4(b) with V0 = 100 V? 

6.19 For the circuit below, calculate the power produced by the source and the 
power dissipated by R,·Ru and the Zener diode. 

R = 50 .CT 

20 V 10 V Rr = 100 n 

6.20 Design a power supply using real components that will produce a 12-V de
regulate~ output over the range 0-100 mA. Use a transformer with a 12.6-V 
secondary, and calculate what size fuse should be used to protect the 115-V ac 
primary. 

6.21 By what percentage must the voltage V across a varicap be varied in order to 
vary the frequency of an LC circuit by 1 % ? Assume the varicap is the only capacitor, 
and neglect V0 . 
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chapter 7 
Vacuum Tubes and 

Field Effect Transistors 

7 .1 Vacuum Triodes 

In this and the next two chapters, we will consider an important class of nonlinear, 
three-terminal device that is said to be active. An active device is one that behaves as 
if it had internal sources. In this chapter we will consider two such devices, the 
vacuwn tube and the field effect transistor (FET), which operate on different 
principles but which behave in a very similar manner. 

One example of a vacuum tube has already been considered in the previous 
chapter where the vacuum diode was described. If one inserts a transparent 
conducting grid between the cathode and anode ( or plate), as indicated schemati
cally in figure 7 .1, the device is called a vacuwn triode ( three electrodes). As with 

Plate 

Grid 

Cathode 

Fig. 7.1 Symbol for a vacuum triode. 

the vacuum diode, a heater with its associated voltage source is required to heat the 
cathode, but since it does not otherwise interact with the rest of the circuit, we will 
hereafter ignore -it: If the grid is made positive relative to the cathode, but not as 
positive as the plate, it will accelerate the electrons and increase the cathode current, 
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provided the tube is operating m the space-charge-limited region. Some of the 
electrons are collected by the grid, but if the grid is transparent, many of the electrons 
will pass through the grid and will be collected by the even more positive plate. A 
large grid current is usually undesirable, because it requires that the source connected 
to the grid provide power, and this power must be dissipated by the grid, which in 
extreme cases may overheat the grid. Consequently, the vacuum triode is normally 
operated with its grid negative relative to its cathode. In such a case it is energetically 
impossible for electrons to reach the grid, and so the grid current is always zero. On 
the other hand, if the grid is sufficiently close to the cathode and not too negative, 
some of the electrons feel the electric field from the positive plate and pass through the 
grid and are collected by the plate. In this way a small voltage applied to the grid can 
be used to control the flow of current between the plate and the cathode. The 
important property of the vacuum tube is that the source which controls the grid 
voltage supplies no power, since the grid current is zero, and yet it can significantly 
alter the power delivered by a source connected between the plate and cathode. The 
vacuum triode, like other nonlinear, three-terminal, active devices, can thus be used 
as an amplifier. 

Since the vacuum triode is a three-terminal device, its voltage-current character
istic is not as simple as a two-terminal device. If we use the cathode as a reference 
potential, there are two voltages, grid-to-cathode V Ge, and plate-to-cathode, Vpc• 
Since the grid draws no current (assuming VGc < 0), the only current is the one that 
flows from plate to cathode, Ip. With three parameters, one needs a three-dimensional 
graph to -characterize the device completely. However, for convenience, it is 
customary to plot two of the quantities on a two-dimensional graph, with a family of 
curves representing various values of the third variable. If Ip is plotted versus Vpc, for 
various V Ge, the resulting curves are called the plate characteristics. The plate 
characteristics for a typical vacuum triode in the space-charge-limited region are 
shown in figure 7 .2. The values of the quantities are only representative and may 

60 5 W plate dissipation 

-3 

~ 40 
E 
~ 

20 

0 
0 .50 100 150 200 

lf.c (volts) 

Fig. 7.2 Plate characteristics of a typical vacuum triode 
showing a representative load line and operating point. 
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Rp 

Fig. 7.3 Circuit for determining 
operating point of a vacuum triode. 

+ 

Vpp 

the 

vary by a factor of 10 or more, depending on the construction of the particular tube. 
If the triode is connected to a voltage source rPP through a resistor Rp, as 

indicated in figure 7.3, Kirchhoff's voltage law can be applied to the loop on the right 
with the result 

Solving for Ip gives 

( 7 .1) 

This relation represents a straight line on the plate characteristics, and it is called the 
load line. A typical load line is indicated in figure 7.2 for Vpp = 200 V, and Rp 

= 3.3 Hl Note that the load line intercepts the horizontal axis at Vpp and that it has a 
slope of -1/Rp, so that it intercepts the vertical axis at Vpp/Rp. In such a circuit the 
plate current and plate-to-cathode voltage will always lie somewhere on the load line. 
Their exact value will depend on the grid-to-cathode voltage VGc· The intersection of 
the load line with the plate current curve corresponding to the appropriate value of 
VGc is called the operating point. The operating point denoted in figure 7 .2 assumes 
a value of VGc = -3 V. Notice that the source at the grid in figure 7.3 is labeled with 
a+ toward the grid but that the grid is actually negative relative to the cathode, since 
VGc < 0. Amplifier circuits are normally designed so that the operating point is near 
the middle of the plate characteristic (i.e., Vpc ~ Vpp/2) so that the largest possible 
excursions away from the operating point are permitted without causing saturation 
( Vpc ~ 0) or cutoff (Ip~ 0). 

Care must also be taken to ensure that the product Vpclp at the operating point is 
less than the maximum allowed plate dissipation power for the particular tube in 
use. The dashed line in figure 7.2 is a hyperbola showing the limit of allowed 
operating points for a typical plate dissipation of5 W Operation at points above and 
to the right of the dashed curve would run the risk of damaging the tube by over
heating its plate. 
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7 .2 Triode Linear Equivalent Circuits 

Although the vacuum triode is a highly nonlinear device, for small excursions from 
the operating point the plate characteristics are nearly straight, and the tube behaves 
in an approximately linear manner. The plate characteristics of figure 7. 2 are 
redrawn in figure 7.4 on a IO-times magnified scale, so that the curvature of the lines 
is not noticeable. 

~c = -2.9 V 

30 

26 

105 110 115 120 
Vpc (volts) 

Fig. 7.4 Plate characteristics of figure 7 .2 on a 
magnified scale appear to be linear. 

Since the plate current Ip is a function of two variables, V GC and Vpc, a small 
change in either of these quantities will produce a corresponding small change in IP 

given by 

• ( 8lp) 
lp= av:- VGC + 

GC Vpc 
(

alp) 
-- Vpc 
avPC VGc 

(7.2) 

where a lowercase symbol, ip, is used to denote an infinitesimal change in a quantity. 
The first partial derivative is taken holding Vpc constant. It is called the grid-plate 
transconductance, 

(
alp) 

gm= 8VGC Ypc=constant 
(7.3) 

For a typical triode, the transconductance, which has units of inverse resistance, is in 
the mU range. The second partial derivative in equation 7.2 is taken holding VGc 

constant (i.e., along the diagonal lines in figure 7.4). Its inverse is called the plate 
resistance, 

Tp = ( 8/p) 

a Vpc V GC = constant 

(7.4) 

For a typical triode, the plate resistance is in the kilohm range. The value of gm and rp 
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rp 

Fig. 7.5 Vacuum tube linear equivalent circuits. 
(a) Thevenin. (h) Norton. 

vary with the location of the operating point as well as with the tube type. Their 
values are most easily determined by reading them off the plate characteristics of the 
particular tube after determining the operating point. 

Since the vacuum triode behaves in a linear manner for small changes about its 
operating point, it can be represented by either a Thevenin or a Norton equivalent 
circuit, as shown in figure 7.5. It will be left as an exercise (problem 7.4) to show that 
the Thevenin and Norton parameters are given by 

Vr= -µvGc (7.5) 

IN= -gmvGc (7.6) 

Rr=RN=rp (7.7) 

where 

µ =gmrP (7.8) 

is a dimensionless number called the amplification factor. The grid does not 
appear in the linear equivalent circuits, because no current flows in the grid circuit 
provided V6 c < 0. 

The vacuum triode behaves as if it had an internal source, and hence it is an 
active device. This source is different from any encountered so far, however, since its 
value depends on the value of a voltage elsewhere in the circuit. Such a source is 
called a dependent source. Circuits with dependent sources have unique properties 
that will be explored in the following chapters. In this case the source voltage depends 
on the input voltage and provides the necessary coupling between the input and the 
output, causing amplification. 
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7 .3 Common Cathode Amplifier 

The vacuum triode can be used in a circuit such as figure 7 .6(a) to amplify a voltage. 
The analysis of such a circuit always takes place in three parts. First one determines 
the operating point in the absence of any ac input voltage (vGc = 0), as described in 
the previous section. Then one determines the values of gm and rp at the operating 
point by taking the appropriate derivatives of the plate characteristic curves. Finally, 
one sets the de voltages to zero and analyzes the remaining circuit, using one of the 
linear equivalent circuit representations shown in figure 7.5. The linear equivalent 
circuit for the amplifier in figure 7.6(a) is shown in figure 7.6(b). It is simply a voltage 

Rp 

p 
+ 

Vpp 

+ 
C -::-

-.::-

-::- (a) 

Rp 

p 

-::-

(b) 

Fig. 7.6 The vacuum tube amplifier in (a) 
can be analyzed using the linear equivalent 
circuit in ( b). 

divider, and the ac component of the voltage across RP is 

-µvGcRP 
Vout = R + 

p Tp 

The amplification of such a circuit is defined as 
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Like attenuation, amplification is often measured in decibels (see equation 4.15). For 
the circuit of figure 7 .6 with vin = Vee, the amplification is 

A= -µRp 
Rp+ rp 

(7.10) 

The minus sign indicates that the output is 180° out of phase with the input. Note that 
if rp is much less that Rp, the amplification A is just equal to -µ. , 

The amplifier circuit of figure 7. 6 has two drawbacks: 

1. Two de power supplies are required (Vpp and Vee), and they must be of 
opposite sign relative to ground. 

2. Both the output and the input have a de voltage superimposed on them. 

These problems are eliminated in the slightly more complicated circuit m 
figure 7. 7 (a). In finding the operating point, the capacitors can be treated as open 

p 

CG 
"in ~..,_ _____ G-+-
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(a) 

G 
"in 

I 
"Ge RG 

t C 

-=- -=-
(b) 

Cp 
-----------t ~ "out 

r -=-

rp p 
"out 

-=-

Fig. 7.7 The vacuum tube amplifier in (a) can be analyzed 
using the linear equivalent circuit in (b). 
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circuits, since only the de voltages are of significance. The resistor RG holds the grid at 
ground potential (VG= 0). Since the grid current is vanishingly small, RG can be 
rather large ( 1 Mn is typical). This resistor is called a grid leak, because it allows the 
small charge that would otherwise collect on the grid to leak to ground. The resistor 
Re allows the cathode to be slightly positive relative to ground by an amount 

(7.11) 

where Ip is the plate (and hence cathode) current _at the operating point. Since VG 

= 0, the de grid-to-cathode voltage is 

(7.12) 

Therefore, Re eliminates the need for the voltage source V Ge in figure 7. 6 (a). Note 
that finding the operating point requires successive approximations, since VGc 

depends on Ip, and Ip in turn depends on V Gc· Once the operating point is 
determined, the values of gm and rp are determined as usual. 

To find the amplification, we assume that all the capacitors are large enough so 
as to look like short circuits at all frequencies of interest. Since these capacitors couple 
the ac signals to and from the amplifier while blocking the de voltages, they are often 
called coupling capacitors or blocking capacitors. Such a circuit is limited to 
amplification of ac voltages, although the input signal need not be sinusoidal. The 
linear equivalent circuit for the amplifier in figure 7. 7 (a) is shown in figure 7. 7 ( b). 
Note its similarity to that in figure 7. 6 ( b). The resistor Re does not appear in the 
linear equivalent circuit because it is short-circuited by the capacitor Cc, which is 
called the cathode bypass capacitor. Its value must be sufficiently large that 
wRcCc is much greater than unity over the range of frequencies that is to be 
amplified. The amplification A of the circuit in figure 7. 7 is apparently the same as 
the one in figure 7 .6, since it has the same ac linear equivalent circuit. 

The input resistance of the amplifier in figure 7. 7 is just RG. The output 
resistance is determined as with any Thevenin equivalent circuit by setting the sources 
equal to zero and calculating the resistance between the output terminal and ground: 

Rprp 
R =--

out Rp+ Tp 
(7.13) 

The input circuit with its capacitor is just an RC high-pass filter with a 3-dB 
point given by 

(7.14) 

If the output is connected to a load resistor RL, it will also form a high-pass filter with 
a 3-dB point of 

(7.15) 
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The larger of these two frequencies will decermine the lowest frequency for which the 
amplification is nearly independent of frequency. The capacitor Cp thus eliminates 
the de component from the output. 

This type of amplifier circuit is called a coD1JD.on cathode amplifier, because 
the cathode is common to both the input and output circuits. 

7 .4 Cathode Follower Circuit 

Consider the amplifier circuit in figure 7.8 (a) in which the output is connected to the 
cathode. Such an amplifier is called a cathode follower, since it will turn out that 
the cathode voltage follows very closely the input voltage. It is also called a common 

p 
Cc 

~no-o-----411---------G--+-

C 

Cc 
~--411~---oOVout 

Re 

-:.-

(a) 

rp p 

(b) 

Fig. 7.8 The cathode follower circuit m (a) can be 
analyzed using the linear equivalent circuit in (h). 
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plate amplifier, because the plate is common to both the input and output circuits. 
If we assume the capacitors are short circuits for all frequencies of interest, the linear 
equivalent circuit in figure 7.8(b) is obtained. The ac grid voltage is vG = vin, and the 
ac cathode voltage is 

The grid-to-cathode voltage is then 

Solving for Vin gives 

The output voltage is 

and the amplification is 

A= voul = µRe 
Vin rp+ (µ+ l)Rc 

(7.16) 

For µ very large, A approaches one) and the output closely follows the input. Note 
that unlike the amplifier previously considered, the output is in phase with the input 
rather than being shifted 180°. 

One might well ask, what use is a circuit that has an amplification of slightly less 
than one? The answer lies in the input and output resistances. The input resistance is 
Rin = RG. The output resistance is _determined by dividing the open-circuit output 
voltage, 

by the short-circuit output current, 

Tp Tp 

to obtain 

R , = Arp = ~ ~ ~ 
OU 

(7.17) 
µ gm gm 

Note that this result differs from what would have been obtained had the voltage 
source been set to zero and the resistance between the output and ground calculated. 
It is an important property of dependent sources, that they cannot arbitrarily be set to 
zero, since their value is not constant but depends on a voltage or current elsewhere in 
the circuit. One can, however, always determine the output resistance of a linear 
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circuit, even with dependent sources, by dividing the open-circuit output voltage by 
the short-circuit output current. Similarly, the input resistance of any linear circuit, 
even with dependent sources, can be determined by assuming an input voltage vin and 
calculating the corresponding input current, iin· The current will be proportional to 
vin, and the proportionality constant is the input resistance: 

Since the input resistance of the cathode follower can be made much larger than 
the output resistance, the circuit has a large power gain, even through its voltage gain 
is unity. Such circuits are useful whenever a low resistance load must be driven by a 
source with a high internal resistance without attenuation. A common example of the 
use of a cathode follower is to drive a transmission line that is terminated in its 
characteristic impedance. In such an application, the circuit is sometimes called a 
line driver. The reader should contrast the cathode follower with the transformer, 
which is also an impedance-matching device but which requires the source to provide 
all the power that is delivered to the load. 

7 .5 Grounded Grid Amplifier 

The previous two sections dealt with the common cathode and common plate 
amplifier circuits, respectively. The remaining type of amplifier is the collllllon grid 
or grounded grid amplifier shown in figure 7.9(a). As with the previous circuits, 
the load line is chosen by an appropriate selection of Vpp and Rp, and the operating 
point is determined by the resistor Re such that VGc = -lpRc. 

The characteristics of the grounded grid amplifier are determined as before by 
using the ac linear equivalent circuit shown in figure 7.9(b). The input voltage is 
given by 

The output voltage is determined by the voltage divider relation, 

Rp 
vou1 = ( -µvGc - vGc) R-+ 

p Tp 

so that the amplification is 

(7.18) 

This result is essentially the same (forµ~ l) as for the common cathode amplifier, 
except that the output is in the phase with the input rather than 180° out of phase. 

The calculation of the input resistance of the grounded grid amplifier is slightly 
more difficult. One's first inclination would be to replace the voltage source in 
figure 7 .9 (a) with a short circuit and then find the equivalent resistance between vin 

and ground. However, since the voltage source depends on the value of a voltage 
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Fig. 7.9 The grounded grid amplifier circuit in (a) can 
be analyzed using the linear equivalent circuit in (b). 

elsewhere in the circuit, it cannot arbitrarily be set to zero and still permit the 
measurement of the resistance. Instead, one must return to the basic definition of 
resistance, 

( 7 .19) 

and calculate iin as in figure 7.10, where the circuit of figure 7 .9 (b) has been redrawn, 
using a Norton equivalent circuit. Applying Kirchhoff's current law to the node at 
the cathode gives 
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Fig. 7.10 Circuit used for calculating the input resistance of the 
grounded grid amplifier. 

iin = Vin (~ + _!_ + _!_ - A) 
rp Re rp rp 

Substituting the value previously derived for A gives 

R. = (_!_+ ~)-1 
m Re Rp+ rp 

(7.20) 

Unlike the amplifier circuits previously considered, the grounded grid amplifier has a 
relatively small input resistance (Rin <Re). The low input resistance makes the 
grounded grid amplifier especially suitable when the input is driven through a 
transmission line, which typically has a low characteristic impedance. 

The output resistance of the grounded grid amplifier is the same as for the 
common cathode amplifier: 

R = Rprp 
out R + 

P rp 
(7.21) 

In all of the vacuum tube circuits considered, it has been assumed that the input 
is connected to a voltage source with zero internal resistance and that the output is 
connected to a load that draws negligible current, such as an ideal voltmeter. If these 
conditions are not met, the amplification will be correspondingly reduced. One virtue 
of the vacuum tube amplifier is the almost total isolation of the input from the output, 
in the sen~e that the input resistance is not affected by the load connected to the 
output and the output resistance is not affected by the resistance of the source 
connected to the input. The grounded. grid amplifier is an exception to this rule, 
however, and the isolation is not perfect (see problem 7.12). However, the grounded 
grid amplifier does reduce to a bare minimum the capacitive coupling between the 
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input and output circuits, making it especially suitable for use at very high 
frequencies. 

The voltage amplification, input resistance, and output resistance of the three 
types of vacuum tube amplifiers are summarized in table 7. I. 

TABLE 7.1 Characteristics of the Three Types of Vacuum Tube 
Amplifiers 

Common Cathode Grounded 
Cathode Follower Grid 

Amplification Large Small Large 
(voltage) 

µRp µRe (µ+ I)Rp 
A= ----

Rp+ Tp rp+ (µ+ I )Re Rp+ Tp 

Input resistance Large Large Small 

Rin= RG RG ( 
I µ+ I )-i -+--

Re Rp+ rp 

Output resistance Medium Small Medium 

Rout= 
Rprp Rerp Rprp 

Rp+ Tp (µ+ I)Re+ rp Rp+ Tp 

7 .6 Multigrid Tubes 

For a vacuum triode the amplification factorµ seldom exceeds about 100. A larger 
amplification and a lower capacitive coupling between the grid and plate can be 
achieved by adding a second grid, called the screen grid, between the control grid 
and the plate, as shown in figure 7 .11 (a). Such a tube is called a tetrode (four 

Plate Plate 

Screen Suppressor 
Grid 

Screen 

Grid 

Cathode Cathode 

(a) (b) 

Fig. 7.11 Multigrid tubes. (a) Tetrode. (b) Pentode. 
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electrodes). The screen grid is usually held at a constant voltage, intermediate 
between the cathode and plate voltage. Its function is to reduce the dependehce of 
plate current on plate-to-cathode voltage by providing a nearly constant electric field 
to accelerate electrons away from the cathode. Most of the electrons that pass 
through the screen are collected by the plate, but some are collected by the screen and 
contribute to a small current, to the screen grid. 

One drawback of the tetrode is that whenever the plate becomes negative 
relative to the screen, secondary electrons that are knocked off the plate by the, 
incident primary electrons are attracted to the screen. This causes an undesirably 
high screen current and can cause the plate current to reverse direction. To eliminate 
this effect, a third grid, called the suppressor grid, is inserted between the screen 
and the plate, as shown in figure 7 .11 ( b). Such a tube is called a pentode ( five 
electrodes). The suppressor grid is usually held at a constant voltage near that of the 
cathode and, in fact, is often connected internally to the cathode. The current in the 
suppressor grid is very small, and it effectively repels secondary electrons and 
drives them back to the plate. 

Typical plate characteristic curves for a pentode with a constant screen voltage 
are shown in figure 7 .12. Note that the tube behaves very much like a current source, 

15 

Vsc = 100 V 

----------Vc;c=OV 

------------3 

------------------4 
100 300 

VPC (volts) 

400 

Fig. 7.12 Plate characteristics of a typical pentacle vacuum 
tube. 

except at low voltages. The plate resistance rp is quite high (megohms), and the 
amplification factor µ is also high ( .-10 4). Either linear equivalent circuit in 
figure 7 .5 can be used to represent the pentode, but the Norton equivalent circuit is 
more realistic, and rp is often sufficiently large that it can be omitted entirely without 
introducing significant error. 
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7. 7 Junction Field Effect Transistors 

A semiconductor device with characteristics very similar to the pentode vacuum tube 
is the field effect transistor (FET) shown in figure 7 .'l 3. The device consists of a 
narrow channel of n-type silicon semiconductor sandwiched between two pieces of p
type silicon. The two p-type sides are connected together and are called the gate. One 
end of the channel is called the source, and the other end is called the drain. If the 
gate is negative relative to the source and drain, it forms a reverse-biased pn junction, 
and very little current flows in the gate as with the grid of a vacuum tube. The reverse 
bias at the junction forms a depletion region that extends into the channel and is 
thickest near the drain. The width of the resulting channel and hence the current flow 
from the drain to the source is thus controlled by the voltage applied to the gate. The 
gate controls the flow of electrons from source to drain in much the same way as the 
grid controls the flow of electrons from cathode to anode in the vacuum tube. Unlike 
the vacuum tube, the FET can be made in either polarity, since there are two types of 
charge carriers, electrons, and holes. A p-channel sandwiched between two n-type 
semiconductors behaves in an analogous fashion, provided the signs of all the voltages 
and currents are reversed. The schematic symbols for these devices are shown in 
figure 7 .14. The arrow at the gate is drawn in the direction of current flow by analogy 
with the symbol for a diode, but since the gate is normally reverse-biased, what little 
current does flow in the gate actually flows opposite to the direction of the arrow. 

Source Gate Drain 

Depletion 
region 

p n p 

Channel 

Fig. 7.13 n-channel junction field effect transistor. 

+ 
Gate Gate 

Source Source 

-=-
Fig. 7.14 Symbols for junction field effect tran

sistors. (a) n-channel. ( b) p-channel. 
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Fig. 7.15 Drain characteristics for a typical n-channel 
JFET. (a) Ohmic region. (b) Pinch-off region. (c) Break
down region. 

The drain characteristics of a typical n-channel FET are shown in figure 7.15. At 
low values of VDs, the drain current varies nearly linearly with VDs· This is 
appropriately called the ohmic region. In the pinch-off region, ID depends strongly 
on V6 s but only weakly on VDs· Eventually, breakdown occurs, and a large current 
flows in a manner reminiscent of the Zener diode. The drain characteristics of the 
FET are similar to the plate characteristics of a pentode vacuum tube, except that the 
voltages are usually somewhat smaller. 

An FET circuit is analyzed in the same way as a vacuum tube circuit. The 
operating point is first determined by considering the de circuit. Normally the 
operating point is chosen near the rpiddle of the pinch-off region. At the operating 
point the value of the forward transconductance, 

( 
oJD) gf = --

s O VGs Vvs = constant 

(7.22) 

and the output resistance, 

ros = ( of ) 

O V :S V GS= constant 

(7.23) 

can be determined. The subscript s indicates that the device is being used in the 
common source configuration. Then the linear equivalent circuit can be used in which 
all the de sources are turned off and the Norton equivalent current is -g 1svGs and the 
Norton equivalent resistance is r0 s, as shown in figure 7 .16. Often the output 
resistance r

0
s is so large that it can be taken as infinite, in which case the linear 

equivalent circuit for the FET becomes nothing more than a current source -g 1svGs 

between the source and the drain. 
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The basic FET amplifier circuits corresponding to the three types of vacuum 
tube amplifier circuits previously discussed are shown in figure 7 .1 7. The common 
source, source follower, and grounded gate have characteristics identical to the 
corresponding vacuum tube circuits and are analyzed in exactly the same manner. 

D 

s 

Fig. 7.16 FET linear equivalent circuit. 
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Fig. 7.17 FET amplifier circuits. (a) Common source. 
(b) Source follower. (c) Grounded gate. 

7 .8 Insulated-Gate Field Effect Transistors 

The device described in the previous section is called a junction field effect 
transistor (JFET) because the gate forms a reverse-biased junction with the 
channel. The input resistance of the gate. is typically ~ 1 Og-n. An even higher input 
resistance can be achieved by placing a thin insulating layer between the gate and the 
channel. Such a device is called an insulated-gate field effect transistor 
(IGFET). The most common type of IGFET uses a metal oxide such as Si0 2 as an 
insulator and is called a metal oxide semiconductor field effect transistor 
(MOSFET). In this way, the input resistance of an FET can be increased to 
~1.014 n. 

The gate-to-channel capacitance is also very small (a few picofarads) so that a 
very small electrical charge applied to the gate can result in voltages large enough to. 
destroy the FET. Great care must be taken when handling and installing a MOSFET 
in a circuit to avoid the buildup of static electricity on its gate. Some MOSFETs have 
a pair of built-in, back-to-back Zener diodes between the gate and source to prevent 
damage by overvoltage. 

MOSFETs are made in two types, called the depletion type and the 
enhancement type, as shown in figure 7 .18. In the depletion type the channel is 
open when the gate-to-source voltage is zero. In the enhancement type the channel 
is normally closed but can be opened by forward-biasing the gate. The depletion type 
has the advantage that gate biasing is especially simple, since a de gate-to-source 
voltage of zero often provides a quite acceptable operating point. On the other hand, 
the enhancement type requires a gate voltage of the same polarity as the drain 
voltage, and so biasing can be obtained by a voltage divider from the same power 
supply. This provides the possibility of de coupling two or more FET amplifier stages. 
An enhancement-type device is also required whenever a zero drain current is 
required at zero gate voltage. 
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Fig. 7.18 n-channel MOSFET's. (a) Depletion-type. (b) 
Symbol. (c) Enhancement-type. (d) Symbol. 
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Fig. 7.19 MOSFET common collector amplifiers. 
(a) Depletion-type with zero bias. (h) Enhancement-type 
with positive bias. 

The gate electrode is insulated from the channel, and the remainder of the gate is 
called the base and is brought out on a separate l~ad. The MOSFET is thus actually 
a four-terminal device. The base is often used to determine the operating point while 
the incremental ac signal is applied to the gate. Just as with theJFET, the MOSFET 
can also be made with a p-channel, in which case all the voltages and currents are 
reversed from the n-channel. 

Figure 7 .19 shows two examples of common source MOSFET amplifiers. 
Figure 7.19(a) uses a depletion-type MOSFET with zero gate bias. Figure 7.19(h) 
uses an enhancement-type MOSFET with positive gate bias obtained from a voltage 
divider connected to the positive de voltage supply VDD· 

Compared with the vacuum tube, the FET is mechanically rugged but 
electrically fragile (easily destroyed by overvoltage or current),·is physically smaller, 
operates at lower voltages, requires no heater power, and lasts forever if not abused. 

7.9 Summary 

The vacuum tube and the FET are two important, three-terminal, nonlinear, active 
devices having similar characteristics that enable them to be used as amplifiers. The 
analysis of such circuits takes part in three stages: 

1. The operating point is determined from the de circuit by drawing the load line 
and finding its intersection with the appropriate grid (or gate) voltage curve on the 
plate (drain) characteristics. All capacitors are treated as open circuits. 
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2. The grid-plate (forward) transconductance is determined from the incremental 
change in plate (drain) current produced by a change in grid-to-cathode (gate-to
source) voltage with constant plate-to-cathode (drain-to-source) voltage, and the 
plate (output) resistance is determined from the incremental change in plate (drain) 
current produced by a change in plate-to-cathode (drain-to-source) voltage with 
constant grid-to-cathode (gate-to-source) voltage. 

3. The de sources are then turned off, and the Thevenin or Norton linear 
equivalent circuit representation with parameters calculated above are used to 
calculate the circuit behavior in the presence of a small ac input signal. All capacitors 
are treated as short circuits, provided their values are sufficiently large. 

Although the tube and FET are nonlinear devices, for small signals they behave 
in a nearly linear manner. For many cases the plate ( output) resistance is sufficiently 
large that the equivalent circuit of the device consists of nothing more than a single 
current source with a value proportional to the ac input voltage. 

The FET and the bipolar transistor to be discussed in the next chapter have 
replaced the vacuum tube in all but a few highly specialized applications such as 
circuits that employ a combination of high voltage, high power, and high frequency. 

The development of active semiconductor devices in the 1950s caused a 
revolution in the field of electronics and gave birth to a new generation of electronic 
gadgets of ever-increasing sophistication. Even today, the rate of development of new 
semiconductor devices and circuits is so staggering that one is left to contemplate how 
society will be altered by the epoch of electronics which has dramatically overtaken 
us. 

Problems 

7.1 For the plate characteristics in figure 7.2, estimate the value of Ip and Vpc at 
the operating point, assuming Vpp = 150 V, Rp = 2.5 Hl, and Vac = -2 V. 

7 .2 Estimate the value of gm, rp, and µ at the operating point in problem 7 .1. 

7.3 Consider the vacuum tube circuit in figure 7.3 with an operating point as 
shown in figure 7.2. (a) If Vac is made more negative, does rp increase or decrease? 
(b) If Rp is increased, does gm increase or decrease? (c) If Vpp is increased, does Tp 

increase or decrease? 

7.4 Show that the Thevenin and Norton parameters in figure 7.5 are consistent 
with equations 7.5 to 7.7. 

7.5 In the circuit in figure 7. 7 (a), the vacuum tube hasµ= 5000 and rp = 106 n at 
its operating point of Ip= 20 mA and Vac = -1.0 V. If the amplifier is to have an 
input resistance of 105 n and an output resistance of I 04 n, what should be the values 
of Rp, Re, and Ra? What is the amplification A of the circuit (assuming the capacitors 
are short circuits for ac)? What value of Ca would give a low-frequency 3-dB point of 
100 Hz? 
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7.6 Find the operating point for the circuit in figure 7.7(a), using the plate 
characteristics in figure 7.2, assuming Rp = l 700 n, Re= 100 n, and Vpp = 100 V. 

7.7 Calculate the amplification A wr the circuit in figure7.7(a) ifCe=0. The 
omission of the cathode capacitor provides negative feedback which has numerous 
desirable properties to be discussed in subsequent chapters. Show that for µ 
sufficiently large, A is independent of any of the properties of the tube. 

7.8 Calculate the amplification A for the circuit in figure 7.7(a) if the output is 
connected to a load resistor Rv 

7 .9 Suppose that a small capacitance C exists between the grid and the plate of a 
vacuum tube amplifier, as shown below. Show that the input capacitance of the 
amplifier is given by Cin = ( 1 + IA l)C, where A is the amplification. This enhance
ment of the input capacitance is called the Miller effect. When a low-input 
capacitance is required, a tetrode or pentode is normally used, because the screen grid 
greatly reduces the value of C. 

+ Vpp 

Rp 

C 

7.10 Calculate the value required for Re in the cathode follower circuit of 
figure 7.8(a) if Vpp = 100 V and V6 e = -2 V, using the plate characte6stics m 
figure 7.2. 

7.11 Estimate the amplification A for the circuit of figure 7.8(a) for the conditions 
given in problem 7. I 0. 

7.12 Calculate the input and output resistance of the grounded grid amplifier in 
figure 7.9(a), assuming µ = 99, rp = 10 kn, Rp = 10 kn, and Re= 100 n. By what 
percentage does the input resistance change if a 10-kn load resistor is connected to 
the output? By what percentage does the output resistance change if the resistance of 
the source connected to vin is l 00 fl? 
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7.13 Calculate numerical values for the amplification, input resistance, and output 
resistance, for each of the three types of amplifiers listed in table 7 .1, assuming 
Rp = l 0 k!l, Re = l 00 0, RG = 1 MO, and a pentode vacuum tube with gm = U.0 1 U 
and rp = l MO. 

7.14 Calculate the amplification A for the circuit below using the plate characteris
tics in figure 7. 12. 

-2 V 

-r 'T T 

"out 
0 

7.15 Sketch what v0 u, would look like as a function of time for the circuit of 
problem 7 .14 if Vin = l 0 sin wt. 

7.16 Calculate the amplification A for the circuit in figure 7.17 (a), assuming g1s 

= 2.5 mU, r
0

, = 00 , and R0 = 10000. 

7.17 Calculate the values required for Ra, R0 , and Rs in the circuit in figure 7.17 (a) 
if the FET has g1, = 0.01 U and ros = oo and the amplifier is to have an input 
resistance of 106 0, an output resistance of 103 0 and an operating point with 10 

= 10 mA and Vas= -1 V. The capacitors can be considered short circuits for ac. 

7.18 In the circuit below, the FET has g1, = 10- 3 U and r0 , = oo at its operating 
point. Calculate the amplification A. You may assume the capacitors act as short 
circuits for ac. 

+ 10V 

R» • 10 k.O 
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7.19 For the circuit below in which gfs = 0.04 U and r05 = oo, calculate A 1 = v1/vin 
and A 2 = v2 /vin, assuming the capacitors are short circuits for ac. 

-10 V 

5 kn 

._, __ -I i----40 V2 

100 kn ..,... __ """ t■----oo v
1 

5 kn 

-=-

7.20 In the circuit below, calculate the de gate-to-source voltage VGs if the FET is 
biased such that VDs = 0.5 VDD· 

VDD = -10 V 

4 kn 

-=-

7.21 Calculate the amplification A, the input resistance Rin and· the output 
resistance Rout for each of the circuits in figure 7 .1 7 in terms of gfs• Assume r05 = oo 
and the capacitors are short circuits for ac. 
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8.1 Construction and Operation 

chapter 8 
Bipolar 

Transistors 

The FET described in the previous chapter 1s but one example of an active 
semiconductor device. The first such device to be invented was the bipolar 
transistor, and it remains the most common of the active semiconductor 'devices. In 
many ways it resembles the vacuum tube and FET, but it also has important 
differences, and in some ways it is simpler than those devices. The bipolar transistor is 
so named because current is carried simultaneously by charges of both polarities 
(electrons and holes) rather than by a single species, as in the FET which is an 
example of a unipolar device. 

The bipolar transistor can be made by placing a thin p-type semiconductor in a 
sandwich between two n-type semiconductors, as shown in figure 8.1. Actually, a 

n Cpllector 
+ 

VcE p Base 

n Emitter 

t /B 

Fig. 8.1 Bipolar npn transistor. 

transistor is manufactured by abruptly changing the doping material twice while the 
semiconductor crystal is being grown. If a current 18 flows into the base, the base-to
emitter junction is forward-biased, and it behaves like any forward-biased pn 
junction; that is, the voltage across the junction is small ( ,_ 0.2 V for germanium and 
"'0.6 V for silicon). If a large, positive voltage VcE is applied between the collector 
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and emitter, the collector-to-base junction is reverse-biased, and the collector current 
fc is small. However, since the base is very thin, most of the electrons that flow from 
the emitter to the base difTuse across the narrow base region before they have a chance 
to recombine with a hole and are collected by the positive collector in much the same 
way that electrons that pass through the grid of a vacuum tube are attracted to the 
plate. In this way, a small base current is capable of controlling a much larger 
collector current. The bipolar transistor thus resembles the vacuum tube and FET, 
except that the input (base-to-emitter junction) is biased so as to look like a short 
circuit rather than an open circuit. 

Like the FET, the bipolar transistor comes in two types which are identical 
except that the sign of the voltages and currents are reversed. These are called the npn 
and the pnp transistor, respectively, and their schematic symbols are shown in 
figure 8.2. 

+ 
(a) (b) 

Fig. 8.2 Symbols for bipolar transistors. 
(a) npn. (b) pnp. 

It appears from the construction of the transistor that the emitter and collector 
ought to be interchangeable. Such is not the case, however, for several reasons. First, 
the emitter is usually more heavily doped than either the base or collector to 
minimize the recombination of charge carriers in the base region and increase the 
amplification. Second, the collector is usually physically larger than the emitter, 
because most of the voltage drop and hence the heat production occurs at the 
collector-to-base junction. To effectively dissipate this heat, the collector is often 
connected to the metal case of the transistor. Finally, the reverse breakdown voltage 
of the base-to-emitter junction is typically much less than the breakdown voltage of 
the collector-to-base junction. A transistor will often work if connected backward, but 
it's not likely to work very well. 

8.2 Collector Characteristics 

As with the other three-terminal, active devices, the bipolar transistor operation is 
described by a set of curves called the collector characteristics. A typical set of 
characteristics is shown in figure 8. 3. The most proper way to analyze a transistor 
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Fig. 8.3 Typical bipolar transistor collector charac-
teristics. 

circuit is to follow the same procedure that was used with vacuum tubes and FETs. 
The operating point is determined by first drawing the load line using the de open 
circuit collector-to-emitter voltage and the short-circuit collector current. The 
intersection of the load line with the collector-current curve corresponding to the 
appropriate de base current 18 would then specify the operating point. Then for small 
variations about the operating point, the ac linear equivalent circuit could be 
represented by either a Thevenin or Norton equivalent circuit in which the source 
value and resistance are given by the appropriate partial derivatives. 

Fortunately, it happens that a simpler procedure is usually adequate. Inspection 
of figure 8.3 shows that over most of the range of operation the curves are quite 
straight, nearly horizontal, and evenly spaced. In fact, it appears that to a good 
approximation the collector current is simply proportional to the base current 
independent of operating point: 

(8.1) 

The proportionality constant, beta (/3), is a dimensionless number with a typical 
value of about 100. 

Although the value of /3 is nearly constant over most of the range of the collector 
characteristics, at very low values of collector current ( near cutoff), the beta varies 
approximately linearly with collector current. The beta also increases with increasing 
tern per a ture. 

As with the other three-terminal active devices, there is a maximum power that 
the collector can dissipate without overheating and damaging the transistor. This 
value can usually be increased substantially by mounting the transistor on a heat 
sink which conducts heat away from the transistor and dissipates it by convection 
and radiation. The dashed curve in figure 8.3 shows a collector dissipation of 
150 mW, which is a typical limit for a small transistor without a heat sink. The 
operating point should be chosen so that it lies below such a curve. Transistors, unlike 
tubes, are very unforgiving when their ratings are exceeded. Because of their small 
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size and mass, even a momentary excursion above the rated collector dissipation will 
usually cause irreparable damage to a transistor. 

The simplest way to increase the power handling capability of a transistor is to 
increase the size of the collector-to-base junction. The junction capacitance in
evitably increases as a result, and the maximum usable frequency is decreased. There 
is thus an inverse relationship between power rating and maximum frequency. Much 
of the current effort in semiconductor development is aimed at producing high-power 
transistors that will operate at high frequencies. As progress is made, vacuum tubes 
are gradually being replaced with transistors in those few remaining applications. 

8.3 Linear Equivalent Circuits 

Because of the nearly constant value of beta through most of the operating range of 
the transistor, it is often possible to use an especially simple model for the transistor 
that is valid for both ac and de voltages. Such a model is essentially a Norton 
equivalent circuit in which the Norton current ({318 ) is dependent on the base current 
18 , the Norton resistance is infinite, and the base-to-emitter junction is a short circuit. 
Such a model, as shown in figure 8.4(a), will define an ideal transistor. Note that 

C 

Bo---• 

E 

(a) 

C 

E 

(b) 

C 

E 

(c) 

Fig. 8.4 Transistor linear equivalent circuit models. (a) 
Ideal transistor. (b) de equivalent circuit of ideal germanium 
or ideal silicon transistor. (c) ac equivalent circuit of real 
trans is tor. 

t~e model is valid only if the voltages and currents all have the proper polarities, and 
if the transistor is not too close to saturation or cutoff. Such a model will suffice for 
analyzing most of the circuits encountered in this text. 

Unfortunately, the base-to-emitter junction of a transistor is not as good a short 
circuit as the grid-to-cathode of a vacuum tube is an open circuit. Consequently, a 
more complicated model is required when accurate results are desired. For 
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calculating the de voltages and currents, it often suffices to simply add a constant de 
voltage of 0.2 V for a germanium transistor or 0.6 V for a silicon transistor in series 
with the emitter to represent the de base-to-emitter forward voltage drop, as shown in 
figure 8.4(b). The voltage source would be positive for an npn and negative for apnp 
transistor. This is the model that will be used to calculate the de voltages and currents 
whenever a circuit is said to contain ideal silicon or ideal germanium transistors, 
whereas the ac linear equivalent circuit is assumed to be as in figure 8.4(a). 

The ac characteristics of a real transistor can be represented to an accuracy that 
will suffice for all purposes of this text by the ac linear equivalent circuit of 
figure 8.4(c). The value of f3 will, in general, depend somewhat on the operating 
point that is determined using the de model of figure 8.4(b). The resistance in series 
with the emitter is called the transresistance, and it is a sum of two parts: 

(8.2) 

The rohmic term is constant independent of operating point and has a typical value of 
a few ohms for most transistors. It can usually be neglected. The rd term is called the 
dynamic resistance, and it can be calculated from the derivative of the V versus I 
characteristic for a pn-junction diode as given by equation 6.3: 

dVBE kT 0.026 
rd=--=-'.::::::--

dlE elE IE 
(8.3) 

The dynamic resistance is an ac resistance given by the slope of the VBE versus IE 

curve, and it depends on the de emitter current at the operating point. 
Although the models described above will suffice for the purposes of this text, two 

additional models are mentioned for the sake of completeness. The first is the T 
network equivalent circuit shown in figure 8.5(a). It closely resembles the model 
of figure 8.4(c), except that it includes a collector resistance re which is determined 
from the slope of the collector characteristic at the operating point: 

I 
(8.4) 

and a base resistance rB which is usually on the order of a few ohms. As with any ac 
linear equivalent circuit, the values of the parameters /3, re, rE, and rB depend on the 
de voltages and currents that determine the operating point. 

Because the T network equivalent circuit has four parameters, it is complete in 
the sense that the transistor behavior is exactly predicted, at least in the small 
amplitude limit, provided the parameters are precisely known. The reason for this is 
that a transistor is a three-terminal active device, and so in the linear limit it can be 
completely specified by four parameters, just as a two-terminal, linear, active device 
can be specified by two parameters ( VT and RT or IN and RN). For example, if VeE, vBE, 

i8 , and ie are known, the other voltage can be determined from VcB = VeE - vBE and 
the other current from iE = i 8 + ie, so that there are only four independent 
parameters. 
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Fig. 8.5 Four-parameter transistor linear equivalent 
circuit models. (a) T network equivalent circuit. (b) h 
parameter equivalent circuit. 

The most widely used four-parameter transistor model is the h parameter 
equivalent circuit shown in figure 8.5 (b). The base-to-emitter junction is repre
sented by a Thevenin equivalent circuit in which the Thevenin voltage depends on 
vCE. The collector-to-emitter junction is represented by a Norton equivalent circuit in 
which the Norton current depends on is in a manner identical to the simpler models. 

Applying Kirchhoff's laws to figure 8.5(b) gives 

h. = (avSE) 
le \ a ls V CE= constant 

h = (0
VsE) 

re a VcE 1B = constant 

hi = (olc) 
e Ols VcE = constant 

(8.5) 

h = (}_!£) 
oe oVCE IB=constant 
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The first subscript of the h parameters stands for input, reverse, forward, and 
output, respectively. The second subscript (e) denotes the fact that the emitter has 
been chosen as the terminal that is common to the input and the output. Alternate h 
parameter representations are sometimes encountered in which another terminal 
such as the base is common. The resulting h parameters can be written in terms of 
those in equation 8.5, as follows: 

h - hoe 
oh-l+h 

fe 

(8.6) 

hoc= hue 

Note that the h parameters have a variety of units (ohms, siemens, dimensionless), 
and for this reason they are called the hybrid h para.meters. 

By straightforward, although tedious, application of Kirchhoff's laws, the 
relations between the parameters in the various models can be derived (see 
problem 8.6). The results are shown in table 8.1, along with typical values for the h 

TABLE 8.1 Comparison of Parameters in Various Transistor Models 

h Parameter T Network Real Ideal Typical Value 
Figure 8.5(b) Figure 8.5(a) Figure 8.4(c) Figure 8.4(a) 

hie + rerE(p+ 1) 
TB 

re+ rE 
(P+ l)r,r 0 103 n 

hre 
TE 

re+ rE 
0 0 10-3 

h1e 
Pre-TE 

p p 100 
re+ 'E 

hoe 
re+ rE 

0 0 10-:-4 0 

8.3 Linear Equivalent Circuits 1 7 5 



parameters. Note that an ideal transistor is one in which all the h parameters are zero 
except of h fe which is the same as {3. The representation we will use for a real 
transistor has hfe = /3, hie= ( /3 + 1) r,r, and the other h parameters equal to zero. 

It should be emphasized that all these transistor circuit rep~esentations are valid 
only when the ac voltages and currents are sufficiently small, only when the de 
voltages and currents have the correct sign, and only when the transistor is not 

saturated or cut off. 

8.4 Common Emitter Amplifier 

The basic bipolar transistor amplifier circuit is the coJDJDon emitter amplifier 
shown in figure 8.6. It is analogous to the common cathode vacuum tube circuit and 
the common source FET circuit. The name comes from the fact that the emitter is 

+Vee 

R, Re 
Cc 

I 0 Vout 
C 

Cs 

Vin~ 
B 

E 

RE 

-=- -=-
(a) 

voot 

! Re 

Vin 
B 

-::-
~ 

is 

R, R2 

-::- -=- -::-
(b) 

Fig. 8.6 The common emitter amplifier in (a) 
can be analyzed using the linear equivalent circuit 
in (b). 
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common to both the input and the output circuits. We will first analyze the behavior 
of the circuit, assuming the transistor is ideal. By setting the de source ( Vee) equal to 
zero, replacing the capacitors with short circuits, and using the linear equivalent 
circuit for the ideal transistor [figure 8.4(a)], the circuit in figure 8.6(b) is obtained. 
Applying Ohm's law to RE gives 

Similarly, for Re, Ohm's law gives 

The amplification A is given by 

A= Vout = _ fJiB Re ~ Re 
Vin ({J + 1 )iB RE RE 

(8.7) 

where the last approximation is valid for fJ ~ l. Note that the amplification is 
independent of fJ ( for fJ large), which is fortunate, since the fJ of transistors of the 
same type often varies by a factor of two or more, and it would otherwise be difficult 
to mass-produce amplifiers with specific characteristics. The fact that A is inde
pendent of fJ also means that the transistor behaves in a linear fashion, even for large 
excursions from its design operating point. Note also that A is negative, as was the case 
for the common cathode and common source amplifiers. • 

The output resistance of the common emitter amplifier is determined by dividing 
the open circuit output voltage -fJiBRe by the short-circuit output current -/JiB, 
giving the simple result: 

(8.8) 

The input resistance is a little more complicated. It is tempting to set the current 
source equal to zero and to say that the input resistance consists of R1 , R2 , and RE in 
parallel. However, this is not allowed, because the current source has a value 
proportional to iB, and a measurement of the resistance requires one to apply a 
voltage vin which produces a current iB, so that 

(8.9) 

The input resistance rin between the transistor base and ground, neglecting R 1 and 
R2, is thus not RE but /JRE (for fJ ~ 1). The total input resistance Rin is then given by 

l_l+l+ 1 
Rin - R1 R2 /JRE 

(8.10) 

Normally, one chooses R 1 and R2 sufficiently small that /JRE can be neglected. Then 
the input resistance is not affected by variations of {J, and so it remains nearly constant 
for transistors with widely varying characteristics and for different operating points 
for a given transistor. 
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The reader may wonder why a voltage divider (R 1 and R 2 ) is used to establish 
the operating point rather than simply omitting R2 and obtaining the required de 
base current from R 1 alone. The reason is that the variation in beta from one 
transistor to the next would cause a wide variation of operating points for otherwise 
identical circuits. If the collector current at the operating point were chosen to be 
one-half the short-circuit current for a given transistor and then a transistor with a 
beta twice as great were substituted in the circuit, the circuit would be saturated. 
Furthermore, such a circuit tends to be thermally unstable. If the transistor heats up, 
the beta increases, and the collector current rises for a constant base current. This can 
cause the transistor to heat up even more, further increasing the beta. In an extreme 
case, thermal runaway occurs, the maximum collector dissipation is exceeded, and 
the transistor is destroyed. 

These difficulties are avoided by a proper choice of R1, R2, and RE. R1 and R2 
establish the de base voltage and hence the emitter voltage (since VE:::::::: VB). For a 
given emitter voltage RE determines the de emitter current, and hence the collector 
current (since le::::::: IE) and operating point. The circuit characteristics are thus almost 
entirely independent of the transistor characteristics. 

In designing a transistor amplifier, the resistors are chosen as follows: 

1. Re is chosen to provide the desired output resistance (Re= R0 u,). 

2. RE is then chosen to provide the desired amplification (RE= -Rcf A). 

3. R 1 and R2 are chosen so that their parallel ·combination is small (say, 10%) 
compared with f3RE and such that the operating point is at the desired place, usually 
near the center of the collector characteristics. For example, one normally takes the 
collector current to be about half the short-circuit ( VCE = 0) current: 

1 ~ Vee 
c - 2(Re+ RE) 

Since IE'.::::'. le, the emitter voltage desired is 

and so by the voltage divider relation, since VB:::::::: VE, 

or 

R1 ::::::: 2Re + 1 
R2 RE 

(8.11) 

It appears from the above that the amplification IA I can be made arbitrarily 
large by making RE small. If RE is too small, however, the ideal transistor linear 
equivalent circuit is no longer adequate, and one must consider the transresistance, 
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which appears in series with RE. In such a case the amplification is 

(8.12) 

which depends on the operating point and has a limiting value of -Rc/r,, when 
RE= 0. The input resistance is also lowered significantly by taking RE= 0. One often 
connects an emitter bypass capacitor in parallel with RE in a manner analogous 
to figures 7. 7 (a) and 7 .1'7 (a). The amplification in such a case still depends on the 
transresistance and hence on the operating point, but at least the operating point is 
determined by the external resistors rather than by the characteristics of the transistor 
itself. The use of the external resistor RE to reduce the amplification and mask the 
inherent nonlinearity of the transistor is an example of negative feedback which 
will be discussed in some detail in the next chapter. 

8.5 Emitter Follower Circuit 

The bipolar transistor can be used in a circuit analogous to the cathode follower 
discussed in section 7 .4. Such a circuit as shown in figure 8. 7 (a) is called an emitter 
follower or a co111D1on collector amplifier. Assuming the transistor to be ideal 
leads to the ac linear equivalent circuit in figure 8.7(b). It is readily apparent that 
v0 u, = vin· With a more realistic transistor model, a resistance r1, would be in series 
with the ~mitter, as shown in figure 8.6(c), and the output voltage would be given by 
the voltage divider relation: 

so that the amplification is 

A= RE 
RE+ r,, 

The input resistance is the same as for the common emitter amplifier: 

(8.13) 

(8.14) 

The output resistance is zero if vin is connected to an ideal voltage source (no internal 
resistance) and the transistor is ideal as shown in figure 8. 7 ( b). For the more realistic 
transistor model of figure 8. 7 (c) the output resistance is 

r,,R_E 
Rout=--

r1, + RE 
(8.15) 

as can be seen by examining figure 8. 7 (c) with vin = 0. In contrast to the vacuum tube 
and FET, the output resistance of the emitter follower depends on the internal 
resistance of the source connected to the input, and the input resistance also depends 
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Fig. 8.7 The emitter follower circuit in (a) can be 
analyzed using the linear equivalent circuit in (b) if 
the transistor is ideal, or using the more realistic 
model in (c) if more accurate results are required. 

on the resistance of the load connected to the output. The output resistance is lowest 
when the source resistance is low, and the input resistance is lowest when the load 
resistance is low. The emitter follower is thus a near-unity voltage gain impedance 
transformer, but it does not isolate the input from the output as thoroughly as does the 
cathode follower or source follower. 
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8.6 Common Base Amplifier 

As a final example of a single-transistor linear amplifier circuit, we will consider the 
comm.on base amplifier shown in figure 8.8(a). Treating the capacitors as short 
circuits for ac and the transistor as real leads to the linear equivalent circuit in 
figure 8.8 ( b). The transresistance has to be included in this circuit, because otherwise 
it would be impossible to have a voltage between the input and ground. 

-::-
CE 
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B 
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C 
{3iB voot 

~ 

Re 

Fig. 8.8 The common base circuit in (a) can be analyzed using 
the linear equivalent circuit in (b). 

The base current iB in figure 8.8 ( b) from Kirchhofrs current law is a sum of two 
parts, both negative: 

8.6 Common Base Ampllfler 181 



Solving for i8 gives 

The output voltage is 

v = - {3i R - {3vinRc 
out B C - ( {3 + l ) r,r 

Therefore the amplification is 

A = voul = f3Rc ::::: Re 
Vin ( /3 + 1 ) r,r r,r 

(8.16) 

where the last approximation is valid for f3 ~ 1. Like the common emitter amplifier, 
the amplification is large, but unlike the common emitter circuit, the output is not 
inverted. The dependence of the amplification on the transresistance can be reduced 
either by placing a resistor in series with the input (see problem 8.14) or by 
eliminating the capacitor from the base to ground (see problem 8.15). 

The input resistance of the common base amplifier, as can be seen by inspection 
of figure 8.8(b), is given by the parallel combination of r,r and RE: 

r,,.RE 
R. =--

m r,r + RE 
(8.17) 

and hence.is quite small, since r,r is usually small. The output resistance is the same as 
for the common emitter circuit: 

TABLE 8.2 Characteristics of the Three Types of Transistor 
Amplifiers 

Amplification 
(voltage) 

A= 

Input 
resistance 

Rin= 

Output 
resistance 

Rout= 
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Common Emitter 
Emitter Follower 

Medium Small 

Re RE 
----

RE+ r,, RE+ r,, 

Medium Medium 

( 
I 1 I )-

1 
( 1 I I )-

1 

Ii;+ R2 + f3RE R1 + R2 + f3RE 

Medium Small 

Re 
Tr,RE 

Tr,+ RE 

Common 
Base 

Large 

Re 

rr, 

Small 

rr,RE 

Tr,+ RE 

Medium 

Re 
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In summary, table 8.2 shows the characteristics of the three basic types of 
transistor amplifier circuits. One should note the similarity to the three vacuum tube 
circuits listed in table 7 .1. 

8. 7 Transistor Voltage Regulators 

The amplifier circuits previously discussed account for only a small fraction of the 
possible applications of the bipolar tran~istor. In this section we will consider how 
transistors can be used to maintain a constant output voltage across a load in which 
the current may vary drastically. Such a regulator is often used with a rectifier and 
filter circuit in a device called a regulated power supply which behaves much like 
an ideal de voltage source. We will consider two types of regulators, the series 
regulator and the parallel ( or shunt) regulator. 

Figure 8.9(a) shows the basic series regulator. Its operation is very easy to 

Voo-------

(a) 

Va 

(b) 

-::-

~ 

T 
l 

Fig. 8.9 Transistor voltage regulators. (a) Series. 
( b) Parallel. 
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explain. The Zener diode holds the base at a voltage V8 over a wide range of 
conditions. The circuit is essentially an emitter follower, and so the emitter ( and 
hence the load) voltage is the same as (or a constant 0.6 V for a silicon transistor less 
than) the base voltage. The advantage of the series regulator over the simple Zener 
diode regulator discussed in section 6. 7 is that the power dissipated by the regulator is 
considerably smaller, especially in the no-load (RL = oo) condition. 

The basic shunt regulator is shown in figure 8.9(b). Whenever the output volt-age 
VL tries to rise above V8 , neglecting the small base-to-emitter voltage, the Zener diode 
conducts, and a large current 18 flows into the base of the transistor. This current is 
amplified by a factor of /3 and increases the voltage drop across R 1 until VL drops to 
V8 . The transistor amplifies the effect of the Zener diode so that the Zener need not 
dissipate appreciable power. The transistor does, however, dissipate as much power 
as would a Zener diode at the same place in the circuit. The only real advantage is 
that high-power transistors are usually less expensive than the equivalent high-power 
Zener diode. The shunt regulator dissipates the most power for small IL, whereas the 
series regulator dissipates the most power for large IL. 

8.8 Multiple-Transistor Amplifiers 

Depending on the configuration, the voltage gain of a single transistor amplifier is 
limited to approximately -Rcfr 1,. To achieve higher gains, to improve stability, and 
to increase bandwidth, amplifiers usually employ several stages of amplification. A 
straightforward approach is to use two or more single transistor amplifiers as 
previously described, with the output of one connected to the input of the next, and 
so on. In such a case it is tempting to calculate the overall amplification by simply 
multiplying together the amplification of the various stages. This would be correct, 
however, only if the input resistance of each stage is very large compared with the 
output resistance of the previous stage. In fact, for maximum power transfer one 
generally designs each stage so that its input resistance is approximately equal to the 
output resistance of the previous stage. When this is done, the amplification of each 
stage is reduced to half the value it would have with no output load, and the overall 
amplification is reduced by a factor of 2", where n is the total number of stages. This 
reduction of amplification is called loading. 

An alternate configuration is the Darlington pair shown in figure 8.1 O(a), 
which can be analyzed using the linear equivalent circuit in figure 8.1 O(b). Such a 
circuit is identical to a single transistor with a /3 given by 

(8.19) 

which can easily exceed 104
. The total de base-to-emitter voltage drop is the sum of 

the base-to-emitter drops for each transistor (i.e., 1.2 V for silicon). Such a circuit is 
often made in a single package with three terminals so as to behave like a single, very 
high beta transistor. 

A practical difficulty with the Darlington configuration is that the transistor 
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Fig. 8.10 The Darlington pair in (a) can 
be analyzed using the linear equivalent 
circuit in (b). 

types have to be chosen very carefully if the full benefit of the high beta is to be 
obtained. To avoid saturating the second transistor, its base current, and hence the 
collector current of the first transistor, has to be very small. An input transistor thus 
has to be chosen that has a high beta at low values of collector current. 

Two transistors can be connected as in figure 8.11 (a) to form a difference 
amplifier which can be analyzed using the linear equivalent circuit in 
figure 8.11 ( h). The transistors are assumed to be identical, and it is necessary to 
consider the transresistance so as to allow a voltage difference between the two bases. 
For RE~ r1,., the current i1 produced by v1 and v2 can be determined, using the 
superposition theorem (alternately, connect v2 and then v1 to ground): 
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Fig. 8.11 The difference amplifier in (a) can be analyzed using 
the linear equivalent circuit in (b). 

Similarly, i2 is given by 
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The voltage drop vout is 

(8.20) 

Such a circuit is useful for subtracting two voltages and amplifying the difference. 
This is extremely useful whenever it is necessary to measure the voltage between two 
points in a circuit, neither of which is grounded, and to reference the measured 
voltage to ground. It is also useful for amplifying de voltages, since no capacitors are 
used. A characteristic of most de amplifiers is that both a positive and negative power 
supply voltage are required. 

The quality of a difference amplifier is expressed in terms of its common mode 
rejection ratio (CMRR). The CMRR is the ratio of the voltage that must be 
applied at the two inputs in parallel ( v1 and v2 ) to the difference voltage ( v1 - vi), for 
the output to be of the same magnitude. The CMRR of the difference amplifier in 
figure 8.11 is theoretically infinite. If any of the corresponding components are not 
identical, a finite CMRR will result (see .problem 8.19). Difference amplifiers usually 
have some means of adjusting for small asymmetries in the circuit to maximize the 
CMRR. It is relatively easy to obtain a CMRR of,..,.,, 103 to 104 over a narrow range 
of frequencies, but much more difficult when the amplifier bandwidth is large. 

Another useful circuit is the complementary-symmetry amplifier shown in 
figure 8.12. It uses an npn and a pnp transistor of otherwise identical characteristics. 

~----4...,_---o 11out 

-=- -Vee 

Fig. 8.12 A complementary-symmetry am
plifier using an npn and a pnp transistor biased 
to cutoff (class B). 
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For vin = 0, both transistors are biased to cutoff (i.e., 18 = 0). For vin > 0, the upper 
transistor conducts and behaves like an emitter follower while the lower transistor is 
cut off. For vin < 0, the lower transistor conducts while the upper transistor is cut off. 
In addition to being useful as a de amplifier, such a circuit conserves power, because 
the operating point for both transistors is near le= 0. Of course, the characteristics of 
a transistor ({J, r,r) are not very constant near le= 0, and so the circuit is not very 
linear for small signals or near the zero-crossing point of a large signal. 

Since it is difficult to obtain npn and pnp transisto_rs that are accurately matched, 
it is more common to find circuits that use two transistors of the same type in what is 
called a push-pull amplifier circuit as shown in figure 8.13. In this case, the 

-----0 17out 

Fig. 8.13 A push-pull amplifier uses two matched transistors biased to 
cutoff (class B). 

transistors are connected as common emitter amplifiers, although an emitter follower 
and common base configuration are also possible. The push-pull amplifier resembles 
the full-wave rectifier in its use of center-tapped transformers. The use of transfor
mers in a low-frequency circuit of this type is undesirable in terms of cost, weight, 
space, and linearity, but a transformer does provide considerable flexibility, in that it 
enables the designer to match input and output resistances in a way that optimizes 
the overall performance of the circuit. As with the complementary-symmetry 
amplifier, the push-pull amplifier is normally operated with 18 = 0, so that neither 
transistor dissipates power until an ac input signal is applied. 

A circuit biased in such a fashion is called a class B amplifier, in contrast with 
the class A amplifiers previously discussed, in which the operating point is near 
the center of the collector characteristics. Circuits are sometimes constructed in 
which the base is reverse-biased so as to conduct over only a small fraction of the 
period of the input signal. Such circuits are called class C amplifiers and are used 
primarily for amplifying high-frequency signals having a narrow Fourier spectrum. 
The input and output voltages for the three types of amplifiers are shown in 
figure 8.14. 

Although class C amplifiers are the most efficient of the three, they produce 
drastic distortion of the input signal and so are normally used with high Q resonant 
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Fig. 8.14 Voltage waveforms for 
various classes of amplifiers. (a) Input 
voltage. (b) Class A amplifier. (c) Class B 
amplifier. (d) Class C amplifier. 

circuits in their output to attenuate the unwanted harmonics, as shown in figure 8.15. 
Alternately, by tuning the output circuit to one of the harmonic frequencies, a class C 
amplifier can be used as a frequency multiplier. The resonant LC circuit in the 
collector is called the tank circuit, and it is tuned to the frequency of the input voltage 
or one of its harmonics to produce a nearly sinusoidal output despite the highly 
nonlinear nature of the class C amplifier. 

Figure 8.15 also shows how simply the proper base bias for class C operation can 
be obtained. Use is made of the fact that the base-to-emitter junction is a diode 
rectifier, and so the capacitor C8 will tend to charge up with a de voltage that keeps 
the base reverse-biased during most of the cycle of the input waveform. 

The high efficiency of the class C amplifier results from the fact that the transistor 
behaves much like a switch. Most of the time it is cut off and hence draws no current. 

1When it does conduct, it conducts strongly so that the collector-to-emitter voltage is 
small. In either case the. power dissipated by the transistor is small. Note that the 
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Fig. 8.15 Class C amplifier with resonant output circuit. 

class C amplifier is operated far from its linear regime. Consequently, the linear 
equivalent circuits presented earlier are of virtually no use in analyzing such a circuit. 

When good linearity over a wide range of frequencies is required, as in a high
fidelity audio amplifier, a class A amplifier must be used, with some sacrifice of 
efficiency. For any amplifier, the efficiency '7 is defined as the ac power delivered to 
the load divided by the total power produced by all the sources. Typical efficiencies 
are ,..._, 10-30% for a class A amplifier and ~70-80% for a class C amplifier. 

8.9 Summary 

The bipolar transistor operates in a manner analogous to the vacuum tube and FET 
except that it is controlled by a current rather than by a voltage. It is inherently a 
low-input resistance device, in contrast to the vacuum tube and FET. A bipolar 
transistor tends to be more linear than the other devices, and it usually suffices to 
neglect the collector resistance and to ignore the variation of /3 with operating point. 
The base-to-emitter junction is a forward-biased diode, and so it has a small, nearly 
constant, de voltage drop which must sometimes be considered. In addition, the 
emitter behaves as if it has an ac internal series resistance r,r that depends on the de 
emitter current. 

The transistor can be used as an amplifier in either the common emitter, 
common collector (emitter follower), or common base configuration. The common 
emitter circuit has a large amplification but a high output resistance. The emitter 
follower has an amplification slightly less than one, but a very low output resistance. 
The common base circuit has a large amplification and a very low input resistance. 

The transistor can also be used as a voltage regulator either in series or parallel 
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with the load. With two or more transistors, the variety of possible circuits is very 
large. The Darlington pair, the difference amplifier, the complementary-symmetry 
amplifier, and the push-pull amplifier are four common examples. The way in which 
an amplifier is biased allows one to trade off linearity for efficiency. Class A amplifiers 
are the most linear, and class C amplifiers are the most efficient. 

Problems 

8.1 Using the collector characteristics in figure 8.3, determine the operating point 
for the circuit below: 

..---- ...... --~ +20 V 

Re= 2 k!l 
R8 = 100 kll 

8.2 Calculate the value of re for the problem above. 

8.3 Calculate the value of VeE and le for the circuit in problem 8.1 if RB is changed 
to 10 kn. 

8.4 Calculate the value of VBE and r1, in the circuit in problem 8.1 assuming the 
transistor is germanium with 'ohmic = 4 n. 

8.5 Show that if re= oo in the T network model of figure 8.5(a), the input and 
output currents and voltages are the same as for the real transistor model of 
figure 8.4(c), and derive an expression for r1, in terms of /J, rB, and 'E· 

8.6 By application of Kirchho:trs laws, derive the h parameters for the T network 
given in table 8.1. 

8.7 Assume figure 8.6 contains an ideal silicon transistor with f3 = l 00 and Vee 
= 10 V, R1 = 20 kn, R2 = 5 kn, RE= I kn, and Re= 5 kn. Calculate VB, VE, Ve, IB, 
IE, and le, 

8.8 For the circuit described in problem 8. 7, calculate Rin, Rouo and A. How would 
these values be changed if an emitter bypass capacitor were added to the circuit? 
Assume 'ohmic= 1.4 n. 

8.9 For the circuit described in problem 8. 7, calculate the amplification A 
assuming the output is connected to a resistor RL = 7.5 kn. 

8.10 Design a common emitter amplifier with Rout= 5 kn and A= -10 using a 15-
V power supply and an ideal transistor with /J = l 00. Calculate its input resistance. 

8.11 For the circuit below, calculate the de and the ac parts of the output voltage 
V0 ut (t), assuming the transistor is ideal with f3 = 99. 
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+10 V 

Re = 6 kn 

8.12 The circuit below contains a real germanium transistor with /3 = 50 and r1, 

= 2.0 0. Calculate the input resistance Rin and the voltage vL across the load resistor 
RL. 

-=-

8.13 For the circuit in problem 8.12, estimate the values required for C1 and C2 such 
that the 3-dB point will occur at Jc= 25 Hz. 

8.14 Calculate the input resistance and amplification of the circuit on the following 
page, assuming the transistor is ideal and the capacitors are short circuits for ac. 

8.15 Calculate the input resistance and amplification of the circuit in figure 8.8(a) 
with the capacitor CB between base and ground removed, using R 1 = 40 kO, 
R 1 = 10 kO, Re= 4 kO, and RE= 1200 0, assuming the transistor is ideal with /3 = 99 
and the other capacitors are short circuits for ac. 

8.16 The circuit on the following page acts as a constant current source. Show that 
the current I is independent of RL for RL below a critical value, and calculate that 
value of RL. Assume that the transistor is ideal. 

8.17 Assume the circuit in figure 8.9(a) contains an ideal transistor with /3 = 39. 
Calculate the maximum current in RL for which the circuit regulates properly, 
assuming V0 = 20 V, V8 = 10 V, and R 1 = 400 n. Calculate the power dissipated in 
the load, in the transistor, in resistor R 1, and in the Zener diode under the above 
conditions. 
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8.18 Assume the circuit in figure 8.9(b) contains an ideal transistor with /3 = 39. 
Calculate the maximum current in RL for which the circuit regulates properly, 
assuming V0 = 20 V, Vn = 10 V, and R 1 = 10 n. Calculate the power dissipated in 
the load, in the transistor, in resistor R 1, and in the Zener diode under the above 
conditions. 

8.19 Calculate the common mode rejection ratio for the circuit in figure 8.11, 
assuming the transistors have values of /3 that differ by 1 % and all other parameters 
are identical. 

8.20 Assume the circuit in figure 8.12 contains ideal transistors and that vin 

= l O sin wt, Vee= 10 V, and RE= l On. Calculate the power dissipated in the load 
RE, the power dissipated in the transistors, and the efficiency of the amplifier. 
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9.1 Operational Amplifier Characteristics 

chapter 9 
Operational 

Amplifiers 

A high-gain, multistage, de amplifier containing many individual transistors and 
resistors can be considered as a single, active, circuit component called an oper• 
ational amplifier (op amp for short). Such a circuit is usually miniaturized and 
fabricated on a single chip of silicon in what is called an integrated circuit (IC). 
Such integrated circuits often contain hundreds of individual components, and when 
mass produced, are comparable in size and cost to a single transistor. The op amp is 
such a useful device that it has become the basic building block of analog electronics 
and has revolutionized the way in which complicated electronic circuits are designed 
and constructed. 

Figure 9.1 shows a schematic diagram of a typical, low-cost, general-purpose, 
operational amplifier. It is not necessary to understand its operation in detail. 
However, one should notice that the input stage is a difference amplifier, the output 
stage is a complementary-symmetry amplifier, and all stages are de coupled. These 
amplifier circuits were described in section 8.8. This chapter will describe some of the 
properties and uses of operational amplifiers. 

In practice, it is not necessary to know what is contained within an op amp in 
order to use it. Its behavior is completely specified by the relations of the voltages and 
currents at its terminals in the same way that other devices such as the vacuum tube 
and transistor are specified by the V-1 relations at their terminals. The op amp is 
basically a four-terminal device, with two inputs, one output, and a common 
terminal, which is usually connected to ground. In addition, a plus and minus de 
voltage must be supplied, and extra terminals are often provided to compensate for 
certain nonideal properties of the device, such as frequency response and de offset. 
Often the ground terminal is omitted from the op amp, and the output voltage is 
referenced instead to the midpoint of the positive and negative de supply voltages as 
determined from a voltage divider internal to the op amp. 

The most important characteristics of the op amp are the open-loop vo!tage 
gain, A0 , which is a function of input voltage, frequency, the input resistance rin, 

and the output resistance rout· A typical plot of output voltage versus input voltage 
difference is shown in figure 9.2. Note that the device is nonlinear, as would be 

9.1 Ampllfler Characterlatlca 19 5 



-A. 

I~ 

Non inverting 
0--

input 

Offset null 
Offset 

null 

Fig. 9.1 Typical, low-cost, general-purpose operational amplifier. 
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Fig. 9.2 Output versus input voltage for 
a typical real operational amplifier. 

expected, since it contains nonlinear components. In particular, the output voltage 
always saturates at a value close to but slightly below the de power supply voltage. 
The device shown has an open-loop voltage gain of A 0 ~ l 0\ since the output reaches 
~ 10 V when the input voltage difference is ~ l m V. 

The open-loop voltage gain of op amps in common use is typically in the range of 
l 02 to l 06 

( 40 to 120 dB). Most op amps have input resistances in the range of 105 to 
107 !l. Special op amps with MOSFET input amplifiers have rin of 1011 !l or higher. 
The output resistance of op amps is usually in the range of about 10 to 1000 n. 

As with the other components, it is useful to define an ideal op amp as one in 
which A 0 is constant, rin is infinite, and rout is zero. The symbol for an ideal op amp is 
shown in figure 9.3(a). Whenever the symbol A0 is omitted, for the purposes of this 
text, it is assumed to be infinite. The ideal op amp thus behaves like an ideal voltage 
source with 

(9.1) 

as shown in figure 9.3(b). A better representation for a real op amp is the Thevenin 
equivalent circuit shown in figure 9.3(c). The inputs V+ and V_ are called the 
noninverting and the inverting inputs, respectively. Like the other active devices 
studied, the op amp contains a dependent source, that is, a source whose value 
depends on the value of a voltage elsewhere in the circuit. 

9.2 Negative Feedback 

Operational amplifiers are usually used in circuits that provide negative feedback. 
One example of negative feedback has already been encountered in the common 
emitter amplifier in figure 8.6, where part of the output voltage appears across the 
resistor RE causing the base-to-emitter voltage v8E to be reduced to a very low value 
relative to vin· The result of this negative feedback is to reduce the overall 
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Fig. 9.3 (a) Symbol for an ideal op amp. (b) 
Linear equivalent circuit. (c) Representation 
of a real op amp. 

amplification of the circuit but to make it insensitive to the beta, nonlinearities, and 
other nonideal characteristics of the transistor. 

Negative feedback is extremely useful. Consider an arbitrary amplifier circuit in 
which the amplification in the absence of feedback is A 0 . If a fractionf of the output 
is returned and subtracted from the input v;n, then the output is given by 

Vout = Ao( v;n - fVou1) 

In the presence of feedback, the amplification is then given by 

A= Vout = Ao 
~n l + Aof 

If the product A 0f is sufficiently large ( ~ 1), the amplification becomes simply 
A= l/f, independent of A 0 . Thus the fact that A 0 is not really a constant for most 
nonlinear circuits is of little consequence in the behavior of the circuits. Even though 
A 0 may change drastically with input signal amplitude, frequency, power supply 
voltage, temperature, age, and so on, the circuit operation is determined only by the 
fraction f of negative feedback. 

Figure 9.4 shows two common forms of operational amplifier negative feedback. 

198 Operational Ampllflera 



R; 

(b) 

(a) 

R,+Jti 
Vout= -R-l-fn 

1 

>--------o voot. = - !!L V:: 
R; in 

Fig. 9.4 Examples of op amp feedback. (a) Voltage feedback. 
(b) Operational feedback. 

These circuits are easily analyzed in the limit A0 = oo. For such a case, the output 
voltage can be finite only if V + = V _. One of the most perplexing properties of the 
ideal op amp with negative feedback and infinite A0 is that the input behaves 
simultaneously like an open and a short circuit. It behaves like an open circuit, 
because the input resistance is very high, and hence no current flows into either input 
terminal. It behaves like a short circuit, because the voltage difference between the 
two input terminals is very small. The input is thus unlike any circuit element 
previously encountered. It is, in fact, simpler, once one gets used to its unusual 
properties. 

The circuit in figure 9.4(a) has what is called voltage feedback, and it- uses a 
voltage divider to supply a fixed fraction of the output at the inverting input 
terminal: 

(9.2) 

or 

(9.3) 
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The amplification is then given by the ratio of the resistors: 

A = voul = 1 + R2 

~n R1 
(9.4) 

independent of the properties of the op amp in a manner reminiscent of the common 
emitter transistor amplifier. 

For the circuit in figure 9.4(b), which has operational feedback, the current in 
R; is 

since V_ = V+ = 0. In such a case, the inverting input of the op amp is called a 
virtual ground, since it is always at the same voltage as the grounded, noninverting 
input. The concept of the virtual ground is central to the analysis of op amp circuits. 
Similarly, the current in Rf is 

Since no current can flow into the input terminals, 11 is equal to -/;, or 

- R1 V 1-- -V 
OU R; In 

and the amplification is 

A = Vout = __ R 1 
~n R; 

(9.5) 

(9.6) 

The amplification is determined only by the ratio of two resistors, but in this case the 
output is inverted (shifted in phase by 180°), and !Al can be less than one. 

Equations 9.4 and 9.6 imply that an arbitrarily large amplification can be 
obtained by an appropriate choice ofresistors. Such is, of course, not the case. If R2 or 
Rf is made very large, the feedback is eliminated, and the amplification approaches 
A 0 . The equivalent circuit corresponding to figure 9.4(a) for A 0 finite is shown in 
figure 9.5(a). From the voltage divider relation, 

Since the output voltage is 

Vout =Ao(~n - V_) 

the V_ can be eliminated from the above equation (provided A 0 ► l) to give 

A0 (R1 + R2 ) 

Vout ~ A R + R ~n 
0 l 2 
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Fig. 9.5 Equivalent circuits for calculating the am
plification of the circuits in figure 9.4 for A 0 finite. 
(a) Voltage feedback. (b) Operational feedback .. 

A= J:ut ~ Ao(R1 + R2) 
J';n AoR1 + R2 

(9.7) 

One should note that equation 9. 7 reduces to equation 9.4 for A0 ~ R2/R1 and that 
the amplification is given by A= A0 for A0 ~ R2 /R 1. 

In a similar fashion the limiting amplification of the circuit in figure 9.4(b) can 
be calculated, using the equivalent circuit shown in figure 9.5(b). Equating currents 
in the two resistors gives 

also 

J:ut = -AoV-

Combining the above two equations and solving for V:ut gives 

V. = - Ao J?;nRf 
out AoRi+ Rf 
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or 

A= - AoRJ 
AoRi+Rf 

(9.8) 

One should verify that equation 9.8 reduces to equation 9.6 for A 0 ~ R1/Ri and that 
the amplification is given by A= A 0 for A 0 ~ R 1/Ri. 

It should be noted that the results of equations 9. 7 and 9.8 are still approxi
mations, since the input resistance rin and the output resistance rout have been ignored 
in the ideal op amp representation. It turns out that the approximations are 
extremely good, however, so long as the external resistors are not chosen too casually. 
As a rule of thumb, the feedback resistor (R2 or Rf) should be ;:;:: rout but ::S rin· Values 
the order of 100 !l to 100 k!l are typical. 

The usefulness of negative feedback cannot be overemphasized. Since all active 
devices are inherently nonlinear, it is essential to be able to construct circuits in which 
the amplification is determined by the ratio of two resistors rather than by the 
characteristics of the device itself. Resistors tend to be extremely linear and stable 
compared with nearly all other electronic components. The strategy with op amps is 
to provide the user with a device capable of much larger amplification than can 
reasonably be used, so that most of the available amplification can be traded for 
improved linearity. In this way circuits with extraordinarily good linearity can be 
constructed. 

Note that we have now come full circle. The book began with linear circuits. But 
to make amplifiers and other useful circuits generally requires active devices that are 
usually quite nonlinear. Negative feedback provides the means for constructing such 
circuits while preserving the desired linearity. 

Negative feedback also provides the circuit designer with a powerful tool for 
adjusting the input and output resistance of an amplifier circuit. For example, in the 
common emitter amplifier described in section 8.4, the emitter resistor not only 
reduces the amplification but also increases the input resistance of the amplifier to a 
value much higher than it would have otherwise been. 

Consider the voltage feedback case of figure 9.4(a). If the op amp is ideal, the 
input resistance would be infinite. With a real op amp one is tempted to conclude that 
the input resistance Rin of the circuit would be equal to the input resistance rin of the 
op amp itself. That this is not the case can be seen by examining the linear equivalent 
circuit of figure 9.6(a), in which the output resistance rout is neglected. The input 
current Ii can be calculated as follows: 

J. = Vin - v_ 
I 

Vout A Vin 

Aorin Aorin 

The input resistance is thus given by 

Vin Aorin R, =-= 
ID Ii A 

(9.9) 

This equation illustrates the way in which the large available amplification serves to 
increase the input resistance even beyond the already large value of rin· 
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Fig. 9.6 Equivalent circuits for calculating the input resistance of the 
circuits in figure 9.4. (a) Voltage feedback. (b) Operational feedback. 

For the operational feedback case of figure 9.4(b), the existence of the virtual 
ground at the inverting input makes the calculation of the input resistance especially 
simple. The input current Ii is just ~n/ Ri, and the input resistance is thus 

Rin=Ri 

It appears that the input resistance can be made as large or as small as desired 
without limit. It is true that it can be made arbitrarily large (although it may be 
difficult simultaneously to achieve a high amplification), but there is a lower limit 
imposed by the finite output resistance of the device. The input resistance for such a 
case can be calculated, using the equivalent circuit of figure 9.6(b) in which the input 
resistance rin has been neglected. The input current is 

J. = v_ - vout 

I Rf 

The output voltage is 
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Eliminating V0 u, in the above equations gives 

(A0 +I)V_ 
f.=-----

1 

Rf+ Tout 

The input resistance is thus 

Since A 0 is nearly always much greater than one, the input resistance can be written 
as 

(9.10) 

For the lowest possible input resistance, one would take Ri = 0. Then, even with R 1 
considerably larger than rouo an input resistance much less than l n can easily be 
achieved because of the A 0 in the denominator of equation 9.10. Thus negative 
feedback can be used either to raise the input resistance to a very high value or to 
reduce it to a very low value. 

The output resistance of a circuit with an ideal op amp is zero. With a real op 
amp the output resistance R~ut depends on the internal output resistance of the device 
'out, but negative feedback can be used to reduce Rout to a very low value. Consider 
the equivalent circuit for the voltage feedback case in figure 9.4(a) shown in 
figure 9. 7(a) in which the output has been shorted to ground. With the output short
circuited, the voltage V_ is zero, and the short-circuit output current is 

where Vout is the open circuit output voltage. The output resistance is thus 

Vout A rout 
Rout=-= 

lsc Ao 
(9.11) 

The large available amplification can be used tor.educe the output resistance, just as 
it increased the input resistance ( equation 9.9). 

In a similar fashion, the short-circuit current for the operational feedback case of 
figure 9.4(b) can be calculated using the equivalent circuit in figure 9.7(b). The 
short-circuit output current is given by the superposition theorem as 

From the voltage-divider relation, 
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Fig. 9.7 Equivalent circuits for calculating the output 
resistance of the circuits in figure 9.4. (a) Voltage feedback. 
(b) Operational feedback. 

Combining the above two equations and solving for lsc gives 

( 
1 Ao) Rf Vn 

Jsc= Rf - rout R; + Rf 

= _ ('out -AoR f) Rf voul / A 
Rfrout R; + Rf 

where Vout is the open-circuit output voltage. The output resistance is thus 

R = Vout = A rout (Ri + Rf) 
out lsc rout - Ao Rf 

For the usual case in which rout~ A 0R1, 

(9.12) 
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The output resistance Rout is usually much smaller than r0 u1 (iflAI ~ A0), but a large 
amplification (IAI ➔A0 ) it approaches rout· 

The properties of the amplifier circuits with negative feedback shown in 
figure 9.4 are summarized in table 9.1. 

TABLE 9.1 Properties of Amplifier Circuits with Negative Feedback 

Voltage Operational 
Feedback Feedback 

Figure 9.4(a) Figure 9.4(b) 

Voltage amplification (A) 
A0 (R1 + R2) AoRf 

AoR1 + R2 AoRi+ Rf 

R Rf 
(A0 -oo.) I+_:_ 

R1 R1 

Input resistance (Rin) 
Ao Rf+ 1ou1 

Arin R1+ 
Ao 

(A0 - oo) 00 Ri 

A 
IAI (R; ) Outpuf resistance (R0u1) - 1ou1 Ao R1 + l rout Ao 

(A0 -oo) 0 0 

Two applications of op amps which are special cases of the circuits in figure 9.4 
are shown in figure 9.8. The circuit in figure 9.8(a) is called a voltage follower. It is 
a case of voltage feedback with R 1 = oo and R 2 = 0. Like the cathode follower, source 
follower, and emitter follower, it has the property of near unity voltage gain (A= 1), 
high-input resistance (Rin = A0 rin) and low-output resistance (Rout= rout/ A0 ). 

The circuit in figure 9.8(b) is called a current-to-voltage converter. It is a 
case of operational feedback with Ri = 0. The output voltage is given by 

(9.13) 

One may wonder why an op amp is required at all, since a resistor by itself is also a 
current-to-voltage converter. The point is that the input resistance of the op amp 
circuit is very low (Rio~ R/A0) so that, just like an ideal ammeter, it can be inserted 
in series with the branch whose current is to be converted to a voltage without 
perturbing the circuit. Or, stated another way, the voltage that can be obtained 
at the output for the same perturbation to the circuit is a factor of A 0 larger when an 
op amp is used instead of a resistor by itself. 
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Fig. 9.8 Special cases of feedback amplifiers. (a) Voltage 
follower. ( b) Current-to-voltage converter. 

9.3 Operational Amplifier Applications 

Although the operational amplifier can be used as a substitute for a single transistor or 
vacuum tube in any of the circuits described in the previous two chapters, it has a 
much wider range of application. In this section we will discuss how the op amp can 
be used to perform the linear mathematical operations of addition, subtraction, 
integration, and differentiation. In the following discussion the op amps are assumed 
ideal, with A 0 = oo except where indicated otherwise. 

Figure 9.9(a) shows the basic addition circuit. Applying Kirchhofrs current law 
to the virtual ground at the inverting input terminal gives: 

Vi + V2 + Vou1 = 0 
R 1 R 2 R1 

Solving for V0 u 1 gives 

v •• , = - (;: V, + ;~ V2 ) (9.14) 

For the special case of R1 = R2 = R 1, 

Vou1 = -(V1 + V2) (9.15) 

In a similar manner, such a circuit can be used to add three or more voltages. The 
inverting input is a virtual ground and is called the summing point. Currents can 
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Fig. 9.9 Basic op amp circuits. (a) Adder. (b) Subtractor. (c) 
Integrator. (d) Differentiator. 

be added by simply omitting the resistors ( except R1) connected to the summing 
point. 

The existence of a summing point in such a circuit is the key to its operation. 
Since the summing point is a virtual ground, an arbitrary number of inputs can be 
connected to it, arid each input is independent of the others. By contrast, if the 
summing point were not a virtual ground but, say, a resistor to ground, then its 
voltage would vary in response to each of the input currents, and the other input 
currents would be correspondingly affected. An op-amp adder thus provides isolation 
between circuits whose outputs are to be added, so that each circuit is oblivious to the 
existence of the others. 
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Figure 9.9 (b) shows the basic subtraction circuit. The positive input is a voltage 
divider, so that 

Applying Kirchhoff's current law to the inverting input gives 

Using the fact that V_ = V+, and solving for v;,ut gives 

(9.16) 

For the special case of Ri = R 1, 

(9.17) 

Note that the addition and subtraction circuits can be combined so as to perform 
operations such as Vi+ V2 - V3 with a single op amp, but the design of such circuits is 
more difficult, because the inverting input is not a virtual ground (see problem 9.5). 
Since the isolation properties of the simple adder and simple subtractor are sacrificed 
in such a circuit, it is customary to use two op amps when both addition and 
subtraction are required. 

It is also useful to note that either the adder or subtractor can also serve to 
multiply or divide any of the inputs by a constant with an appropriate choice of the 
resistors. Such a circuit is nothing more than an amplifier. Multiplication or division 
by a constant is a linear operation. To multiply or divide one variable voltage by 
another is a nonlinear operation, however, and requires more advanced techniques, 
as described in section 9.5. 

Figure 9.9 (c) shows the basic integrator circuit. Applying Kirchhoff's current 
law to the inverting input gives 

~n + dVout - C~=O 
R dt 

Solving for 'Vaut gives 

v •• , = - RIC I v;. di (9.18) 

This result is reminiscent of the RC integrator described in section 4.6, except that in 
the present case there is no requirement that RC be large, or, equivalently, that Vout 

be much less than ~n· Actually, with a real op amp, one does, in fact, require that Vout 

be much less than A 0 ~n· A problem with a real op-amp integrator is that it has a very 
large voltage gain (A0) at low frequencies. Therefore, a small de component of 
voltage at the input can drive the output to saturation. This problem can be cured 
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either by providing a de offset adjustment or by limiting the low-frequency gain by 
placing a resistor in parallel with the feedback capacitor. 

Figure 9.9(d) shows the basic differentiator circuit. Applying Kirchhofrs current 
law to the inverting input gives 

(9.19) 

This result is reminiscent of the RC differentiator described in section 4.6, except that 
in the present case, there is no requirement that RC be small, or equivalently, that V0 u1 

be much less than vin· As with the integrator, one requires only that Vout be much less 
than A 0 vi

0
• The op-amp differentiator also has a difficulty, in that it has a very large 

voltage gain (A0 ) at high frequencies. The result is that a great deal of noise (see 
section 9. 7) appears at the output, unless one reduces the high-frequency gain by 
placing a resistor in series with the input capacitor. Op-amp integrators and 
differentiators can also be made using RL circuits, but this is rarely done, because 
inductors tend to be larger, more expensive, and less nearly ideal than capacitors. 

9.4 Analog Computers 

The circuits described in the previous section can be used in various combinations to 
solve linear differential equations. Such an application is an example of an analog 
computer. The unknown is represented as a voltage at a point in the circuit, and its 
value as a function of time can be determined with an oscilloscope or similar device. 

As an example, consider the following differential equation written in standard 
form: 

d2x dx 1 
- + I 0- - - x = 6 sin mt 
dt2 dt 3 

One would like to construct a circuit in which x(t) appears as a voltage to be 
measured somewhere in the circuit. This is done by first rewriting the equation with 
the highest derivative on the left by itself and all other terms on the right: 

d2x dx I 
- 2 = - IO - + - x + 6 sin mt 
dt dt 3 

One then starts with d2x/dt2 as an input and generates the other lower-order 
derivatives by successive integration, as shown in figure 9.10. The resulting terms are 
then added with appropriate multiplicative constants and inversions (multiplication 
by -1) until the quantity on the right-hand side of the equation is generated, 
whereupon it is fed back to the input. For a nonhomogeneous equation such as the 
above, a time-dependent voltage source is required (such as the sin mt in figure 9.10). 
The initial conditions for the transient solution can also be simulated by placing 
appropriate initial voltages on the two capacitors. In the example above, the 
integrators are made with a time constant of RC= I s, but this is not a necessity. 
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Fig. 9.10 Analog computer circuit for solving the equation 

(d2x/dt 2
) + 10 (dx/dt)-½x=6 sin wt. 

Other choices permit one to slow down or speed up the phenomenon in order to 
observe it on a more convenient time scale. In designing such circuits one should 
always check to be sure that the inverting input and the output of each op amp are 
connected either to resistors or capacitors, and never directly to one another or 
directly to a voltage source or to ground. Note that the technique described above is 
limited to linear equations. If the equation contained a term such as x (dx/dt) it would 
be nonlinear, and no combination of the op-amp circuits discussed so far would 
suffice to generate a solution. 

9.5 Nonlinear Operations 

In addition to the linear operations described in the preceding sections, op amps can 
be used to perform a wide variety of nonlinear operations. In this section several such 
applications will be mentioned. 

If a real pn junction diode with a V-I characteristic as given by equation 6.3 is 
used as the feedback element of an op amp, as shown in figure 9.11 (a), the result is a 
device called a logarithmic amplifier. Applying Kirchhoff's current law to the 
inverting input gives 

where the latter approximation is valid for Vout negative and 

kT 
I Vautl ► - ~ 0.026 V 

e 
(at room temperature) 
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Fig. 9.11 Nonlinear op amp circuits. (a) Logarithmic 
amplifier. (b) Exponential amplifier. 

Solving for V0 u, gives 

V ~--In -kT (Vin) 
out e foR (9.20) 

Such a logarithmic amplifier enables one to measure a voltage that varies over several 
orders of magnitude without having to change the range of the meter which is being 
used. Note that such a circuit only works for a positive Vin, since the log of a negative 
number is not real. Furthermore, the output of the circuit in figure 9.11 (a) is always 
negative. 

If the diode is used as the input element of an op amp, as shown in figure 9.11 ( b), 
the result is a device called an exponential (or antilogarithmic) amplifier. 
Applying Kirchhoff's current law to the inverting input terminal gives 

where the latter approximation is valid for 

kT 
Vin~ - ~ 0.026 V (at room temperature) 

e 

Solving for V0 u, gives 

(9.21) 
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Such an exponential amplifier is easily saturated if the input voltage becomes too 
large. Note that such a circuit only works for a positive v;

0
, and that the output is 

always negative. 
With the two circuits in figure 9.11, along with the linear circuits previously 

described, one can design circuits to perform a variety of nonlinear operations 
including multiplication, division, and raising a number to an arbitrary power ( either 
positive or negative). One need only take the log of the numbers, add or subtract the 
logarithms, and take the exponential of the result. An example of such a circuit which 
produces an output proportional to the product V1 V2 (for Vi and V2 > 0) is shown in 
figure 9.12. One should work through the circuit stage by stage to verify that it has 
the predicted behavior. 

The analog multiplier circuit described above is an example of a single
quadrant multiplier since, of the four possibilities, the input voltages must both be 
positive. With more complicated arrangements of the same basic circuits, a four
quadrant multiplier can be constructed in which either input voltage can have 
either sign. Such analog multiplier circuits are available at low cost as a single 
integrated circuit, as are a wide variety of circuits that perform other nonlinear 
operations such as division and square roots. Such circuits can be used in analog 
computers in the manner described in the previous section to solve nonlinear 
differential equations. 

An entirely different kind of nonlinear operation is exhibited in the comparator 
circuit in figure9.13(a). For such a circuit, the output is driven to saturation 
whenever V1 and V2 are different: 

for V1 < V2 

for Vi> V2 
(9.22) 

For a real op amp with finite gain, the voltage difference I Vi - V2 I must exceed 
VsATI A 0 to saturate the output. In addition to determining the sign of a voltage, such 
a circuit can be used for generating square waves from a sinusoidal input, since the 
output switches abruptly between the two saturated levels every time the input 
crosses zero. Such a circuit is also called a zero-crossing detector. 

A related circuit is the latch circuit shown in figure 9.13(b), which has positive 
feedback. With the input open circuited, it is stable only for V0 u1 = ± VsAT• If v;0 is 
momentarily made positive, V0 u1 goes to + VsAT and remains there until i,-:0 is made 
negative, even if the input voltage source is disconnected. Similarly, a negative i,-:0 

will cause the output to latch at -VsAT· This is an example of a bistable flip-flop 
which has application as a binary memory element in digital circuits. 

As a final example of the use of operational amplifiers, consider the voltage 
regulator circuit in figure 9.14(a). It is identical to the transistor voltage regulator 
shown in figure 8.9 except for the addition of one resistor (R2) and an op amp. The 
Zener diode holds the noninverting input of the op amp at a constant voltage VB. The 
inverting input samples a fractionf of the voltage VL across the load resistor by means 
of the voltage divider potentiometer..R 2 . The op amp biases the base of the transistor 
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Fig. 9.13 (a) Comparator circuit. (b) Latch circuit. 

in such a way that the op amp input terminals remain at the same voltage, or 

By adjusting R2 so thatf ranges from zero to one, the output voltage can be regulated 
to any value greater than V8. 

One difficulty with this type of voltage regulator is that it works so well that it is 
easily damaged if connected to a load that draws excessive current. In trying to keep 
the output voltage constant, it will often supply enough current to destroy the load 
resistor, the regulator transistor, or other components in the power supply. Conse
quently, most general-purpose regulated power supplies are provided with some form 
of current limiting, so that the voltage is constant up to some maximum output 
current and then decreases as required to maintain a constant current. Usually the 
current limit is adjustable. By setting the voltage high and the current limit low, such 
a power supply can be made to behave much like an ideal current source. A power 
supply with this provision is said to be short-circuit protected. 

Figure 9.14(b) shows how the circuit in figure 9.14(a) can be modified to include 
current limiting. Its operation is identical to that in figure 9. l 4(a) as long as the 
voltage drop across R4 is sufficiently small that transistor T2 does not conduct 
appreciably (V8E < 0.6 V for silicon). If the current in R4 rises too much, T2 begins to 
conduct and reduces the base current and hence emitter current in T1 . The value of 
R4 thus controls the maximum output current. Voltage regulators, incorporating 
most of the components shown in figure 9. l 4(b), are available at low cost as a single 
integrated circuit. 

Note that a regulated power supply with current limiting is not a linear device 
over its entire range of operation. At low-output currents, its internal resistance is 
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Fig. 9.14 Op amp voltage regulators. (a) Without current limiting. (b) With 
current limiting. 

very low (dV/dlis small). At high-output currents, its internal resistance is very large 
(dV/dl is large). The internal resistance changes abruptly at the point at which the 
power supply delivers the maximum power to the load. 

9.6 Amplifier Limitations 

There are many other ways in which op amps, and, indeed, any amplifier fall short of 
ideal behavior. For example, in addition to the finite input resistance previously 
discussed, any amplifier will have a certain input capacitance. A typical op amp 
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might have an input capacitance in the range of a few to about a hundred 
picofarads. Since the input of an amplifier is not purely resistive, one often speaks of 
the input im.pedance, which, of course, is a function of frequency and has both 
resistive and reactive components. Similarly, the output im.pedance, especially at 
high frequencies, may not be purely resistive or independent of frequency. 

The input impedances previously discussed are impedances between the two 
input terminals of the amplifier. There is also an additional impedance between each 
input and ground. This is called the common mode input im.pedance, and its 
value is typically I 0-1000 times larger than the differential input impedance for most 
op amps. As with a simple difference amplifier (see section 8.8), an op amp will have 
a finite common-mode-rejection ratio, usually in the range ,..._,104-10 5 (80-100 dB). 
This means that ifa 1-V signal is applied to both inputs of the op amp simultaneously 
and the op amp has an open-loop voltage gain of 104, ari unwanted output signal of 
,....,0.1-1 V will result. 

For an ideal op amp, the inverting input is normally operated as a virtual 
ground, and the voltage difference between the input terminals is negligibly small. 
For a real op amp, even in the absence of an input signal, the voltage difference 
between the two inputs may amount to a few mV. This is referred to as the input 
offset voltage. Because of the large amplification of an op amp, even a small input 
offset voltage can cause an objectionably large de component at the output. Many op 
amps provide an extra pair of terminals to which one can apply voltages in the proper 
ratio in order to adjust for zero output in the absence of an input signal. Alternately, 
an external circuit can be added so that, for example, the voltage at the normally 
grounded input can be adjusted to compensate for the input offset. 

In a similar fashion, with the inputs shorted together, an input offset current, 
typically in the nonampere range will produce an output voltage. The offset current 
tends to be less of a problem and can be easily corrected by adding an appropriate 
current of the opposite polarity at the summing point. The offset current, unlike the 
offset voltage, is temperature sensitive, and so frequent readjustment may be required 
in those special cases where it is large enough to be objectionable. 

For any amplifier, there is a frequency above which the amplification falls 
significantly below its value at low frequencies. This decrease is caused largely by 
stray capacitance. Figure 9.15 shows a plot of the open-loop voltage gain A0 versus 
frequency for a typical op amp. Such a graph is called a Bode plot. For many cases 
the gain falls by 20 dB per decade at high frequencies, until a frequency is reached at 
which A 0 = I. The figure of 20 dB per decade is just what one would expect for a 
simple RC low-pass filter (see section 4.5). Similarly, the phase shift between the 
output and the input rises from 180° at low frequencies to 270° at high frequencies for 

such a case. The frequency at which A 0 falls to 1 / .J2 of its value at zero frequency is 
called the open-loop bandwidth, AJ, of the amplifier. Note that for the case shown 
in figure 9.15, the open-loop bandwidth is quite small ( ,..._, 10 Hz). The frequency at 
which A 0 falls to one is called the unity gain crossover frequency. This frequency 
is typically in the megahertz range for most op amps. 

With negative feedback, the amplification is reduced and the bandwidth is in-
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Fig. 9.15 Voltage gain of a typical op amp 
without feedback (A0) and with negative feedback 
(A). 

creased as shown by curve A in figure 9.15. It is usually possible to trade off gain and 
bandwidth in an amplifier circuit. For a case as in figure 9.15 in which the open-loop 
gain falls by 20 dB per decade, the gain-bandwidth product is constant: 

AfJ.f = constant (9.23) 

For an amplifier with a very narrow bandwidth, such as might be used to amplify sine 
waves of a constant frequency, it is easy to get a very large amplification. Note that for 
the 20 dB/decade case shown in figure 9.15, the gain-bandwidth product is numeri
cally equal to the unity gain crossover frequency. 

Various techniques can be used to increase the gain-bandwidth product of an 
amplifier. A common example is the use of a compensating capacitor to provide some 
positive feedback which increases with increasing frequencies. The result is usually to 
produce a Bode plot in which A 0 remains high to a larger frequency but then falls at a 
rate in excess of 20 dB/decade. Up to a point such techniques can be useful, but a 
practical difficulty often arises. The sharp fall in A 0 versus frequency is inevitably 
accompanied by a large phase shift in the op amp, such that the net feedback becomes 
positive at some frequency, resulting in instability or oscillation (see Chapter 10). As 
a general rule, stable operation will result if the slope of the Bode plot is less than 
~ 3D--40 dB/decade at the point at which the curve without feedback merges with the 
curve with feedback (see figure 9.15). 

In addition to its frequency-response limitation, an op amp is limited to a certain 
slew rate. This is a measure of how fast the output voltage can change, and it is a 
function only of the internal circuitry of the op amp. A typical slew rate is ~ l V / µs. If 
the combination of input signal amplitude and frequency is such as to try to drive the 
output beyond this value, the output will become distorted. Sine or square waves 
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applied at the input will appear as triangular waves at the output with a slope equal 
to the slew rate. 

Also, the maximum current that can be drawn from the output of an op amp is 
usually limited to a value somewhat less than the maximum output voltage divided 
by the internal output resistance. Values of 10-100 mA are typical. Most op amps are 
designed to be protected from short circuits, so that no damage is done if their output 
is inadvertently connected to ground. 

9.7 Noise 

Even in the absence of any input, an amplifier will produce a certain amount of noise 
at its output. This noise contains a broad spectrum of frequencies and is noticeable as 
hiss at the output ofan audio amplifier. One fundamental cause of noise is the thermal 
fluctuation of the electrons in a resistor, which gives rise to a voltage at the resistor 
terminals. The magnitude of this voltage can be estimated using the equipartition 
theorem of statistical mechanics, which states that there is½ kT of energy per degree of 
freedom for a physical system in thermal equilibrium at temperature T. The stray 
capacitance associated with any real resistor, thus, on the average, stores an amount 
of energy given by 

tcv 1 =½kT 

Since the bandwidth !J..J of the parallel RC circuit is given by 

tJ.. - 1 
if- 2nRC 

the mean square noise voltage can be written in a form that is independent of C: 

V2 = 2nkTR!J..J 

A more exact calculation gives the result 

~ms= J4kTR!J..J (9.24) 

where kT = 4.14 x 10- 21 J at room temperature ( ~300 K). When written in this 
form, the noise voltage depends on the bandwidth of the instrument (oscilloscope., 
etc.) which is used to make the measurement. This noise is variously called thermal 
noise, Johnson noise, or Nyquist noise. It is an example of white noise, since all 
frequency components are present, just as in the case of white light. It is important to 
note that the noise voltage obeys a Gaussian probability distribution: 

P(V) ~ e-t(Y/Y,nu)
2 

so that voltage spikes of several times the rms value will occasionally occur. An 
amplifier with a bandwidth of 1 MHz and 1 M!l input resistance will have an rms 
thermal noise voltage of ~ 1.3 x 10- 4 V at its input. If it has an amplification of 
1000, the noise voltage at the output would be ~0.13 V. Other sources of noise are 
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usually also present, which preclude an approach to the Johnson noise limit. In any 
case, it is desirable to design an amplifier with the minimum permissible bandwidth 
in order to achieve the maximum possible signal-to-noise ratio. Sometimes amplifiers 
are cooled to temperatures near absolute zero ( -273°C) in order to improve the 
signal-to-noise ratio. 

A second form of noise, called shot noise, arises from the fact that electrical 
currents consist of the cumulative motion of many individual electrons. In a time 6.t, 
during which n electrons cross a surface, there will be an rms fluctuation inn given by 
by 

The corresponding rms fluctuating current is thus 

Thus, in terms of the de current, 

the noise current is 

. eAn eJ2n 
l =--=--
rms ~l 11,.t 

en 
l=

~t 

Equating 11.t to the inverse bandwidth 1/11.f gives the usual expression for therms shot 
noise current: 

(9.25) 

The amount of shot noise usually deviates somewhat from equation 9.25 and tends to 
be worse in vacuum tubes and transistors than in simpler devices like resistors. Like 
thermal noise, shot noise is white, in that it has a constant power density per unit 
frequency independent of frequency. 

A third type of noise, less well understood, is called flicker noise. It is 
characterized by a power density inversely proportional to frequency, so that it 
always dominates the other types of noise at sufficiently low frequencies. For this 
reason it is sometimes called 1/f noise. The frequency at which flicker noise is 
comparable to the other types of noise is called the corner frequency, and it is 
typicallly ~ l kHz. 

The absolute amount of noise produced by an amplifier is less important than the 
signal-to-noise (S/N) ratio at its output. A relatively large amount of noise can be 
tolerated if the signal is also large. However, the signal-to-noise ratio is not a useful 
measure of the quality of the amplifier, since much of the noise at the amplifier 
output may have been present at the amplifier input rather than being generated 
within the amplifier. Consequently, the extra noise produced by the amplifier is often 
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expressed in terms of its noise figure (NF) defined by 

NF= 10 loglO (S/N)input 
(S/N)output 

(9.26) 

where S/N is the ratio of signal to noise power. The noise figure is always greater than 
0 dB and might typically be in the range of 5-10 dB. 

Noise generated at the input stage of an amplifier is usually the most 
troublesome, because it experiences the largest amplification. For an amplifier in 
which all the noise is generated by the- input resistance, it turns out that the noise 
figure is a function only of the input resistance Rin and of the resistance Rs of the 
source which is connected to the amplifier input: 

(9.27) 

Note that when the amplifier is matched to the source (Rin = Rs), the noise figure is 
3 dB, and that the noise figure becomes very bad if the amplifier input resistance is 
unnecessarily low. This illustrates another advantage of constructing amplifiers with 
a high input resistance. 

Even the noise figure is a highly imperfect measure of the quality of an amplifier, 
since it depends on the bandwidth, the source resistance, and the temperature of the 
source resistance. A better measure is to imagine a resistor with a resistance equal to 
the input impedance of the amplifier connected at its input. If the resistor is at a 
temperature of OK, all the ·noise at the amplifier output would be generated within 
the amplifier. If the temperature of the resistor were increased until its thermal noise 
just caused the amplifier output noise power to double, that temperature would be 
the noise temperature of the amplifier. An advantage of noise temperature is that 
it is independent of the bandwidth of the amplifier, so that it can be used to compare 
amplifiers with different bandwidths. Furthermore, since the noise power is pro
portional to the noise temperature, the noise ,temperature of a complicated system can 
be determined by adding the noise temperatures of each component of the system. 
Such would not have been the case with noise figure or signal-to-noise ratio. The 
noise temperature can be lower, but is often considerably higher than the actual 
temperature at which the amplifier operates. 

9.8 Circuit Isolation 

In addition to the random noise that is always present in electrical circuits, other types 
of interference caused by unavoidable coupling to nearby circuits often plague even 
the most experienced circuit designer unless great care is given to the physical layout 
of the circuit. Although the problem is not unique to operational amplifier circuits, 
such circuits provide an opportunity to illustrate the principles involved. Because of 
the large amplifications often used in op-amp circuits, their interference problems 
tend to be especially severe. One should be especially wary of circuits that amplify or 
otherwise process low-level signals (in the millivolt range) when nearby circuits 
involve high voltages or currents. 
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Unwanted coupling can take place by three basic mechanisms: res1st1ve, 
inductive, and capacitive. Each of these will be considered in turn. Consider first the 
standard op-amp circuit in figure 9. l 6(a). Now suppose that a circuit designer notes 
that point A is at ground potential and finds it convenient for the. physical layout of 
the circuit to use that point as the_ground return of another circuit in which a current 
I flows. This would be perfectly acceptable, except for the fact that the conductor 
between point A and ground is never ideal and will, in general, have a small 
resistance R. Because of this resistance, a voltage drop of JR appears in series with the 
input to the op amp. It would not be unusual to have such a circuit in which/ is 1 A 
and R is 0.1 n, giving a voltage of 100 m V at the input. If Vin were 1 m V, the signal 
would ~e completely masked by the interference. If the amplifier has an amplification 
of 1000, the output would likely be driven to saturation. If the current I were a 60-Hz 
sine wave, a 60-Hz square wave would appear at the output, and the desired signal 
would be completely lost. 

The cure in this instance is relatively simple. One would disconnect the extra 
circuit from point A and connect it instead directly to ground. In general, one should 
be extremely cautious to ensure that the only currents that flow in any part of a low
level signal circuit are those produced by the signal, and not by other sources. 

The second way in which interference can be coupled to a circuit is inductively, 
as in a transformer. Figure 9.16(b) shows an example of inductive coupling. Suppose 
a nearby circuit produces a fluctuating magnetic field B, part of which links the input 
loop. From Faraday's law, a voltage is produced at the input of the op amp equal to 
the normal component of dB/dt integrated over the area of the loop. The input loop 
can be considered as a single turn secondary of a transformer in which an adjacent 
loop of the interfering circuit is the primary. 

This type of coupling can never be completely eliminated, but it can be greatly 
reduced. First, one should separate the low-level signal circuits from other high
current circuits by as much distance as possible. Second, one should reduce the 
magnetic fields of high-current circuits to the lowest possible value by reducing the 
area of the loops in which high currents flow. In an extreme case, the amplifier circuit 
could be enclosed in a ferromagnetic shield. Finally, one should reduce the area of the 
input loop. This is generally done by twisting the input leads together or by using 
coaxial cable at the input. Twisting the leads not only reduces the area but tends to 
cancel the induced voltage by the periodic reversal of the direction of the loop. A 
coaxial cable allows almost no inductive coupling. 

A subtle variation involving both inductive and resistive effects is the ground 
loop as shown in figure 9.16(c). The fact that the input circuit is grounded at two 
different points seems perfectly innocuous until one considers that this forms a loop, 
part of which is common to the input circuit. A fluctuating magnetic field B will 
produce currents in this loop which will, in turn, cause a voltage drop across the 
resistance R of the input leads. The solution is to ensure that the input circuit is 
grounded at only one point, preferably close to the input of the amplifier. 

The third type of coupling arises from the stray capacitance C between the 
amplifier input and a nearby circuit having a large time-varying voltage as shown in 
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Fig. 9.16 Possible sources of interference in an amplifier 
circuit. (a) Resistive coupling. (b) Inductive coupling. (c) 
Ground loop (inductance+ resistance). (d) Capacitive coupling. 
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figure 9 .16 (a'). The severity of this problem is reduced if the signal source Vin has a 
low internal resistance and/or if the amplifier circuit has a low input impedance (small 
R;). In any case, it is wise to separate as much as possible tbe input of a low-level 
amplifier from other circuits that involve large fluctuating voltages. Also, the use of a 
coaxial cable for the input signal will shield the input from capacitive coupling. In 
extreme cases the entire amplifier circuit should be completely enclosed in a grounded, 
conducting shield. An amplifier circuit employing all of these precautions is shown in 
figure 9.1 7. Such a circuit is said to be isolated. 

Fig. 9.17 The proper way to isolate an amplifier from unwanted inter
ference. 

A fourth potential source of interference is from electromagnetic radiation in 
which parts of the amplifier circuit act as antennas (see Chapter 12). This happens at 
high frequencies where the wavelength becomes comparable to the physical 
dimensions of the circuit. Since an electromagnetic wave is a combination of an 
oscillating magnetic field and an oscillating electric field, this type of interference is 
minimized by the precautions already mentioned. In any case, it is wise to keep all 
leads as short as possible. 

Finally, it should be mentioned that unwanted signals can be coupled in through 
the power-supply leads, which have been ignored thus far. These signals are caused 
by inadequate filtering, in which case the interference is at the powerline frequency 
(usually 60 Hz) and its harmonics, or by fluctuations of the power-supply voltages in 
response to variations in the current drawn from the power supply by other circuits 
which may be connected to it (cross-talk). These problems are best cured by using a 
well-filtered and regulated power supply and by using some form of low-pass filter 
(perhaps just a capacitor to ground) directly at the power-supply input to the 
amplifier. When many circuits share the same power supply, it is common to provide 
each one with its own low-pass filter or IC regulator to minimize cross-talk through 
the power supply. 

Other types of interference can occur because of mechanical vibrations of parts 
of the circuit (called m.icrophonics), in which the stray capacitance changes in a 
time-dependent fashion. Vacuum-tube circuits are particularly susceptible to micro
phonics because of the small delicate grids and the relatively high voltages. Similarly, 
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certain types of dielectrics such as the insulation often used in coaxial cables will 
develop a small voltage in response to applied pressure. Such materials are said to be 
piezoelectric. 

These practical considerations occupy much of the attention of the professional 
circuit designer and are a frequent cause for the failure of an apparently well-designed 
circuit to perform as expected. 

9.9 Summary 

A de amplifier with inverting and noninverting inputs, high input resistance, low 
output resistance, and large voltage gain is called an operational amplifier. Its uses 
are numerous. In addition to simple voltage amplifiers, op amps can be used to 
perform the basic linear mathematical operations of addition, subtraction, in
tegration, and differentiation. In combination, op amps can be used as an analog 
computer to solve linear differential equations. 

With a nonlinear component such as a pnjunction diode, the op amp can be used 
to produce an output proportional either to the logarithm or exponential of the input 
voltage. This permits the possibility of performing nonlinear operations such as 
multiplying, dividing, and raising a number to an arbitrary power. Other useful 
nonlinear applications include the comparator and the latch, which make use of the 
fact that a finite voltage difference at the input will drive the output to saturation, 
either negative or positive. Op amps also make extremely good voltage regulators. 

As useful as op amps are, they are always limited in frequency response and have 
a certain noise at the output. One can usually trade off gain and bandwidth, and the 
noise is minimized if the bandwidth is small. Op-amp circuits, along with all other 
electrical circuits, are susceptible to a variety of sources of interference, and 
considerable care in the physical layout and construction of such circuits must often 
be exercised. 

The limitations and potential problems with the construction of op amp and 
other circuits are so numerous as to risk the total discouragement of the beginner in 
electronics. Such an attitude is not warranted, however. The problems usually come 
only orre or two at a time, and armed with a knowledge of the common pitfalls and a 
proper dose of caution and persistence when things don't quite work right on the first 
try, even a total beginner can these days successfully build quite sophisticated 
electronic circuits. 

Problems 

9.1 Calculate the amplification of the circuit on the following page. 

9.2 Consider the op-amp circuit in figure 9.4(b) in which Ri = R1 and the op amp 
is real with an open-loop gain of A 0 ( ~ 1), an input resistance of rin, and zero output 
resistance. How large can Ri be made if the amplification is to be given within a 
factor of two by equation 9.6? 
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Illustration for Problem 9. 1. 

9.3 Calculate the input resistance of the circuit in figure 9.4(a), assuming the op 
amp is real, with Ao= 105

, Tin= 1 Mn, 'out= 0, and R1 = R2 = 1 kn. 
9.4 Calculate the output resistance of the circuit in figure 9.4(b), assuming the op 
amp is real, with Ao= 105, Tin= 00, rout= 10 n, and Ri =Rf= 10 kn. 
9.5 Calculate the values required for R 1, R 2 , and R 3 in the circuit below in order 
for the output to be given by V0 u 1 = -(Vi+ V2 - V3 ). 

R, Jlr = 1000 0 

V, o--~vv'\r-- .... --~rv~n,-----. 

Rr = 1000 n -=-

-=-
9.6 Calculate the amplification and the input resistance for the circuit below, 
assuming the op amp is ideal. 

>-------,o VOIJI 

9.7 Calculate the amplification of the circuit below, assuming the op amp is ideal. 

9.8 Calculate the output Vout in terms of the input voltage ~n for the following 
circuit in which the op amp is ideal. 

9.9 Calculate the amplification as a function of frequency for the circuit below in 
which the op amp is ideal. 

226 Operational Ampllflers 



R, 

-::-

R 

Illustration for problem 9. 7. 

>------o voot 

100 kil 

Il µF 

T 

Illustration for problem 9. 8. 

C 
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C 
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-=-
Illustration for problem 9.9. 

9.10 Show that the circuit below behaves as a noninverting integrator. 

C 

9.11 Show that the circuit below behaves like a negative resistance (i.e., I decreases 
as V increases), and calculate the input resistance, Rin = V/1. 
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l 
R2 

R3 

9.12 If the op amps below both saturate at an output of± 10 V, find VA and VB for 
Vin between zero and + 15 V. 

+15 V 

7 H2 

2 kn 

6 kn 

9.13 Design a circuit using a single ideal op amp that will produce an output given 

by v ... = - 7 I V 1 dt - ~ I V 1 dt. 

9.14 Design a circuit using two ideal op amps that will produce an output given by 
V0 u, = 5 J V 1 dt - IO V 2 . 

9.15 Design an analog computer to solve the differential equation, 

d 2x dx 
4 dt2 - 20 dt + 2x= 100. 
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9.16 Design a circuit using ideal op amps that will produce an output given by 

i-:ut OC. ~, for ~n > 0. 

9.17 Show that the c 'Cuit below behaves as a logarithmic amplifier if the transistor 
is real. Such circuits are often used in preference to the circuit in figure 9. 11 (a) 
because the logarithmic variation holds over a wider range of input voltages. 

R 

>-- ..... -ovout 

9.18 Calculate the rms Johnson noise voltage at the output of the circuit m 
figure 9.4(b) if R1 = 100 k!l, assuming A 0 is given by figure 9.15 and A= 100. 

9.19 Calculate therms Johnson noise voltage at the output of the circuit below: 

Rt= 1000 !l 

L = 0.01 H 
~"~,-.-~.rv'-- .......... 

C= O.Ql µF 

9.20 Calculate the noise figure in decibels for an amplifier with an input resistance 
of 1 k!l driven by a source with a 10-k!l output resistance. 

Problems 229 





10.1 Oscillators 

chapter 1 Q 
Other Nonlinear 

Circuits and Devices 

An amplifier with positive feedback can be made to produce an output even in the 
absence of any input. Such circuits are called oscillators. They are useful for 
producing ac voltages of adjustable frequency from a de source. Suppose that a 
fractionf of the output is returned and added to the input Vin of an amplifier. Then 
the output is given by 

or 

Even though Vin is zero, an output voltage can still be achieved if the condition 

Aof= 1 ( 10.1) 

is satisfied. Since A0 and f usually depend on frequency, the above condition, called 
the Barkhausen criterion, is usually satisfied at only a single frequency, and that is 
the frequency at which the circuit will oscillate. 

Figure 10.1 shows an oscillator circuit that uses an operational amplifier. The LC 
circuit can be considered as a resonant filter that eliminates from the amplifier input 

any angular frequencies significantly different from w0 = 1 / ,jLc. With a sinusoidal 
voltage of angular frequency w0 at V1, the amplifier is alternately driven to saturation 
in the positive and negative direction, and so it produces a square wave at V2 . This 
square wave has a strong fundamental Fourier component at frequency w0 , part of 
which is fed back to the noninverting input through resistor R in order to keep the 
oscillation from damping out even in the absence of any externally applied voltage at 
Vi-Such a circuit thus produces both a sine wave and a square wave output. 

It is reasonable to wonder how the oscillation gets started in the first place. One 
might suppose that it is necessary initially to apply a sinusoidal voltage at Vi. This is 
seldom a problem, however, since there is always some noise present at the output. 
This noise has a Fourier component at frequency w0 , and because of the positive 
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Fig. 10.1 The op amp oscillator circuit in 
(a) produces a sinusoidal and a square wave 
output as shown in (b). 

feedback, it rapidly grows in amplitude (in just a few cycles, depending on the 
strength of the feedback) until the output amplitude saturates. In practice, the 
problem is often just the opposite. Circuits designed as amplifiers, especially if they 
have high gain and large bandwidth, often have enough stray capacitance to produce 
the positive feedback. Great care must be exercised in the constr~ction of high-gain 
amplifiers to ensure that unwanted oscillations do not occur. 

An oscillator circuit need not use op amps. Any device that can be used as an 
amplifier, such as a vacuum tube, FET, or bipolar transistor, can also be used as an 
oscillator. However, a single vacuum tube or transistor, when used in a circuit that 
provides a large voltage amplification, will generally produce an output that is 180° 
out of phase with the input, and so an additional phase shift of 180° is required to 
achieve positive fe~dback. For example, figure 10.2(a) shows an FET Hartley 
oscillator. A Hartley oscillator achieves the 180° phase shift desired for positive 
feedback by means of a tapped inductor in the gate circuit. The phase of the voltages 
at the two ends of the inductor differ by 180° with respect to the grounded tap on the 
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Fig. 10.2 Typical oscillator circuits. (a) Hartley. (b) Colpitts. 

inductor. The situation is analogous to the full-wave rectifier with a center-tapped 
transformer (see figure 6. 7). The frequency of the Hartley oscillator is determined 

almost entirely by the value of 1/ .JLG. 
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Figure 10.2(b) is an example of a Colpitts oscillator that uses a bipolar 
transistor. A Colpitts oscillator achieves the 180° phase shift required for oscillation 
by using the fact that the two capacitors are in series, and so the circulating ac current 
in the LC circuit produces voltage drops across the two capacitors that are of opposite 
sign relative to ground at any instant of time. The frequency of the Colpitts oscillator 

is determined primarily by the value of I/ ,j'Lc, where C is the series combination of 

cl and C2. 
Many other combinations of active circuit components and feedback methods 

are frequently encountered. Furthermore, it is not necessary that oscillators contain 
LC circuits. One particularly straightforward although rarely used type of oscillator is 
the RC phase-shift oscillator shown in figure 10.3. Use is made of the fact that the 

+V 

Fig. 10.3 RC phase shift oscillator 

output of an RC filter differs in phase from the input by an amount that can vary from 
zero to 90° (see figure 4.9). Therefore, two RC filters can just produce the required 
180° _phase shift, but only in the limit of infinite attenuation. Therefore, such phase 
shift oscillators normally use three RC sections, each with a phase shift of 60°. Even 
then, significant attenuation of the feedback signal occurs, requiring that the 
amplifier have appreciable voltage gain (see problem 10.3). The angular frequency 
of oscillation is on the order of l /RC, but calculation of the exact frequency is not 
trivial, because consideration must be given to the fact that the output of each RC 
circuit is loaded by the input of the next (see problem 10.2). In practice, RC phase
shift oscillators are only useful at audio frequencies and below ( f-::5 l O kHz), because 
at higher frequencies stray capacitance and extraneous phase shifts become too 
important to neglect. 

A particularly stable form of oscillator uses a piezoelectric crystal of quartz in 
place of the LC circuit. The symbol for a quartz crystal is shown in figure 10. 4( a). 
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Fig. 10.4 Quartz crystal. (a) Symbol. (b) Electrical equivalent 
circuit. 

Such a crystal exhibits a high Q, resonance when a sinusoidal voltage of the 
appropriate frequency is applied between its faces. The frequency is determined 
almost entirely by the thickness of the crystal. Although the quartz crystal is an 
electromechanical device, its behavior can be described by an electrical equivalent 
circuit as shown in figure 10.4(b). The R, L, and C1 represent the series mechanical 
resonance. The C2 represents stray capacitance in the crystal holder and leads. The 
ratio of L (many henries) to C1 ( ~ l pF) is much higher than could be achieved with 
real inductors and capacitors. Quartz crystals are available with resonance frequen
cies from a few kHz to about 100 MHz. 

A typical crystal oscillator circuit using an op amp is shown in figure 10.5. The 

R; 

R 

Fig. 10.5 Op-amp crystal oscillator circuit. 

circuit resembles that in figure l 0.1 (a), except that the series resonance of the crystal 
is used instead of the parallel resonance of an LC circuit to provide positive feedback 
at the desired frequency. Crystal oscillators that maintain a constant frequency to 
better than one part in 106 are not at all uncommon. As a result, quartz crystals are 
useful as time and frequency standards, and are even found in some types of 
wristwatches. 

Whereas crystal oscillators are excellent in applications where a fixed frequency 
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is required, many applications require a variable-frequency oscillator (VFO). 
One straightforward approach is to make the inductor or, more usually, the capacitor 
in an LC-controlled oscillator adjustable. Such an approach is satisfactory if sufficient 
care is exercised in construction to ensure adequate frequency stability in the presence 
of mechanical vibrations and if rapid, precise, automatic, or remote control of the 
frequency is not required. For relatively small frequency variations, use can be made 
of varicaps (see section 6.8) in place of or in addition to the capacitor in an LC 
oscillator so that the frequency can be adjusted by means of a variable voltage. More 
sophisticated integrated circuits, called voltage controlled oscillators (VCOs) are 
available which provide a linear variation of frequency with applied voltage over a 
factor of. 10 or more and which provide a selection of output waveforms (square, 
triangular, etc.). 

Finally, it should be noted that oscillators are not the only application of positive 
feedback. Recall that one of the virtues of negative feedback is to increase the 
bandwidth of an amplifier. Not surprisingly, then, positive feedback can be used to 
narrow the bandwidth of an amplifier. In applications such as radio com
munications, in which a high degree of frequency selectivity is desired, positive 
feedback just below the level required for oscillation is sometimes used to increase 
selectively the amplification at a particular frequency. Such circuits are called Q
multipliers, because they result in a bandpass characteristic much sharper than 
would otherwise be allowed by the Q of the associated LC circuit. Quartz crystals, 
because of their very high Qare also often used in crystal filter circuits where 
frequency selectivity is important. 

10.2 Multivibrators 

The latch circuit shown in figure 9. l 3(b) is one example of a class of circuits known as 
a multi.vibrator or flip-ft.op. As the name suggests, a flip-flop is a circuit that 
abruptly changes from one state to another. Although multivibrators can be made 
with operational amplifiers, a simpler and more usual design uses a pair of transistors. 

For example, the circuit in figure 10.6(a) is a bistable multivibrator very much 
like the op amp latch circuit previously described. A bistable multivibrator is a circuit 
that will remain in either of two states indefinitely until caused to change state by an 
externally applied signal. To understand its operation, imagine that V1 = 0. Then 
the transistor on the right has no base current and hence no collector current, since 
le= {318. Therefore, all the current that flows through R 2 goes into the base of the left
hand transistor, driving it into saturation. In the saturated condition, V1 is zero, as 
assumed at the outset. However, by symmetry the circuit is equally stable with V2 = 0 
and the right-hand transistor saturated. The circuit can be made to switch from one 
state to the other by simply grounding either V1 or V2 as appropriate. One way to 
think of the bistable multivibrator or latch circuit is as an oscillator with positive 
feedback at zero frequency. The oscillator begins in whichever state is dictated by the 
initial conditions, but because the period of oscillation is infinite, it never gets to the 
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Fig. 10.6 Multivibrator circuits. (a) Bistable. (b) 
Monostable. (c) Astable. 

other state. Bistable multivibrators can be used as digital memory devices (see next 
chapter) or as frequency dividers, since alternate pulses restore the circuit to its initial 
condition. 

A different type of circuit, known as a monostable multi.vibrator, is shown in 
figure 10.6(b). A monostable multivibrator is a circuit that is stable in only one state. 
It can be put in• itB urn,.table.st.ue by an externally applied signal, but it automatically 
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returns to its stable state after a prescribed time has lapsed. As with the previous 
circuit, it is stable with V1 = 0. If V2 is grounded momentarily, the capacitor C 
behaves transiently like a short circuit and causes the base current, and hence the 
collector current, of the left-hand transistor to go to zero. Then all the current in R 1 

flows into the base of the right-hand transistor, holding it in saturation until the 
capacitor C can recharge through resistor R, whereupon the circuit switches back to 
its initial state. Such a circuit thus produces a square pulse of voltage at V1 with a 
duration determined by the time constant RC and independent of the duration and 
amplitude of the pulse that caused it to change state. 

Such circuits are sometimes called one-shot multivibrators and have a variety 
of uses. One use is with an integrator at the output, for generating the sweep voltage 
in an oscilloscope when the initiation of the sweep must be triggered by an external 
voltage. Another use is for producing large pulses of standard width from input pulses 
of varying amplitude and width. Still another use is for delaying a pulse by a known 
amount of time. The input pulse puts the circuit in its unstable state. By 
differentiating the output, a pulse can be produced at a later time when the circuit 
switches back to its original state. 

A third type of multivibrator is the astable multivibrator shown in 
figure 10.6(c). An astable multivibrator is not stable in either state and spontaneously 
switches back and forth at a prescribed rate, even in the absence of any input signal. 
Assume that V1 is initially at ground. The base of the right-hand transistor will also be 
at ground until C3 can charge up enough through R3 that the right-hand transistor 
will saturate, whereupon V2 goes to zero, causing the base of the left-hand transistor 
to go to zero. Then V1 rises to a positive value until C4 charges up through R4 , causing 
the left-hand transistor to conduct, which starts the cycle all over again. The result is 
that the circuit automatically switches back and forth between the two states. The 
time spent in each state can be controlled by the time constants of the RCs in the base 
circuits. An astable multivibrator is basically an oscillator, but it allows some 
flexibility in the shape of the output waveform. The capacitors eliminate the positive 
feedback at de, thereby avoiding the latch-up that occurs with the bistable 
multivibrator. Note the resemblance to the RC phase-shift oscillator, but remember 
that with multivibrators the voltages are not sinusoidal, and so the concept of phase is 
of limited use. 

A useful variation of the monostable multivibrator is the Schmitt trigger 
circuit shown in figure l0.7(a). Since one or the other of the transistors is always in 
conduction, the emitter voltage VE is approximately the same level (for R 1 =:::. R2 ), 

which is. a fraction of the power supply voltage V determined by the ratio of the 
various resistors. If ~n is less than VE, the transistor on the left does not conduct and its 
collector rises to a high voltage, holding the right-hand transistor in conduction. 
Under this condition the output voltage V0 u 1 is equal to VE. If ~n exceeds VE, the left 
hand transistor begins to conduct, lowering its collector voltage and hence the base 
voltage of the transistor on the right. This allows V0 u 1 to rise to+ V where it remains 
until ~n drops below VE. Actually, the input voltage must fall somewhat below VE 
before the output switches (see problem 10.8). The Schmitt trigger is thus like a 
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Fig. 10.7 The Schmitt trigger circuit in (a) produces an output 
(h) that switches between two levels whenever the input voltage 
crosses the lower of the two levels. 

comparator (see figure 9.13), in that it switches states abruptly when the input crosses 
a specified value as shown in figure 10. 7 (b). In addition to its use as a comparator, the 
Schmitt trigger is useful for eliminating noise on certain types of signals and for 
generating square waves from a sinusoidal input. It is also used as a trigger level 
control in oscilloscopes to initiate the sweep when the trigger signal exceeds a certain 
preset level. In practice, all these circuits are usually seen with small additional 
capacitors whose function is to reduce the time required for the circuit to switch from 
one state to the other. 
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10.3 Tunnel Diodes 

A pn junction diode that is heavily doped so as to increase the concentration of charge 
carriers has an electric field that is concentrated very near the junction. The region 
over which the field exists is so narrow that charges can tunnel through the barrier by 
a quantum mechanical effect. Such a diode is called a tunnel diode and has an 1-V 
characteristic as shown in figure 10.B(a). Unlike an ordinary diode, the tunnel diode 
conducts strongly when reverse-biased or when forward-biased by a small amount. 
For large forward bias, the tunnel diode behaves like any other pn junction diode 
(i.e., / '.:::::'. loeeV/kT). 

The characteristic of the tunnel diode that sets it apart from all the other devices 
encountered so far is the multivaluedness of the current. As the current is increased 
from zero, the voltage increases until it reaches point l in figure 10.8(a). Then it 

(a) 

Tunnel diode 

(b) 

Fig. 10.8 (a) Typical tunnel diode 
characteristics. (b) Tunnel diode oscillator. 

abruptly jumps to point 2. If the current is then decreased, the voltage falls to point 3, 
and then jumps to point 4. Such a device is said to exhibit hysteresis, since the curve 
does not retrace itself as the current oscillates. 

A tunnel diode can be used to construct multivibrators similar to those described 
in the previous section. For example, if a current source of, say, 2 mA is connected to 
the tunnel diode whose characteristics are shown in figure 10.8 (a), the device is stable 
in one of two states with different voltages. Monostable and astable multivibrators 
can be made in similar fashion. 

The region of the curve in figure l 0.8(a) between points I and 3 has dl/dV < 0, 
and hence is said to have negative resistance. A negative-resistance device can be 
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used as part of an oscillator circuit, as shown in figure 10.B(b). The de voltage V0 

establishes an operating point in the negative resistance region. The ac linear 
equivalent circuit then consists of a negative resistance: 

R-dVI 
di V=Vo 

( 10.2) 

in parallel with an LC. The differential equation for such a circuit predicts a 
sinusoidal oscillation that grows rather than damps exponentially, as was the case 
with the transient RLC circuits described in Chapter 3. The oscillation eventually 
reaches a limiting amplitude when the resistance departs significantly from the value 
in equation 10.2, and the diode is just able to compensate for losses in the nonideal L 
and C. It is a general feature of systems that are unstable in their linear (small 
amplitude) limit to grow exponentially in time until some nonlinear effect terminates 
the growth. The growth is, then, a transient state that often goes unnoticed, and the 
amplitude of the steady-state oscillation is determined entirely by the nonlinearities. 

In addition to its simplicity, a tunnel diode also has an advantage in its fast 
switching speed. Charge carriers cross the junction at essentially the speed of light, in 
contrast to the slow diffusion of charges in the bipolar transistor. For this reason, 
multivibrators using tunnel diodes are ideal for high-speed digital computers, and 
tunnel diode oscillators have been made to operate at frequencies as high as 1011 Hz. 

A close relative of the tunnel diode is the back diode. By controlling the doping 
during manufacture, it is possible to suppress the peak forward current [point 1 in 
figure 10.'B(a)] while retaining the rapid rise in current in the reverse direction. For 
small voltages ( <0.6 V for silicon), such a diode thus behaves just the opposite of an 
ordinary diode, except that the knee of the V-1 characteristic occurs very close to zero 
voltage. Back diodes are therefore useful for rectifying very small ac voltages where an 
ordinary diode would simply behave like a high-value resistor. 

Negative-resistance devices were known well before the advent of modern 
semiconductor technology. For example, the neon bulb in which two electrodes are 
sealed in a glass envelope filled with low-pressure neon gas is widely used in pilot 
lamps to indicate when a particular circuit is energized, but it is also known to exhibit 
negative resistance. The neon bulb, whose symbol is shown in figure l0.9(a), draws 
essentially no current until the voltage across its terminals increases to about 80 V, 
whereupon the neon becomes ionized, the voltage drops back to a lower value, and the 
current increases to whatever value is required to maintain the voltage at ~60 V. In 
normal use, the neon bulb must therefore be used with a voltage greater than ~80 V 
and a series, current-limiting resistor. 

A simple circuit, called a rebaation oscillator, using a neon bulb, is shown in 
figure 10.9(b). When the circuit is turned on, the capacitor C begins to charge 
through resistor R, exponentially approaching the voltage V0 , as shown in 
figure 10.9(c). Until the capacitor voltage reaches --80 V, no current flows in the 
neon bulb, but when the neon bulb finally begins to conduct, it rapidly dischargesthe 
capacitor to ~60 V, whereupon the neon bulb goes out (provided R is sufficiently 
large) until the capacitor is able to recharge to --80 V. The voltage across the neon 
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Fig. 10.9 The neon bulb (a), because of its 
negative resistance characteristic, can be used 
in a relaxation oscillator circuit ( b) to produce 
a sawtooth output voltage (c). 

bulb thus consists of a de component of~ 70 V and a sawtooth-shaped ac component 
with a peak-to-peak amplitude of ~20 V. Such oscillators are especially simple and 
inexpensive, but they are not very stable and are limited to frequencies below about 
100 kHz. 

10.4 Unijunction Transistors 

A three-terminal device with negative resistance characteristics similar to the tunnel 
diode is the unijunction transistor ( UJT). It consists of a single bar of n-type 
silicon semiconductor with a small pn junction near its middle which forms the 
emitter. At each end of the bar is a base terminal made by ohmic contacts to the 
respective base leads. The symbol and equivalent circuit for the UJT are shown in 

2 4 2 Other Nonlinear Circuits and Devices 



+V 

Voot o----1------ ..... 

r 
(c) (d) 

Fig. 10.10 Unijunction transistor. (a) Symbol. (b) Equivalent circuit. (c) 
Emitter characteristics. (d) Relaxation oscillator. 

figure 10. IO(a) and (b), respectively. With the emitter open-circuited, the resistance 
between the bases is typically a few thousand ohms, with R81 somewhat greater than 
R82 . If base 1 is grounded, a voltage VE applied at the emitter has no effect unless it 
exceeds a value given by 

( 10.3) 

whereupon the diode begins to conduct and current flows into the emitter. This 
current causes R81 (and hence VE) to decrease and IE to increase. This decrease in VE 
as IE increases is the origin of the negative resistance characteristic of the UJT. The 
emitter characteristic of a typical UJT is shown in figure 10.lO(c). 

Like the tunnel diode, the UJT can be used as an oscillator. Figure 10.10 ( d) 
shows a typical UJT oscillator. As capacitor C charges through R1 , the emitter 
voltage will increase until the emitter begins to conduct, whereupon the capacitor 
will suddenly discharge, and the voltage will drop below the minimum value shown 
in figure 10. IO(c).Then the emitter ceases to conduct (IE drops to a very low value), 
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and the cycle begins again. The output voltage across the capacitor thus has a 
sawtooth waveform. The operation is analogous to the neon bulb relaxation oscillator 
except that the waveform returns nearly to zero when the capacitor discharges. An 
additional output from base 2 would provide negative-going spikes every time the 
capacitor discharges. Such a circuit is another example of a relaxation oscillator, and 
it finds use in the same applications as the astable multivibrator discussed earlier. 

10.5 Silicon-Controlled Rectifiers 

Another three-terminal nonlinear device is constructed from a pnpn structure, as 
shown in figure 10.11 (a). Such a device is called a silicon-controlled rectifier 
(SCR) or a thyristor. The symbol for an SCR is shown in figure l 0.11 (b). The SCR 
can be represented as two bipolar transistors connected as in figure 10.ll(c). 

p 

n 

n 

(a) 

Anode 

(c) 

Gate 

Anode 

Cathode 

(b) 

Cathode 

Fig. 10.11 Silicon-con trolled rectifier. 
(a) Structure. (b) Symbol. (c) Repre
sentation in terms of bipolar transistors. 

To understand its operation, assume first that no current flows into the gate (gate 
either open-circuited or connected to the cathode). Then the bottom transistor is 
biased to cutoff and hence draws no collector current. The upper transistor then has 
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no base current, and it is also .an open circuit. The device thus looks like an open 
circuit between anode and cathode for either polarity of voltage. Now suppose a 
positive current flows into the gate. The bottom transistor begins to conduct, causing 
a base current to flow into the upper transistor, causing it to conduct also. It then 
produces an additional base current in the lower transistor, causing it to conduct even 
more, and so forth, until both transistors are biased to saturation. The device then 
remains a short circuit between anode and cathode, even when the gate current is 
removed. It can be made to cease conducting only by reducing the anode current 
below a small value called the holding current (or by reversing the anode-to
cathode voltage). The SCR thus behaves like a switch that can be closed (turned on) 
by a momentary pulse of current at its gate. The gate input resistance is quite small 
( :$100 !l), and the size and duration of the required gate trigger pulse are also small. 

A variation of the SCR is the silicon~ontrolled switch (SCS), in which a 
fourth terminal ( called the anode gate) is connected to the base of the upper 
transistor in figure 10.11 ( c). This fourth electrode allows the device to be switched off 
by the application of a momentary positive voltage. 

One very common use of the SCR is for controlling the ac power delivered to a 
load. Such a circuit is shown in figure 10.12 (a). By varying the resistor R, the fraction 
of the cycle over which the device conducts can be controlled, as shown in 

Vo cos wt rv 

(a) 

16 

\ 
\ I 
\ I 
\ I 

'.. ... / 

\ 
\ 
\ 
\ I 
'~ 

(b) 

Fig. 10.12 The SCR circuit in (a) allows the 
average power in RL to be varied by control
ling the waveform as shown in (b). 
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figure 10.12(b), and hence the average power dissipated by RL can be adjusted. The 
advantage of such a circuit over a simple adjustable series resistor is that essentially no 
power is wasted in the SCR, since it always has either a zero current or a zero voltage. 
The power dissipated by resistor R can be very small since typically R > > R1,. The 
disadvantage of the SCR is that the waveform across the load RL in no way resembles 
a sine wave. Often this is of no concern, and SC Rs find wide application in consumer 
appliances such as electric-light dimmers and electric-motor speed controls. 

One common application of the SCR is as a rectifier in a variable voltage power 
supply. Since the waveform of figure 10.12(b) resembles the output of a half-wave 
rectifier (see figure 6.6), the resistor RL in figure 1 0. l 2(a) can be replaced with a low
pass filter as shown in figure 10.13, and the result will be to produce a de output 

V 

Fig. 10.13 Half-wave SCR-controlled variable power supply. 

voltage whose value can be adjusted by the resistor R. Such a power supply is much 
more efficient than one in which control is achieved by wasting power in a series 
resistor or transistor. Full-wave and bridge rectifier versions of the SCR-controlled 
power supply can be constructed in similar fashion. 

A limitation of the SCR circuits of figures 10.12 and 10.13 is that the output 
wave shape can be varied only between a quarter cycle and a half cycle. The average 
power in the load can thus be varied by only a factor or two. This limitation can be 
largely overcome by the addition of a capacitor, as shown in figure 10. l 4(a). With R 
small, the capacitor has very little effect, and the SCR fires shortly after the voltage 
crosses zero in the positive-going direction, as shown in figure 10. l 4(b). When R is 
increased, the time at which the SCR fires moves later, because a larger source 
voltage is required, just as in figure l 0.12, but the RC circuit produces an additional 
phase shift that can approach 90°. Consequently, the capacitor voltage reaches its 
peak value just before the source voltage crosses zero in the negative-going direction, 
as shown in figure l O. l 4(c). The result is that the output waveform duration can be 
adjusted from nearly zero to almost half a cycle. Similarly, the voltage output of the 
power supply in figure 10.13 could, with such a modification, be varied from near 
zero to full output. 

The circuit in figure 10.12 has the additional disadvantage of conducting at most 
over a half a cycle. This limitation is eliminated by placing two SCRs back-to-back, 
as shown in figure 10.15(a), so that each conducts alternately as the polarity reverses. 
Such a device is called a triac, and its symbol is shown in figure 10.15(b). When the 
triac is connected in a circuit as in figure 10.15 (c), its behavior is the same as for the 

2 46 Other Nonlinear Circuits and Device• 



VL 

Vo 

Vi 
Vo 

(a) 

\ I \ 
\ I 
\ I 
\ I ,_,, 

(b) 

\ I 
\ I 
\ / 

'-_,/ 

(c) 

\ 
\ 
\ 
\ 
\ 

RL 

C 

I 
I 

I 
I ,_,, 

I 
I 

I 
I 
I 

t 
Vi 

_J 

Fig. 10.14 The addition of the capacitor C in the 
SCR circuit in (a) allows the output waveform to be 
varied from nearly a half wave (b) for R small to a 
narrow spike (c) for R large. 

SCR circuit of figure 10.14, except that the output waveform is symmetrical about 
V=O, as shown in figure 10.15(d). 

One difficulty with the gate-trigger circuits shown in figures 10.12-10.15 is the 
unreliable operation that results from the variation in required trigger currents 
between different devices and for the same device at different temperatures. A 
common solution is to insert a neon bulb in series with the gate, so that a large 
amount of energy is delivered to the gate in a short pulse just after the bulb goes into 
conduction. For lower voltage operation, a special solid-state trigger diode, called a 
diac, can be used in place of the neon bulb. A diac is like a triac except that it is a 
two-terminal device that is triggered into conduction when the voltage across its 
terminals exceeds a prescribed value (typically ~30 V) in either direction. 

A final example of the many uses of the SCR is the pulser circuit shown in 
figure 10.16(a). In the absence of an input voltage ( ~n = 0), the capacitor C charges 
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Fig. 10.15 Two SCRs connected as in (a) form a unit 
called a triac whose symbol is shown in (b). When 
connected in a circuit as in (c), an output waveform as in 
(d') results. 

to voltage V0 through resistor R, and no current flows through the SCR. If a positive 
pulse of sufficient size and duration (usually a few volts for a few microseconds) is 
applied at f7;0 , as shown in figure 10.16(b), the SCR abruptly goes into conduction 
and dumps all the energy of capacitor C into the load resistor RL. The voltage across 
RL is thus a decaying exponential 

(10.4) 

as shown in figure 10.16(c). When the capacitor voltage drops to a sufficiently low 
value, the SCR anode current is insufficient to maintain the SCR in conduction 
(provided R is sufficiently large), and the SCR stops conducting. The capacitor then 
recharges and awaits the next trigger pulse at Vin• A common application for such a 
circuit would be an electronic photoflash in which the energy stored in a capacitor is 
used to produce an intense but brief burst of light at a precisely controlled time. 

The SCR pulser thus behaves something like a pulse amplifier, in that the output 
pulse can be much larger than the input pulse. But it differs from an amplifier, in that 
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Flg.10.16 The SCR pulser in (a) can be 
triggered by a small brief pulse ( b) so as to 
produce a larger pulse of constant size and 
shape (c). 

the shape of the output pulse is determined by V0 , RL, and C, independent of Vin so 
long as Vin is sufficient to trigger the SCR into conduction. 

The SCR has two vacuum tube counterparts that are still in common use, 
especially for very-high-voltage applications. The thyratron is a vacuum triode 
filled usually with low-pressure hydrogen gas and containing an electron-emitting, 
heated cathode. A positive pulse applied from grid to cathode ionizes the hydrogen 
and triggers the device into conduction. The ignitron is a similar device which is used 
at even higher voltages and currents (up to ~50 kV at 106 A). It contains an anode 
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and a pool of mercury .that serves as the cathode. The device is triggered into 
conduction by the application of a positive voltage ( usually a few hundred volts) 
between a third electrode ( called the ignitorJ and the cathode. Thyratrons and 
SCRs are often used to provide the trigger pulse for ignitrons. 

10.6 Optoelectronic Devices 

A rapidly developing area of electronics involves devices whose electrical properties 
are altered by incident light or devices that emit light upon application ofa voltage or 
current. The simplest such optoelectronic device is the photodetector which 
consists of a photoconductor such as cadmium sulfide whose resistance drops 
because of the excitation of free charge carriers by incident light. It is a passive device 
in the sense that it does not produce electrical power. In combination with an external 
voltage source and ammeter, it can be used to measure light intensity. 

The basic semiconductor optoelectronic device is the pn junction with a trans
parent window. In such a photodiode, photons incident on the junction cause a flow 
of current across the junction. When optimized to produce the maximum electrical 
output power for a given incident light, such devices are called photovoltaic cells or 
solar cells and hold promise for large-scale generation of electricity from sunlight. 
Unfortunately, these devices are expensive and have low efficiency (10-15%), and 
have found widespread application only in satellites and space vehicles, where 
sunlight is abundant and other sources of power are prohibitive. On a smaller scale, 
photocells are used in applications such as reading punched computer cards and tapes 
and for producing an audio signal from the information coded on movie film. In such 
applications, the junction is usually reverse-biased, and the reverse current 10 varies 
in proportion to the incident light. The pn junction is also sensitive to nuclear 
radiation and has found application in nuclear particle detectors. 

An alternate configuration combines a light-sensitive pn junction with a bipolar 
transistor in a device called a phototransistor. It results in a multiplication of the 
light-induced current by the beta of the transistor. The process can be carried one 
step further in the photo Darlington transistor (see figure 8.10). Similarly, an 
FET can be made sensitive to light. Such a PHOTOFET is useful for measuring the 
attenuation of light passing through liquids and gases, as might be required in a 
smoke detector. 

A photosensitive pn junction can also be incorporated into an SCR so that it can 
be triggered into conduction by a pulse of light. Such a device is called a light
activated silicon-controlled rectifier (LASCR). A typical application would be 
in a remote photographic flash unit that triggers on the light from the flash attached 
to a camera so as to provide extra illumination on the subject being photographed. 

The process that is the reverse of the photodiode is also observed to occur. In the 
light-emitting diode (LED), a forward current through a pn junction can be used to 
produce light. Such junctions are usually made of gallium arsenide or gallium 
phosphide and typically emit red light, although other colored LEDs are also 
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available. The prime advantages of the LED over other types of light sources are 
their compact size, low current and voltage requirements, high efficiency, and 
exceptionally long operating life. For these reasons, LEDs find widespread use in 
devices such as pocket calculators where battery drain and operating life are prime 
considerations. 

LEDs can also be combined with some form of light-sensitive detector (LSD) 
such as a photodiode to form a device called an optocoupler or optoisolator. It 
produces an output current approximately proportional to the input current but 
offers a high degree of electrical isolation and voltage standoff between the input and 
the output, because the emitter and detector can be separated some distance by a 
transparent insulator or by a grounded, conducting screen. Optoisolators normally 
operate in the near infrared rather than in the visible portion of the spectrum, and 
typically provide > 1011 n of isolation. 

Often the light emitter and detector are separated by a considerable distance and 
are coupled by means of a thin flexible light guide which often consists of a bundle of 
thin fibers of glass or plastic ( called fiber optics). Because the frequency of visible 
and infrared light is much higher than the frequencies normally encountered in 
electronic circuits, fiber optics offer the potential of a much higher rate of information 
transfer than ordinary electrical transmission lines. Fiber optics are thus finding 
application in telephone, television, and data-transmission systems. 

An entirely different type ofoptoelectronic device is the liquid crystal display 
(LCD), in which an applied voltage changes the opacity of the crystal. When viewed 
against a dark background, it thus gives the appearance of changing from light to 
dark. Since such a device does not directly emit light, its power consumption can be 
extremely small. Such a device would be a natural choice for an application in which 
the ambient light level is high and available power is minimal, such as a digital 
wristwatch. 

When extremely high sensitivity to light is required, a device called a photo
multiplier (PM) tube is often used. As shown in figure 10.17, such a device is a 
vacuum tube consisting of a cold, photosensitive cathode that emits electrons when 
struck by light. The electrons are attracted to a nearby positive electrode ( called a 
dynode) where they typically release 3 to 6 secondary electrons which are attracted 
to the next, even more positive dynode, and the whole process repeats through 
many stages, producing a large current at the anode. Such a device is so sensitive 
that it can detect a single photon of light, in which case the output consists of a 
negative voltage pulse with a size determined by the capacitance of the measuring 
instrument. 

An alternate and more compact configuration is the channeltron electron 
multiplier (CEM) in which a long, thin, evacuated glass tube is coated on the inside 
with a low-work-function, conducting material that takes the place of the individual 
dynodes in the photomultiplier tube. A high voltage is applied between the ends of 
the tube, and an avalanche of electrons is formed whenever light is incident on the 
more negative end of the coating. Arrays of such devices can be used to form a two
dimensional electronic image of the object being viewed. 
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Fig. 10.17 Photomultiplier tube. 

10. 7 Summary 

This chapter has dealt with a small number of the more common nonlinear circuits 
and devices. Oscillators are circuits that do the opposite ofrectifiers. They convert a 
de voltage into an ac voltage. There are dozens of ways to make oscillators. They all 
involve either active circuit components with positive feedback or a device with 
negative resistance. The frequency of an oscillator is often determined by a resonant 
LC circuit, but RC circuits and quartz crystals can also be used. Oscillators can be 
made with sinusoidal outputs or with a variety of other periodic waveforms. 

The multivibrator is a circuit consisting of a pair of transistors that abruptly 
switch between saturation and cutoff. They can be made in three configurations. The 
bistable multivibrator is equally happy in either of two states. The monostable 
multivibrator can be made to change states, but it always returns to its initial state 
after a prescribed interval. The astable multivibrator isn't really happy in either state 
and continually switches back and forth. It is just another kind of oscillator. The 
Schmitt trigger is a variation of the monostable multivibrator that resembles the op
amp comparator. 

The list of semiconductor devices in widespread use is a very long one. Tunnel 
diodes are useful as oscillators and high-speed switching devices because of their 
negative resistance characteristics. The unijunction transistor is a three-terminal 
device with a negative resistance characteristic. It and the silicon controlled rectifier 
are switching devices, but the means by which they are turned off once they begin to 
conduct are rather different. Optoelectronic devices are electronic devices that either 
respond to or emit light. Their uses are numerous and rapidly growing. 
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Problems 

10.1 Assume the op amp in figure 10.l(a) is real with A0 = 104 and rin = 1 kn. 
Calculate the maximum value of R for which oscillation will occur. 

10.2 Show that the frequency of oscillation of the circuit below 1s given by 

Jo= 1 /2nj6 RC provided the op amp output does not saturate. 

C C C 

R 

10.3 For the circuit in problem 10.2, show that oscillation will occur only if the 
open loop voltage gain of the op amp exceeds A0 = 29. 

10.4 For the quartz crystal equivalent circuit shown in figure 10.4(b), assume R 
= 0 and C2 ~ C1 . Show that the circuit exhibits a series resonance at an angular 
frequency m0 that is independent of C2 and that a parallel resonance occurs at a 
slightly higher frequency such that the difference between the two resonances is given 
by dm =w 0 C1/2C2 . 

10.5 If the crystal described in figure 10.4(b) with R = 1000 n is used in the 
oscillator circuit of figure 10.5 with R = 1000 n, what is the minimum ratio R1 /Ri for 
which oscillation will occur? 

10.6 Calculate the values of L and C1 for the crystal equivalent circuit of 
figure 10.4(b) if the crystal has a series resonance at 1 MHz with a Q of 105 and a 
series resistance of R = I 00 n. 
10.7 Calculate the minimum value of ~n which will trigger the Schmitt trigger 
circuit in figure 10. 7, assuming the transistors are ideal, R1 = 2 kn, R 2 = R 3 = R4 

=RE= 1 k!l, and V=24 V. 

10.8 Show that the Schmitt trigger circuit described in problem 10. 7 exhibits 
hysteresis; that is, once the circuit is triggered, show that ~n must fall to a value below 
the value that caused it to trigger before it switches back to its initial state, and 
calculate that value of Vin• 

10.9 Design a monostable multivibrator using the tunnel diode whose characteris
tics are shown in figure 10.8(a). The circuit should produce a pulse of duration 
,_ 10- 3 s. 

10.10 Estimate the minimum value of resistance that could be placed in parallel 
with the inductor in figure 10.8(b) and still allow the circuit to oscillate if the tunnel 
diode is described by.the curve in figure 10.8(a). What value should V0 have for this 
value of resistance? 
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10.11 The circuit below is an astable multivibrator that uses an ideal op amp with 
an output saturation voltage of± 10 V. Calculate the period of the output square 
wave. 

900!1 

">-- ...... ---ovotJt 

10 kil 

10.12 Sketch the voltage waveform across the capacitor in the circuit in problem 
10.11 and indicate the magnitude of the voltage. 

10.13 Solve the homogeneous differential equation for the voltage across a parallel 
RLC in which the resistance is negative. 

10.14 Calculate the frequency of the neon bulb relaxation oscillator of figure 10.9 
in terms of RC, assuming a power-supply voltage of V0 = 160 V. 

10.15 Derive a criterion for the values of /3 for the two transistors in figure 10.11 (c) 
that will ensure that the circuit behaves like an SCR. 

10.16 Calculate the average power dissipated in the load RL in figure 10.12 (a) 
assuming the voltage source is sinusoidal with peak value V0 and the SCR is triggered 
whenever the gate current exceeds I,. 

10.17 Calculate the de and fundamental frequency component for the Fourier 
series for the waveform in figure 10.12(b) if the SCR conducts for a quarter-cycle 
with a peak output voltage of V0 = 100 V. 

10.18 Design a circuit using an SCR that can be triggered with a+ 10-V, 1-µs-wide 
voltage pulse which will produce an exponentially decaying pulse of+ 100-V initial 
amplitude and 100-µ,s time constant across a load RL. Assume that a gate current 
of 1 mA \till reliably trigger the SCR and that the holding current is also 1 mA. 

1 

10.19 If an SCR pulser is triggered repetitively at too high a repetition rate, the 
capacitor will not charge up to its full voltage. Derive an expression for the peak 
output voltage as a function of the repetition rate f (in hertz) for the conditions 
described in problem 10.18. (Assume f ~ 1/RLC.) 

10.20 How many dynodes would be required for a photomultiplier tube to produce 
a >0.1-V pulse across a 100-pF load when a single electron is emitted from the 
photocathode if each dynode emits 5 electrons per incident electron? 
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11.1 Binary Numbers 

chapter 11 
Digital 

Circuits 

In most of the applications of electronic circuits encountered so far, the voltages and 
currents vary continuously over a range of values. Such circuits are called analog 
circuits. As the opposite extreme are circuits in which the voltages and currents are 
allowed to have only two rather different values, as was the case with the 
multivibrators described in section 10.2. Such circuits are called digital circuits. 
With digital circuits, the exact values of the voltages are of no consequence so long as 
one can unambiguously determine which of the two states the circuit is in. The two 
states are variously referred to as on/off, true/false, yes/no, high/low, or one/zero. 
Digital circuits are inherently more reliable and less prone to noise and interference 
than analog circuits. 

Digital circuits lend themselves rather naturally to performing arithmetic with 
binary numbers. A binary number is a number composed of the two binary digits 
(called bits), 0 and 1. With a decimal number, such as 931, the decimal digits 
represent successive powers of ten: 

93110= 1 X 10°+ 3 X 101+ 9 X 102 

Similarly, a binary number such as 10110 can be expressed as successive powers of 
two: 

The idea can be generalized to numbers of any base. Octal (base 8) and 
he~decimal (base 16) representations are quite common. The binary, octal, and 
hexadecimal equivalents of the decimal numbers 1 through 20 are given in 
table 11.1. Each octal digit can be represented as a three-bit number, and each 
hexadecimal digit can be represented as a four-bit number. An eight-bit binary 
number is often called a byte. A byte can thus be written as a two-digit hexadecimal 
number. 

Binary numbers are added just like decimal numbers, by carrying a digit 
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TABLE 11.1 Representations of Decimal Numbers in Binary, Octal, 
and Hexadecimal 

Decimal Binary Octal Hexadecimal 

1 1 1 
2 10 2 2 
3 11 3 3 
4 100 4 4 
5 101 5 5 
6 110 6 6 
7 111 7 7 
8 1000 10 8 
9 1001 11 9 

10 1010 12 A 
11 1011 13 B 
12 1100 14 C 
13 1101 15 D 
14 1110 16 E 
15 1111 17 F 
16 10000 20 10 
17 10001 21 11 
18 10010 22 12 
19 10011 23 13 
20 10100 24 14 

whenever the result would be more than one digit: 

110 

+ 101 

1011 

Similarly, two binary numbers can be multiplied as with decimal numbers: 

10110 
X 101 

10110 
00000 

10110 

1101110 

Note that the multiplication of two binary numbers consists merely of successive 
additions of a column of numbers formed by shifting the bits of the original number 
one place to the left for each bit in the multiplier that is a 1. 

Subtraction of binary numbers follows the same rules as subtraction of decimal 
numbers. It is necessary to borrow from the next higher bit whenever one tries to 

subtract a 1 from a 0. A convenient trick for the subtraction of two binary numbers 
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makes use of what is called two's complement arithmetic. The rule is to take the 
number that is to be subtracted, and invert it (change all O's to 1 and all l's to 0), then 
add 1, and add the result to the original number, discarding any leftover carry bit. 
For example, to subtract 43 10 =101011 2 from 5 710 = 111001 2 , proceed as follows: 

111001 
+ 010100 

+ 
1001110 

The leftmost bit of the result is a carry bit and is dis·carded, leaving the number 
001110 2 = 1410 . In this notation the remaining leftmost bit (0 in this case) is called 
the sign bit. Its only purpose is to indicate whether the number is positive or 
negative. AO sign bit means that the remaining number is positive; a 1 sign bit means 
that it is negative. If the result is negative, it is necessary to take its inverse and add 1 
to find its value. 

The division of two binary numbers can be done by counting how many times 
one number can be subtracted from the other. The count then becomes the quotient. 
Note that unlike the other arithmetic operations, the division of one integer by another 
does not, in general, give an integer result. The remainder after subtracting one 
number from the other as many times as possible then can be used to determine the 
fractional part of the quotient. 

An important conclusion that can be drawn from this discussion is that all 
arithmetic operations on binary numbers can be reduced to addition. Thus a digital 
circuit capable of performing binary addition becomes the building block for all the 
more complicated operations. 

11.2 Logic Gates 

Electronic circuits that perform operations with binary digits are called logic gates. 
For example, a circuit with two inputs and one output that produces a 1 at its output 
if input A and input Bare both 1, and O otherwise, is called an AND gate. A circuit 
with such a property is shown in figure 11.1 (a). In this circuit, if either A or Bis at 
zero V, one of the diodes (assumed ideal) is forward biased, and the output V0 is zero. 
If, on the other hand, both A and Bare at+ V ( typically 5 V), the output V0 is at+ V, 
which we identify as a binary 1. The behavior of such circuits is described by a truth 
table, as shown in figure 11.1 (b). A truth table describes the output for all possible 
combinations of input variables. Examination of the truth table shows that the AND 
gate is essentially a binary multiplication circuit, and so the AND operation is 
indicated by a dot: 

Sometimes the dot is omitted and the AND operation is written simply as 

V0 =AB 
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+V 

(a) 

6 § Vo 
0 0 0 
0 1 0 
1 0 0 

1 
(b) 

1~v 0 =A·B 

(c) 

Fig. 11.1 (a) AND circuit. (b) Truth 
table. (c) Symbol. 

but in this text the dot will always be used. The symbol for the AND gate is shown in 
figure 11. l (c). An AND gate can have more than two inputs, in which case it produces 
a 1 at its output only if all the inputs are 1. An AND gate with more than two inputs 
can be used as a two-input AND gate if the unused inputs are maintained at 1. The 
AND gate is also called a coincidence circuit, since it produces an output if two 
positive pulses at the inputs coincide in time. 

A different type of circuit produces a 1 at its output if A or B (or both) are l; and 
0 otherwise. It is called an OR gate. Such a circuit is shown in figure l l .2(a). Its 
operation is described by the truth table in figure l 1.2(b). The OR operation is 
indicated by a + sign: 

The symbol for the OR gate is shown in figure l l.2(c). An OR gate can have more 
than two inputs, in which case it produces a l at its output if any of the inputs are 1. 
An OR gate with more than two inputs can be used as a two-input OR gate if the 
unused inputs are maintained at 0. 

One limitation of the diode logic gates described above is the degradation of the 
signal ( ,..,.,;Q,6 V /gate) that occurs when a series of such gates are connected together. 
Furthermore, the number of gates that can be connected to the output of a diode gate 
( called the fanout) is limited to a fairly small number, since each additional gate 
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A _e 
0 0 

0 
0 

1 
(b) 

Vo 
0 

; ~ Vo = A + B 

(c) 

Fig. 11.2 (a) OR circuit. (b) Truth table. 
(c) Symbol. 

loads down the voltage output to the point where eventually the I state is no longer 
reliably recognized. Consequently, logic gates are more often constructed with 
transistors, as shown in figure l 1.3(a). Such a circuit resembles the OR gate, except 
that the transistor inverts the output as shown by the truth table in figure l 1.3(h). 
Such a circuit is called a NOR gate (NOT-OR). The NOT operation is indicated by a 

+V 
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A ~ ~ 
0 0 1 

0 0 

0 0 

1 0 
(b) 

A~ -
B ~ Va = A + B 

(c) 

Fig. 11.3 (a) NOR circuit. (b) Truth table. (c) 
Symbol. 

bar over the quantity, so that the NOR operation is indicated by 

V0 =A+ B 

The symbol for the NOR gate is shown in figure l 1.3(c). A NOR gate can have any 
number of inputs. A single input NOR gate or a multiple input NOR gate with all but 
one of its inputs maintained at O performs the NOT operation (inversion). 

Finally, one can produce a NANO gate (NOT-AND) by combining an AND gate 
with a single input NOR gate, as shown in figure l l.4(a). The NANO operation is 

A 

B 

(a) 

A .6 Vo 
0 0 1 
0 1 

0 
1 0 

(b) 

(c) 

Fig. 11.4 (a) NANO circuit. (b) Truth 
table. (c) Symbol. 

indicated in the truth table in figure l l.4(b), and written as 

V0 =A·B 

The symbol for the NANO gate is shown in figure l 1.4(c). A NANO gate can have any 

260 Dlgltal Circuits 



number of inputs. Any unused inputs of a NANO gate must be held at 1 or connected 
in parallel with one of the inputs that is being used. A single input NANO gate or a 
multiple input NANO gate with all but one of its inputs maintained at 1 performs the 
NOT operation. The NOT operation is sometimes denoted by the symbol in 

~ Vo 
0 1 
1 0 

(b) 

Fig. 11.5 NOT circuit. (a) Symbol. (b) 
Truth table. 

figure l 1.5(a) in which the resemblance to an inverting op amp is more than 
coincidental. The truth table for the NOT operation is given in figure 11.5 (b). 
Notice that a single input NOR gate, a single input NANO gate, and a NOT gate all 
perform the same function. 

Not surprisingly, logic gates are available as integrated circuits. Such circuits are 
often more complicated than those shown in figures 11.1-11.4 in order to improve 
reliability, reduce power dissipation, and increase operating speed. Speed and power 
dissipation can usually be traded off against one another. This is an important fact, 
since large digital circuits such as computers typically employ thousands of logic 
gates, and the speed and total power dissipation are usually limiting factors. 

Because of the limitations previously mentioned, gates containing only diode 
and resistor logic (DRL) components are rarely used. Some of these limitations are 
overcome with resistor-transistor logic (RTL), such as was shown in figure 
l l.3(a). Some additional improvements, especially in physical size, noise immunity, 
and fanout, can be achieved by a combination of diodes and transistors (DTL). The 
diodes, however, have considerable junction capacitance, and thus the speed with 
which the gate can operate is not great. Faster operation is achieved with transistor
transistor logic (TTL) in which special transistors with multiple emitters are used. 
Even greater speed is achieved by using emitter-coupled logic (ECL) in which 
emitter followers are used for low output resistance, and the input capacitance is 
reduced by not driving the transistors into saturation. ECL gates are the most 
expensive and have the highest power requirements, but they have a large fanout 
and are able to respond in about 10- 9 s. At the opposite extreme is the MOS logic 
family which uses MOSFET devices rather than bipolar transistors. Because of the 
very high input resistance of the MOSFET, the power dissipation per gate is very 
small and the fanout enormous, but the switching speed is comparatively slow. 
Finally, one should note that the voltage levels used for the different types of logic are 
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not necessarily the same, and so one should avoid mixing types unless care is taken to 
convert the voltages properly. The characteristics of a typical logic gate employing 
the various logic types are summarized in table 11.2. 

TABLE 11.2 Comparison of a Typical Logic Gate Employing 
Various Logic Types 

Logic Type Speed Power V0 (0/l) Fanout 

RTL 50 ns l0mW 0.2/0.9 4 
DTL 25 ns 15 mW 0.2/4.0 8 
TTL 10 ns 20 mW 0.2/3.0 10 
EGL 2 ns 50 mW -1.55/-0. 75 24 
MOS 200 ns 0.3 mW 0/3-15 50 

11.3 Boolean Algebra 

The analysis oflogic networks is facilitated by a set of theorems developed by George 
Boole, an English mathematician, and known as Boolean algebra. These theorems 
were developed for symbolic logic long before the advent of digital electronics. Most 
of the theorems of Boolean algebra are identical to those of ordinary algebra: 

Commutation: 

Association: 

Distribution: 

A+B=B+A} 
A·B =B·A 

(A+ B) + C =A+ (B + C)} 
(A • B) • C = A • (B • C) 

A· (B + C) = (A· B) + (A· C) 

Certain other theorems arise from the binary properties of the quantities: 

A·A=A 

A+A=A 

A·A=O 

A+A=l 

A=A 

A very useful relationship of Boolean algebra is De Morgan's theorem: 

A+B=A·B 

( l l.l) 

( l 1.2) 

( 11.3) 

( 11.4) 

( 11.5) 

( 11.6) 

( l l.7) 

( 11.8) 

( 11.9) 

By replacing A with A and B with Bin equation ( l 1.9), and using equation ( l 1.8), an 
alternate form of De Morgan's theorem can be derived: 

( 11.10) 

262 Dlgltal Circuits 



De Morgan's theorem is very important, because it allows all the basic logic 
operations to be done with only NOR gates or with only NANO gates. For example, 
figure l l .6(a) shows how an AND gate can be constructed from NOR gates, and 

A 

B 

(a) 

A 

B 

Fig. 11.6 (a) Construction of an AND gate using NOR gates. 
(b) Construction of an OR gate using NANO gates. 

figure l l.6(b) shows how an OR gate can be constructed from NANO gates. Many 
other relationships can be derived from these theorems. 

All these theorems can be proved quite simply by writing out the truth tables. For 
example, the truth table for De Morgan's theorem is given in table 11.3. 

TABLE 11.3 Truth Table for Proving De Morgan's Theorem 

A B A B A·B A+B A+B 

0 0 1 0 
0 1 1 0 0 0 

0 0 0 0 
0 0 0 0 

11.4 Logic-Gate Applications 

Logic gates can be combined to perform a variety of mathematical operations. For 
example, the circuit in figure l l.7(a) will add two single-bit numbers, A and B, and 
produce a two-bit number with right- and left-hand digits, R and L, respectively. 
Such a circuit is called a half-adder circuit, and it is described by the truth table in 
figure l l.7(b). The half-adder circuit has limited usefulness, because the most 
complicated problem it can solve is 1 + l = 2. To add larger numbers (many bits), it 
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R 

L 
B A·B 

(11) 

A § .b B 
0 0 0 0 
0 0 
1 0 0 

0 
(b) 

Fig. 11.7 The half-adder circuit m (a) is 
described by the truth table in ( b). 

is necessary to have an adder circuit in which the carry bit from the preceding circuit 
can be added to the right-hand digit. The left-hand digit then becomes the carry bit 
for the next adder, and so forth. Such a circuit is called a full-adder, and is shown in 
figure l l .8(a). The operation of the full-adder is described by the truth table in 
figure ll.8(b). A full-adder is capable of adding two single-bit numbers (A and B) 
plus a carry bit (C) and producing a single-bit result (R) and a carry bit (L). 
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B 

C 

--
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Half 
adder 

L 

R 

A 
0 
0 
0 
0 

1 
1 

~ g_ 
0 0 
0 
1 0 
1 
0 0 
0 
1 0 
1 

(b) 

L I L 

Half -
adder R ~ R 

(a) 

b 8. 
0 0 
0 
0 
1 0 
0 1 

0 
1 0 
1 1 

Fig. 11.8 The full-adder circuit in (a) is described by the truth table in 
(b). 
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With full-adders, one can proceed to construct circuits to perform nontrivial 
calculations. For example, suppose one wishes to add the binary numbers 1101 
= 1310 and 1001 = 910 . For the first number, one would set four voltages as 
appropriate, beginning with the right-hand (least-significant) bit: 

Similarly for the second number: 

These eight voltages could then be applied simultaneously to the circuit m 
figure l 1.9(a), and the output C would be a five-bit number 10110 = 22 10 . Such a 
circuit is called a four-bit adder, and it can add numbers up to 15 + 15 = 30. Clearly, 
by stacking four-bit adders together, numbers of any size can be added. The addition of 
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2 eight-digit decimal numbers, such as might be done with an electronic calculator, 
requires 7 four-bit adders. 

The four-bit adder just describ_ed is an example of a parallel operation, in that 
all of the input voltages must appear simultaneously, and a separate connection is 
required for each bit of each number being added and for each bit of the output. An 
alternate technique is to use a serial operation, in which each bit of the numbers is 
transmitted sequentially, beginning with the least-significant bit. Such a circuit for 
the addition of two numbers is shown in figure l l.9(b). Suppose at t = 0, the right
hand digits of the numbers 1101 and 1001 are applied at A and B, respectively. The 
output at C would be 0 and at L would be l. Now suppose at t = I µ.s, A and B are 
changed to 0 and 0 to represent the next digit of each number, and the bit delay 
circuit provides a I carry-bit that was generated l µ.s earlier. The bit delay circuit 
could be a monostable multivibrator. The output at R would then be l and at L 
would be 0. The process would continue, producing a train of pulses at C representing 
successively the bits of the result. With serial addition, there is no limit to the size of 
the numbers that can be added. Furthermore, serial addition requires fewer 
components than parallel addition. However, serial addition is much slower, because 
the bits have to be fed in one at time rather than all at once. 

Where data has to be transmitted over long distances, serial transmission is 
invariably used, since this permits the use of a single two-conductor transmission line. 
The rate of transmission is expressed in terms of bits per second, called the baud 
rate. It should be clear from the discussion of Fourier analysis in Chapter 5 that the 
maximum baud rate is proportional to the bandwidth of the circuit, and that a 
bandwidth of ~IO kHz is required to transmit 10,000 bits per second. 

Much digital data transmission takes place over the already existing telephone 
network. For this purpose, a device called a modem (modulation-demodulation) is 
used. It generates a 2225-Hz tone whenever a logical I is to be sent and a 2025-Hz 
tone whenever a logical 0 is to be sent. A second pair of frequencies is used for 
reception, with a logical I at 1270 Hz and a logical 0 at I 070 Hz. Such a low-speed 
modem might operate typically at 300 baud. 

The adder circuits described above can be combined with other logic gates to 
perform additional operations· such as multiplication, subtraction, and division, using 
the rules described in section I I. I. Circuits are also made that perform special 
operations such as the evaluation of transcendental functions (sine, cosine, log, etc.), 
direct conversions (inches to meters, °C to °F, etc.) and binary to decimal conversions 
(and vice versa). Such circuits are called read-only memories (ROMs), trans
lators, or decoders. They are available singly or in combination as integrated 
circuits at very nominal cost. 

Although RO Ms are normally programmed during manufacture to perform a 
definite operation, programmable read-only memories (PROMs) are also 
available,. in which the user can specify the operation to be performed by the 
application of appropriate voltages that permanently alter the internal circuitry of 
the device. Some types of PROMs are erasable, so that they can be reused for 
different purposes or corrected if a mistake is made during the programming. With 
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EPROMs (erasable PROM), the device must be removed from the circuit and 
exposed to ultraviolet radiation to erase its contents. With EAROMs ( electrically 
alterable ROM), the contents of the device can be selectively altered by the 
application of appropriate voltages while it is still in the circuit. 

11.5 Flip-Flops 

Flip-flop circuits similar to the op-amp latch and the bistable multivibrator can also 
be constructed from logic gates. For example, figure 11. l0(a) shows a circuit called 
an RS flip-flop in which two NOR gates are used to produce an output at Q which is 

(a) 

B .§ Q Q 
0 0 a a 
0 1 0 

1 0 0 1 
1 ? ? 

(b) 

Fig. 11.10 The RS flip-flop in (a) is 
described by the truth table in (b). 

either 0 or 1. The inverse quantity will appear at Q If S = 1 and R = 0, Q will go to 1 
and remain there until R is set to 1 and S to 0, which resets the circuit and causes Qto 
go to zero. The truth table for the RS flip-flop is shown in figure 11.10 ( b). A serious 
drawback of the RS flip-flop appears if both inputs are set to 1. In such a case Qand 
Q,both go to 0, and the final state after the inputs are returned to 0 will have a value 
that depends on asymmetries in the circuit or on which input first goes to l. 

A variation of the RS flip-flop shown in figure 11.11 (a) has a third input, called 
the clock input. The circuit ignores any signals at the Rand S inputs unless the clock 
input is at 1. The clock input allows one to control the time at which the circuit 
switches state. The truth table for the clocked RS flip-flop is the same as the truth 
table for the simple RS flip-flop in figure 11.10. 

Another type of flip-flop is the D ( for data) flip-flop shown in figure 11.11 ( b). It 
has an R, S, and clock input and also a fourth input, called the D input. The Rand S 
are used to put the circuit in one of two possible initial states. When the clock is set to 

11.5 Fllp-Flopa 267 



Ck 

Q 
R 

(a) 

s 
D 

Q 

Ck 

Q 

R 

(b) 

Fig. 11.11 (a) Clocked RS flip-flop. (h) D flip-flop. 

1, the output Q. switches to O if D is O or 1 if D is 1, and remains there until reset or 
until another clock pulse arrives. 

The most complicated and most useful flip-flop is the JK flip-flop. It has two 
inputs, J and K, and two outputs, Q.and Q, as shown in figure 11.12 (a). The circuit is 
caused to switch state by a momentary 1 pulse at the clock (Ck) input. The term 
"toggle" is sometimes used instead of "clock." The circuit remembers the values of J 
and Kat the instant the clock goes from Oto 1, but it does not switch the output stale 
until the clock input goes back to 0. The behavior of the JK flip-flop is described by 
the truth table in figure l l.12(b), in which the subscript i (initial) refers to the value 
of the quantity when Ck goes from O to 1, and f (final) refers to the value when Ck 
goes back to zero. The circuit is reset by means of the Cl ( clear) input. Normally Cl is 
kept at 1. Setting Cl to O sets Q. to O and Q to 1. The JK flip-flip described here is 
actually two flip-flops and is an example of a master-slave flip-Bop. The master 
flip-flop is set by the input (J and K) when the clock goes to 1. It then commands the 
slave to produce the appropriate output ( Q. and Q) when the clock goes back to 0. 

JK flip-flops are useful in devices such as multivibrators, counters, and shift
registers. Multivibrators have been discussed earlier (section 10.2). A counter is a 
device that produces a digital output equal to the number of pulses that have 
appeared at the input since the device was last cleared. Figure 11.13 (a) shows how 
such flip-flops are connected to make a binary counter. A common application of a 
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Fig. 11.12 The JK flip-flop in (a) is described by the truth table in (b). 
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counter is in a digital clock. A counter can also serve as a frequency divider. For 
example, a 60-Hz sine wave at the input of the counter in figure l l. l 3(a) will 
produce a 30-Hz square wave at the 2 output, a 15-Hz square wave at the 4 output, 
and so on. Such divider circuits allow digital clocks to be synchronized with the 60-
Hz power lines, which are normally highly regulated in frequency. A counter can also 
be used as a digital frequency meter. Suppose that a sine wave of unknown frequency 
is applied to the input of the counter in figure 11.13 (a) through a gate that opens 
periodically for 1 s after the counter has been cleared. Then the reading after'the gate 
closes will be the frequency of the sine wave in Hz (expressed as a binary number). 

A shift register is a device that moves each digit of a number one place to the 
right or left. Such a circuit is shown in figure l l. l 3(b). Electronic calculators use shift 
registers to-move the digits in the display to the left as subsequent digits of a number 
are entered by the keys. By connecting the output back to the input, a circular shift 
register can be made. Shift registers are also useful as memory devices, but the 
information has to be stored and recalled serially, and so such devices tend to be very 
slow. 

This limitation is overcome in the random-access memory (RAM) in which 
the flip-flops are arranged in a two-dimensional array in such a way that one can set 
(WRITE) or test (READ) each flip-flop by energizing or measuring the s- and y
address of the relevant location in the memory. Such memory may be either static 
( or nonvolatile), in which case the RAM holds its information so long as the power is 
not removed, or dynamic (volatile), in which case the information has to be 
periodically refreshed, perhaps once per millisecond. Although the dynamic RAM 
requires more circuitry, it is often preferred because of its lower power consumption 
and because the use of integrated MOSFET circuitry allows extreme miniaturization. 
A dynamic RAM capable of storing 210 = 1024 bytes ( 1 K) of information need be no 
larger than a medium size individual transistor. 

11.6 Digital-to-Analog and Analog-to
Dlgital Conversion 

In electrical circuits it is often necessary to convert from a digital to an analog signal 
and vice versa. Digital-to-analog (D-to-A) conversion is relatively easy, as indicated 
in figure l l. l 4(a) where a four-bit binary number is converted to an analog voltage 
Vout by an operational amplifier. Such a circuit can be extended to any number of 
bits. One must only be careful that the op amp does not saturate for the largest 
possible number at the input. The feedback resistor R1 can be adjusted to give a 
conveniently large but unsaturated output voltage. If the inherent accuracy of the 
digital number is to be preserved, the resistors have to be of high tolerance. 

Analog-to-digital (A-to-D) conversion is somewhat more complicated, and a 
wide variety of such circuits has been developed. A common feature of these circuits is 
that they all involve an oscillator, a counter, and a comparator. Perhaps the simplest 
such circuit is the one shown in figure 11.14 ( b). A highly stable oscillator ( called a 
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Fig. 11.14 (a) Digital-to-analog converter. (b) Analog-to-digital 
converter. 

clock) is used. The clock output is fed through an AND gate into a counter that 
counts the number of clock pulses after being reset. The counter produces a digital 
output which can be converted to an analog signal with a D-to-A converter as 
described above. It is then compared with the analog input by an analog comparator. 
When the reading of the counter equals the input voltage Vin, the gate closes, and the 
counter stops and waits to be reset. A common application of an A-to-D converter is a 
digital voltmeter (DVM). In a similar fashion, any quantity that can be represented 
by a voltage can be converted to a digital format for display or for storing in a digital 
computer. A-to-D conversion is inherently slow, especially when the counter must be 
reset to zero for every measurement, as was the case for the circuit just described. 
More elaborate circuits partially alleviate this difficulty, but speed is still a serious 
limitation in the use of A-to-D converters for many applications, especially when high 
resolution is also required. 

For A-to-D converters as well as most other digital devices, it is necessary 
eventually to display the numerical result for interpretation by a human being. 
Perhaps the simplest such display would be a series of lamps that would light for 
binary l and remain off for a binary 0. The binary number could then be read 
directly. Unfortunately, the decimal number system is deeply ingrained m our 
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thinking, and so for most purposes it is imperative that some form of decimal display 
be provided. The first step in such a process is to convert the binary number to a 
binary-coded decimal (BCD) format in which each decimal digit is represented by 
a four-bit binary number. Thus the binary number 1001110 = 7810 could be 
represented in BCD as 0111 1000. Other BCD codings are also possible. Then each 
four-bit segment of the BCD code would be fed into the input of a decoder logic, as 
shown in figure 11.15 (a) whose output would illuminate appropriate segments of a 
seven-segment digital display as shown in figure l l.15(b). The display could be 
LEDs or an LCD. A separate display with its own decoder driver would be required 
for each decimal digit of the display. Alternately, a single decoder driver could be 
rapidly switched from one display to the next in a process called multiplenng. This 
technique also conserves power, and if the switching is sufficiently rapid, no flicker 
will be noticed. The construction of decimal readout circuits is tedious, but, as with 
most other digital circuits, the marvels of integrated circuit technology coupled with 
the economy of mass production have filled our pockets with such devices for less than 
the price of a pair of shoes. 
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Fig. 11.15 (a) BCD decoder logic for 
seven-segment display. (b) Seven-segment 
digital display. 

11. 7 Digital Computers 

By now, it should be obvious that most any mathematical or logical operation can be 
performed by a sufficiently complicated arrangement of the basic logic circuits 
previously discussed. Such hardwired circuits have been used in a wide variety of 
scientific, industrial, and consumer applications. However, it is not very efficient and 
economical to construct a different circuit for each and every such application. A 
much better approach is to construct a single device that is capable of performing all 
the basic operations in any combination and sequence and to provide the user with a 
means for instructing the device which operations to perform and in what order. Such 
a device is called a digital computer, and it represents the most sophisticated 
example of digital circuitry. It is outside the scope of this text to provide more than a 
general introduction to some of the more importan·t aspects of digital computers. 

To gain some appreciation of how a circuit can be instructed to phform different 
operations, consider the circuit in figure l 1.16(a). It is called an exclusive-OR 
circuit, because it produces a 1 at its output if either A or B are 1 but not both, as 
shown by its truth table in figure l l.16(b). But in th_e present context we can think of 
it as a circuit that performs an operation on A that is controlled by an instruction at B. 
If Bis set to 0, the operation is to do nothing ( V0 =A). If Bis set to 1, the operation is 
to perform an inversion ( V0 =A). If we now imagine a string of l's and O's appearing 
at A and B in sequence, we can think of A as constituting input data and B as consti
tuting a predetermined program of instructions, and the result of the programmed 
operation on the data would appear as a string of O's and l's at the output V0 . Such a 
device is a primitive and not very useful computer. 

Now consider some of the refinements that would be necessary to make a truly 
useful and versatile device. First, we would need some method for storing the 
program and possibly the input and output data as well. This memory might consist 
of an array of flip-flops or an array of ferromagnetic toroidal cores that can be 
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Fig. 11.16 The exclusive-OR circuit in (a) whose truth table is in 
(b) is an example of controlling the operation ofa circuit by means 
of an instruction. 

magnetized in either of two directions. Information is stored in memory in the form 
of a series of O's and l's called words, which are typically 8, 16, or 32 bits long. Some 
types of information such as the startup instructions for the computer might be stored 
in a ROM, but to exploit the great versatility of the computer, a significant amount 
of RAM capability is generally desired. The ability of the computer to store a 
complicated and easily modified program that may, in fact, specify different 
operations - depending on the outcome of previous calculations performed on the 
data - is what makes the computer so versatile, even sometimes giving the 
impression that the computer has intelligence. 

In addition to memory, we would like to provide the computer with a more 
complete set of instructions to replace the one-bit inversion instruction of the 
exclusive-OR. We would probably want to implement all the standard arithmetic 
and logic operations. This will, of course, require a separate multibit number for each 
instruction that we wish to implement. If we allow our instructions to have eight bits 
(two bytes), we can choose among 256 possible operations by setting the proper 
voltages on the eight control lines. Such a device is called an arithmetic logic unit 
(ALU). More-complicated mathematical operations (square root, exponentiation, 
etc.) can be done by repeated operations of the ALU under the control of a program 
stored in memory. 

To make the ALU perform the proper operation at the proper time we need 
additional circuitry to decode the instructions and to tell the ALU what to do next. 
We • also need a number of storage registers in which intermediate results of 
calculations performed by the ALU can be stored. Another register, called the 
memory address register (MAR), is required to keep track of what location in 
memory is being ad&essed, and a memory data register (MDR) would contain 
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what is found or what is to be stored at that address. One very important register is 
the program counter (PC) which keeps track of the memory address of the current 
program instruction. After each instruction is executed, the program counter is 
incremented, thereby providing the address of the next instruction to be executed. 

An internal clock is also required to regulate the rate at which the various 
operations are performed. The clock cycle usually has at least two distinct phases. 
During the fetch phase, the instructions are obtained from memory and the 
appropriate fu~ction-select lines to the ALU are energized. During the execute 
phase, the arithmetic operation is performed. The speed of a computer is thus 
determined by multiplying the cycle time (typically 0.1-1 µs) by the number of 
individual arithmetic operations that have to be performed. There is a tradeoff 
between complexity and speed. A simple computer with a limited instruction set and 
a limited number of storage registers will have to perform more operations and will 
take longer to complete a given task than one in which many instructions and registers 
are available. 

An ALU with its associated decoding circuitry, registers, and internal clock is 
called a central processing unit (CPU). The CPU is the heart of the computer. It 
is a tribute to integrated circuit technology that an entire CPU can be fabricated on a 
single chip of silicon in less than 1 cm 2 of area, and at a cost not very different from 
the cost of a single vacuum tube. Such an integrated circuit CPU is called a 
microprocessor. Probably no single device since the invention of the transistor has 
done more to revolutionize the way in which electronics influences our lives. 

Finally, the computer needs some means for communicating with the outside 
world. For this purpose we require 1/0 (input/output) devices. Input to the computer 
is typically by a keyboard, punched cards, punched tape, magnetic tape, or an A-to
D converter. Output typically involves a teletype, line printer, CRT display, D-to-A 
converter, or X-r plotter. These devices are often called peripherals. Large 
computers invariably have various forms of peripheral memory such as magnetic 
tapes, discs, or drums, which can store huge amounts of information ( typically many 
megabytes) but which require the order of a second rather than the order of a 
microsecond to access. 

The basic components of the computer can be connected together in various 
ways. The interconnection is called a bus, and it usually consists of a multiconductor 
transmission line, with each conductor carrying one bit of information at a time. The 
implementation of the bus is a critical decision in the design of a computer. 
Figure 11.17 shows two possible ways in which the components can be connected. In 
(a) there is a separate bus to connect the CPU to the memory and to the 1/0 devices 
so that everything passes through the CPU. In (b) there is a single bus through which 
any device can communicate directly with any other. Although the use of a single bus 
generally allows faster transfer of information, special care must be taken to ensure 
that only one device at a time is trying to drive the bus. For this purpose tristate 
logic is used in which a third high impedance state is available in addition to the low 
impedance O and I states for those circuits that have outputs connected to the bus. 

Another important design decision is the choice of serial (bit by bit) or parallel 
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Fig. 11.17 Two possible ways to organize the components 
of a digital computer. (a) Separate buses. (b) Single bus. 

(byte by byte or word by word) operation of each device. Serial operation reduces the 
circuit complexity but slows down the execution speed. Usually a compromise is 
made with inherently slow devices (such as many of the I/0 devices) using serial 
operation and the high-speed devices (such as the ALU) using parallel operation. 

The usefulness of a computer can be further enhanced by a number of 
techniques. One example is the use of microcoding in which one instruction invokes 
a long series of instructions that might be stored in a separate fast memory and 
executed in its own fast processor so as to produce a result in only a few CPU clock 
cycles. Another example is the use of interrupts, which allow an I/0 device to halt 
the processor's present task and demand that it be serviced. This requires a priority 
arbitration system to decide what can interrupt what and when. Additionally, the 
processor would have to remember what it was doing so that it could continue after 
the interrupting task is over. 

The I/0 devices are connected to the processor through interfaces, which 
resolve voltage and speed differences between the devices as well as initiating 
interrupts. Although much of the traffic between the I/0 devices and the memory 
would proceed through the CPU, certain devices, by virtue of their high speed, might 
be allowed direct access to memory. Such interfaces are called direct memory 
access (DMA) interfaces. Interfaces are sometimes provided with limited computing 
power to relieve the processor of the time-consuming task of controlling complicated 
I/0 devices. These interfaces are generally called controllers. 

To program a computer to perform a particular task, it is necessary to provide 
the computer with an array of binary numbers which the CPU can use to set all the 
circuits in the proper manner. These binary instructions are called machine 
language. Programming in machine language is extremely tedious, since all the 
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instructions look pretty much the same, and it is easy to make errors. For this reason, 
a simpler mnemonic language called assembly language is used, in which the 
commands have easy-to-remember names like ADD, MOV (move), and MUL 
(multiply). The computer then generates the machine-language instructions, using a 
translation program called an assembler. Some assemblers even implement error 
checking by detecting illegal conditions ( divide by zero, etc.), and halting execution 
with an appropriate error message. 

Even assembly language is cumbersome for anyone but a professional pro
grammer, and so various higher-level languages have been developed for general use. 
Common examples are BASIC (beginners' all-purpose symbolic instruction code), 
PASCAL (after Blaise Pascal, a French mathematician who built a successful digital 
calculating machine in 164 2), and FOR TRAN (formula transl a ter). These languages 
use familiar statements such as ordinary algebra and patterns of logic that closely 
resemble human thought. The high-level languages are also relatively machine inde
pendent, so that a program written for one computer can be easily run on another. 

Such languages tend to fill into one ofi~o categories. BASIC is an example of an 
interpretive language, because it stores the program exactly as it was written, When 
it is run, the program is executed on a line-by-line basis. No attempt is made to 
restructure the program or predetermine what functions, tables of symbols, or storage 
will be needed. Interpreters have the advantage that they require a relatively small 
amount of memory, and since the program is executed exactly as written, the user has 
a clear idea what is happening. This is a great advantage when the programmer is 
writing, testing, or editing a program. 

FOR TRAN is an example of a compiled language. The programmer first writes 
a program and then uses a program called a compiler, which translates the program 
from the original source code to an object code the machine can-understand. In the 
process, the compiler will construct symbol tables, allocate storage to variables, check 
for certain types of errors, and perhaps optimize the code to run faster and more 
efficiently. The statements required to perform a typical algebraic operation in three 
different languages are shown in table 11 .4. 

TABLE 11.4 Comparison of Various Computer Languages 

FORTRAN Assembly Language Machine Language 

0 001 011 111 000 001 
MOV 8, R1 0 001 000 000 000 010 

0110 011111000001 
ADD C, R1 0 001000000 000 100 

A= (B+ C)•:D 0 111 000 001 011 111 
MUL D, R1 0 001 000 000 000 110 

0 001 000 001 011 111 
MOV R1, A 0 001 000 000 000 000 

Compiler Assembler 
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A common feature of high-level languages is that a significant amount of the 
computer's memory has to be dedicated to the translation programs, leaving 
correspondingly less for the source program and data storage. Consequently, high
level languages are only compatible with large computers. The programs that are 
written to enable a computer to act intelligently are collectively referred to as 
software, in contrast with the actual electrical circuits and mechanical devices that 
constitute the hardware. In a modern computer, the human effort and expense 
involved in software development is comparable to that required for the hardware. In 
the early days of computers, the software was given away in order to sell the 
hardware. The day may come when the hardware is so inexpensive that it will be 
given away in order to sell the software, which still requires much human thought 
and ingenuity. 

Recent advances, especially in semiconductor technology, have brought the size 
and cost of computers down while increasing their speed and flexibility. Computers 
are an economic anomaly. Their history shows a continuous drop in cost along with a 
dramatic increase in computational power. This, of course, encourages the use of 
computers in many new applications. 

One important innovation was the development of the minicomputer. These 
machines, while somewhat limited in speed and computational power, are sufficiently 
inexpensive and simple as to encourage their use as dedicated controllers (in devices 
such as machine tools and environmental control systems), as programmable 
calculators, and as laboratory instruments that collect and analyze scientific data. 
They are used on board aircraft and ships to handle navigation and other duties. 

Increasing density in integrated circuit technology has spawned the micro
computer, of which the programmable electronic calculator is one example. The 
heart of the microcomputer is a microprocessor. The microprocessor differs in part 
from a full-sized computer CPU in word length. Microprocessors typically use 4- to 
16-bit words, whereas computers usually have 16- to 64-bit words. Microprocessors 
can be used as building blocks for larger computers or to perform a specific operation 
such as controlling the temperature and timing of an oven or controlling the 
operation of a clock radio. This revolutionary development has expanded computer 
applications almost without limit. 

The advantages of computer control in a product are numerous. Improvements 
and other changes can often be made by simply changing the program rather than by 
costly hardware modifications. Greater control sophistication is encouraged by the 
ease with which it may be implemented by computer. 

Microcomputers are now being produced that can use high-level languages and 
thus compete favorably with minicomputers. The computer industry is developing at 
a staggering pace. New technological developments such as bubble memories and 
charged-coupled devices (CCD) promise vast amounts of storage at almost 
inconsequential cost. The availability of almost unlimited memory will probably 
make the oral programming of computers possible within a relatively short time. 
New semiconductors promise greater speed and density along with lower power 
dissipation. Digital logic, especially ECL, is getting so fast that a major barrier to 
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speed is the propagation delay along leads. Some ultra-high-speed computers have 
had to resort to unusual physical layouts to minimize lead length. Some day, the 
highest-speed computers will have to be the size and shape of baseballs, or perhaps 
ball bearings. Already, engineers are beginning to use microprocessors as circuit 
elements in the same way they have been using transistors, op amps, and digital logic 
integrated circuits. The computer revolution might well be seen by future historians 
as an event of comparable importance to the Industrial Revolution. 

11.8 Summary 

Digital circuits are circuits in which the voltages can take on only two rather distinct 
values. Such circuits are ideally suited for performing binary arithmetic and logical 
operations. The building blocks of all digital circuits are the AND and the OR logic 
gates and their inverse counterparts, the NANO and the NOR gates. Actually, all 
logical operations can be performed using only a single type of gate such as the NANO 
gate. The theorems of Boolean algebra indicate how this is done. The behavior of 
logic circuits can always be analyzed by writing out the truth table. 

Applications of logic circuits extend all the way from the half-adder which can't 
even add two and two, to the digital computer, which is the most powerful and 
versatile of the digital circuits. Logic gates can be used to make flip-flops, which are 
useful in multivibrators, counters, and shift-registers. Finally, circuits can be 
constructed that convert digital information to analog information and vice versa. 
Digital devices can be extraordinarily complex, such as the digital computer, but 
fortunately, integrated circuit technology allows such devices to be produced in small 
packages at a cost that compares favorably with the vastly simpler circuits of only a 
few years ago. 

Problems 

11.1 Find the decimal equivalents of the following numbers: l 101011 2, 37428 , 

A6F16 . 

11.2 Find the octal equivalents of the following numbers: 101011101 2 , 9274 10 , 

E49B 16 . 

11.3 Find the binary and hexadecimal equivalents of the following decimal 
numbers: 29710 , 3168 10 . 

11.4 Find the binary coded decimal (BCD) equivalents of the following numbers: 
101101101 2 , 8735 8, 78910 . 

11.5 Perform the subtraction 537 10 -891 10 using two's complement arithmetic 
and show that the result is correct. 

11.6 Using the rules of long division, divide the binary number 101101111 2 by 
11002 and show that the result agrees with the result of dividing the equivalent 
decimal numbers. 
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11.7 Write down a logical expression for the output of the circuit below. Design a 
circuit using only NANO gates that will produce the same output. 

11.8 Use logic gates to design an anticoincidence circuit, that is, a circuit that 
will produce an output whenever a pulse appears at input A, provided that it does not 
appear simultaneously at input B. 

11.9 Write out the truth table for the quantity A·(B+ C) + A. 
11.10 Use NANO gates to perform the following functions: 

(a) A+B+C 

(b) A+ (B·C) 

(c) (A+B)·(C+D) 

11.11 Use NOR gates to form the functions in problem 11. 10. 

11.12 Design a monostable multivibrator using NANO gates. 

11.13 _ Design an oscillator using NANO gates. 

11.14 Using the theorems of Boolean algebra, prove the following equalities: 

A+A·B=A+B 

A·B+A·B+A·B=A+B 

A+A·B=A+B 

11.15 Prove by means of truth tables the equalities in problem 11. 14. 

11.16 Sometimes a zero voltage is used to represent logical l and a positive voltage 
to represent logical 0. This is called negative logic. Design an OR and an AND gate 
using resistors and diodes for negative logic. 

11.17 Draw the circuit for the RS flip-flop in figure 11.lO(a) in terms of individual 
circuit components (resistors, diodes, and transistors), and convince yourself that it is 
just an elaborate version of the bistable multivibrator shown in figure l0.6(a). 

11.18 Design a binary counter circuit using JK flip-flops that will count from zero 
to nine and on the tenth count will reset to zero and generate a carry bit. Such a 
circuit is called a binary coded deci.mal (BCD) counter, and has obvious 
applications. 

11.19 The device below produces sequences of four-bit binary numbers. Ifwe start 
at A= 0, B = 1, C = 1, and D = 0, find the next five numbers in the sequence which 
results after each clock pulse. 

280 Dlgltal Circuits 



A B C D 

J Q J Q J Q J Q 

FF FF FF FF 

Q K 

11.20 Construct an RS flip-flop using NANO gates. 

11.21 In the D-to-A converter of figure l l.14(a), what accuracy of the resistors is 
required in order to maintain the inherent accuracy of the digital input? What 
accuracy would be required for a 16-bit input? 
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chapter 12 
Communications 

Electronics 

12.1 Electromagnetic Radiation 

One of the most interesting predictions of Maxwell's equations of electromagnetism 
is the existence of electromagnetic waves which can propagate through a. vacuum 
with a speed of c = 3 x 108 m/s. Electromagnetic waves in free space consist of an 
oscillating electric and magnetic field oriented at right angles to each other with both 
perpendicular to the direction of propagation. The frequencies and wavelengths of 
the electric and magnetic fields are identical, but at a given point in space the fields 
are 90° out of phase. Electromagnetic waves are unique in that they require no 
medium for transmission, and yet they transmit energy from one point to another. 
Electromagnetic waves can occur at any frequency, but for a given frequency j, the 
wavelength A. in free space is fixed according to the relation 

A.= elf ( 12.1) 

As an electromagnetic wave travels through a medium, such as a piece of glass, 
its frequency remains constant, but its velocity, and hence its wavelength, decreases. 
Many forms of electromagnetic waves are distinguished according to how they are 
generated and detected, but the only fundamental difference between them is their 
frequency. Figure 12.l shows the spectrum and the common names and uses of the 
various frequencies. The reader should note especially the frequencies used for AM 
broadcasting (535-1705 kHz), FM broadcasting (88-108 MHz), and television (54-
890 MHz). The boundaries between the various types of waves are somewhat 
arbitrary. 

One method of producing electromagnetic waves, especially in the radio 
frequency range (100 kHz-1000 MHz) is with the use of an antenna, as shown 
schematically in figure 12.2. The antenna can be almost anything, such as a simple 
piece of wire. The antenna in figure l 2.2(a) is called a ground plane antenna, and 
it typically consists of a vertical element¼ wavelength long rising above the earth or 
above an artificial conducting plane. The antenna in figure 12.2 (b) is called a dipole 
antenna, and it typically consists of a½ wave horizontal conductor fed a tits midpoint 
by a transmission line. For an antenna½ wave long, the voltages at the ends are 180° 
out of phase, and it thus resembles an oscillating electric dipole. For the ground plane 

12.1 Electromagnetic Radiation 283 



11. (m) 

,06 

,o4 

102 

1 (1> 

10-2 

lo-" 

lo-6 

1o-a 

.,, 
QI 
> ro 
~ 
Cl 
C 
0 

...J 

.,, 
QI 
> ro 
~ 
e u 
~ 

~ 
£ 
.E: 

f (Hz) 

10 

HF 

} 
AM 

broadcast 

101 FM 

~ broadcast 

} Television 
109 

1011 

1013 

"'""-""-- 101s) Visible 

Ultra 
violet 

----1011 

10---10 

1019 

10---12 
1021 

Fig. 12.1 The electromagnetic spectrum. 

antenna, the other half of the antenna appears as an image (as in a mirror) below the 
ground plane. It is thus virtually the same as a horizontal dipole except rotated by 90°. 
The ground piane antenna radiates the same in all horizontal directions. The dipole 
radiates best off its broad side (i.e., such that its ends appear to the observer as far apart 
as possible). 

Any antenna will present a complex impedance to an ac voltage source 
connected to its terminals. A short antenna (short compared with a wavelength) 1s 
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Antenna 

(a) (b) 

Fig. 12.2 Sinusoidal source connected between: (a) an antenna and 
ground, (b) two terminals_ of an antenna. 

mostly capacitive. A long antenna may be either capacitive or inductive, depending 
on its length, in a manner similar to the open-circuited transmission line (see 
section 5.6). At certain critical lengths (such as¼ wave), the reactance of the antenna 
becomes zero, and only a small resistive part remains. This resistance is called the 
radiation resistance. It is typically on the order of 100 n. However, unlike an 
ordinary resistor, it does not represent a dissipation of electrical power in the antenna, 
but rather a radiation of the energy into the surrounding space. The power is 
supplied by the source, converted into electromagnetic waves by the antenna, and 
radiated into space, only to be dissipated by objects some distance away. The 
dissipation is so slight, however, that a detectable amount of energy usually exists at 
great distances from a well designed antenna. 

In an exactly analogous fashion, an antenna can be used to convert electro
magnetic radiation into electrical power which can be delivered to a load connected 
to the antenna. Such a receiving antenna can be thought of as a Thevenin 
equivalent circuit with a source resistance equal to the radiation resistance. The 
Thevenin equivalent voltage is a linear superposition of all the 1:1-earby sources of 
electromagnetic radiation. The voltage is usually small (millivolts or less), and so it is 
important to properly match the radiation resistance to the input resistance of the 
load for maximum power transfer. Since the antenna is often separated from the 
transmitter or receiver by some distance, a transmission line is often necessary. An 
antenna optimized for transmission will also be optimized for reception and vice 
versa. In fact, the reciprocity theorem demands that under most conditions, for a 
given pair of antennas, one connected to a transmitter and the other to a receiver, the 
received signal strength will be the same if the transmitter and· receiver are 
interchanged. For best propagation, the polarization (vertical or horizontal) of the 
two antennas should be the same. 

Sometimes antennas of the optimal length are impractically long. A ¼-wave 
antenna for an AM automobile radio would require a length ofabout 100 ml In such 
a case, the reactive component of the antenna's impedance can be eliminated by 
means of some form of resonant LC circuit. Such antennas are inherently inefficient 
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and operate properly over only a narrow range of frequencies, but their use is often 
unavoidable. In many applications, the inefficiency of the antenna is easily 
compensated for by a high gain in the receiver. 

12.2 The Ionosphere 

Radio waves usually travel in straight lines. They easily penetrate insulators such as a 
glass window or a wood-framed building. They tend to be feflected from conductors 
such as the earth or a steel-framed building. Accordingly, we would expect radio 
transmissipn to be possible only if the transmitting and receiving antennas are within 
line-of-sight, with perhaps only minor obstructions. At very-high-frequencies (above 
~ 100 MHz), the propagation of waves is reasonably well described by the above 
facts. Actually, because of a slight refraction of radio waves by the atmosphere, the 
radio horizon is usually slightly farther away than the optical horizon. 

We know, however, that radio transmissions are possible between distant points 
on the earth. This occurs because the upper layers of the atmosphere contain a 
significant density of ionized gas atoms. Such a gas is called a plasma, and it is an 
electrical conductor. The ionization is produced primarily by ultraviolet radiation 
from the sun. When radio waves travel upward, they can be reflected from this region 
called the ionosphere provided their frequency is below the plasma frequency: 

( 12.2) 

where n is the number of free electrons per cubic meter. 
The electron density in the ionosphere varies with height, time of day, time of 

year, and sunspot activity. Typically, the peak density occurs at an altitude of several 
hundred kilometers and has a value of~ 1012 electrons/m 3

. Therefore, radio waves 
are usually reflected if their frequency is somewhat below~ 10 MHz. At much higher 
frequencies, the waves usually pass through the ionosphere. 

We are now in a position to understand some of the properties of wave 
propagation. Low-frequency waves such as those in the AM broadcast band 
( ~ 1 MHz) are reflected from the lower layers of the ionosphere, where the density is 
low. At night, the density drops, and the waves penetrate higher before being 
reflected, and so the range increases as shown in figure 12.3. Higher frequencies such 
as the short wave bands (5-25 MHz) have the longest range, depending on the 
condition of the ionosphere, but too high a frequency, or too low an electron density 
(such as might occur at night) results in penetration rather than reflection, and 
then the coverage is limited to line-of-sight, as with FM radio and television. 
Communication with satellites and deep-space probes must take place at very high 
frequencies ( ~ 100 MHz). 

The reflected (or sky) wave, since it requires special conditions in the 
ionosphere, tends to provide a much less reliable form of communication than the 
direct ( or ground) wave. Fading of the signal is common, because ionospheric 
conditions fluctuate. Intense solar activity can generate a high flux of charged 
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Fig. 12.3 As the frequency is raised or as the ionosphere becomes 
less dense, a radio wave (a) is reflected at a higher altitude (b) 
until finally it is not reflected at all (c). 

particles that bombard the earth and produce aurora displays, magnetic storms, and 
ionospheric disturbances. At intermediate distances, the ground wave and sky wave 
can interfere with each other, causing intense fading as the path length for the sky 
wave vanes. 

Multiple reflections of the sky wave are possible, but the energy loss in each such 
reflection is high. Nevertheless, at very low frequencies (j";:; 10 kHz), the earth and 
ionosphere form a waveguide (see section 5. 7), and with sufficiently high powe.r, 
around-the-world propagation can be achieved. These low frequencies are also of 
interest because the penetration depth into a conducting medium such as saltwater is 
reasonably great, and they thus provide one of the few reliable means for 
communicating with underwater submarines. 

12.3 Types of Modulation 

In the preceding sections we have considered radio waves that consist of a single, 
sinusoidal frequency component. Such a wave is of limited use because it can carry 
essentially no information. Generally it is necessary for the sine wave to vary in some 
manner (such as a variation in its amplitude), usually at an audio frequency ( ~20-
20,000 Hz) to transmit speech or music. Such a variation is called amplitude 
modulation (AM), and it is illustrated in figure 12.4(a). Note that the audio and 
radio frequency waves are multiplied together, not added. Thus modulation is an 
inherently nonlinear operation and requires the use of nonlinear components. To 
understand how this is done, imagine a two-port network in which the output voltage 
is given as a function of the input voltage by 

( 12. 3) 

The first term is the linear term, and the second term represents the nonlinearity. 
These can be thought of as the first two terms of a Taylor series for an arbitrary 
nonlinear network. In general, a constant term could be included, but it would be 
zero for a passive network. Now imagine that two sinusoidal voltages of different 
frequencies are applied in series at the input: 

J/;0 = Vi sin m 1t+ V2 sin m2t 
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Then the output would be 

vout = aVi sin Wit+ aV2 sin W2t 

+ b Vf sin 2 wit + b Vi sin 2 w 2 t 

+ 2b Vi V2 sin w1 t sin w2t 

By using the trigonometric identity, 

sin 2 0 = ½ ( l - cos 20) 

and, rearranging terms, the above equation can be written as 

V0 u, = ½ b ( Vf + Vi) + a Vi sin wit 

-½b Vf cos 2wi t -½b Vi cos 2w 2t 

+ (a + 2 b Vi sin w 1t) V2 sin w2t 

( 12.4) 

( 12.5) 

The output then consists of five terms: ( l) a de term, like the output of a rectifier, 
(2) a sinusoidal term at Wi, (3) a sinusoidal term at 2wi, (4) a sinusoidal term at2w 2 , 

and (5) a sinusoidal term at w 2 whose amplitude is varied (modulated) by Wi. If 
Wi ~ w 2, as is usually the case for amplitude modulation, it is relatively easy to filter 
out all but the last term, thereby producing an amplitude-modulated wave. The 
percentage modulation is determined by the ratio.2b-Vi/a, such that when 2bVi/a 
= l, the wave is said to be l 00% modulated, that is, the amplitude just goes to zero at 
the peak of the modulation. The case shown in figure 12.4(a) is ,...,50% modulated. A 
modulation of 100% is usually considered optimal. A lesser amount is wasteful of 
power, and a greater amount results in severe distortion of the waveform. 

The terms in equation 12.4 can.be rearranged in a slightly different way by using 
the trigonometric identity 

sin 0 sin <J, = ½[ cos ( 0 - <J,) - cos ( 0 + <J,)] 

to get the result 

vout =½b(Vf +Vi)+ a Vi sin Wit+ aV2 sin W2t 

- ½b Vf cos 2wi t - ½b Vi cos 2w 2t 

+ b Vi V2 cos ( w2 - w,), - b v1 v2 cos ( w2 + w,), 

(12.6) 

As before, Fourier components appear at de, Wi, w 2 , 2wi, and 2w2 , but new 
components also appear at w 2 ± Wi. The presence of the second harmonic of Wi and 
w 2 results from the initial assumption of equation 12. 3. A term proportional to nn 

would have given ris~ to. a third harmonic, and so on. The fundamental frequencies 
Wi and w 2 can be eliminated by using an appropriately balanced circuit, such as a 
bridge rectifier for which a= 0. For an AM signal, the higher frequency w 2 is called 
the carrier, and the two frequencies w 2 ± Wi are called the sidebands. In a typical 
case the carrier might be at l MHz while the modulation might be at l kHz. Then 
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Fig. 12.4 (a) Amplitude modulation. (b) Frequency 
modulation. 

the Fourier spectrum of the AM signal consists of a 1000-kHz carrier with sidebands 
at 999 kHz and 1001 kHz. A radio wave modulated by an audio signal with Fourier 
components up to, say, ~ 10 kHz would thus be spread out in frequtncy in a band 
~20 kHz wide centered around the carrier frequency. 

An alternate form of modulation, called frequency modulation (FM), is 
illustrated in figure l 2.4(h). In this case, the frequency of the carrier varies in 
response to the applied audio signal. The amount by which the frequency varies is 
called the deviation. If the deviation is small, the Fourier spectrum contains only 
components near the carrier frequency. The exact calculation is complicated, since it 
depends on both the frequency spectrum of the audio signal and the deviation. The 
spectrum is usually slightly broader than the corresponding AM signal. The 
advantages of FM over AM are that nonlinearities in the radio frequency amplifiers 
in the transmitter and receiver do not affect the quality of the signal, and the FM 
receiver is relatively free from electromagnetic interference (noise) which tends to be 
amplitude modulated. The high fidelity of an FM broadcast signal comes about not 
as an inherent quality of FM but rather as a result of the use of larger bandwidths 
that allow the transmission of much higher frequency Fourier components of the 
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audio signal. An AM signal with equal bandwidth would be equally clear and crisp. 
With either type of modulation, the circuits iq the transmitter and receiver must 

be capable of passing a band of frequencies centered on Jo and wide enough to 
accommodate the sidebands without attenuation. On the other hand, a narrow 
bandwidth is desired to avoid interference from strong stations on adjacent 
frequencies, as well as to permit the reception of weak signals in the presence of noise 
(see section 9. 7). A radio receiver always represents a compromise between these 
conflicting requirements. 

Audio signals are not the only kind of information that can be transmitted on a 
carrier wave. A television video signal is transmitted in the same way (see 
section 12.6), as are various forms of digital data. Other more exotic forms of 
modulation are also in wide use. For example, single sideband (SSB) modulation, 
which is basically AM with the carrier and one of the sidebands removed, allows the 
same information to be transmitted in a bandwidth only halfas wide as an AM signal 
and with more efficient use of the power radiated by the transmitter. This is possible 
because the two sidebands carry the same information, and the carrier contains most 
of the power but no information. To generate the original Fourier components of the 
audio signal, however, it is necessary to reinsert the carrier at the receiver by a 
nonlinear process similar to the one by which the modulated wave was originally 
generated. This is done with a device called a beat frequency oscillator (BFO) or 
with a product detector. 

12.4 Radio Transmitters 

A radio transmitter consists of an oscillator, one or more amplifier stages, and a 
modulator as shown in figure 12.5. The oscillator is usually crystal-controlled to 
improve its frequency stability. Frequency multiplier stages are often placed between 
the oscillator and amplifier. The amplifier is normally operated class C to improve 
efficiency, since only a narrow band of frequencies must be amplified. The 
modulator can be simply a switch to turn the carrier on and off for transmitting 
Morse code. 

In an AM transmitter, as shown in figure 12.S(a), the modulation is usually 
applied at the final amplifier stage to eliminate distortion caused by the nonlinearities 
of the class C amplifier. The modulator usually contains a class A or push-pull class B 
audio amplifier which controls the operating point of the radio frequency amplifier. 
It must provide an amount of audio power equal to about half of the radio frequency 
carrier wave. Sometimes amplitude modulation is applied to a stage prior to the final 
amplifier to reduce the amount of power that must be supplied by the modulator. In 
such a case, the subsequent amplifier stages must be operated in a linear fashion, 
thereby reducing their efficiency. 

In the FM transmitter shown in figure 12.S(b), the modulator varies the 
oscillator frequency, for example by means of a varicap diode in the oscillator LC 
circuit. Such a modulator need supply very little power, and the subsequent radio 
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Fig. 12.5 Transmitters. (a) AM. (b) FM. 

frequency amplifier stages need not be linear, but they must have adequate 
bandwidth to accommodate the Fourier spectrum of the oscillator signal. 

12.5 Radio Receivers 

The function of a radio receiver is to extract the audio signal from a modulated radio 
frequency carrier wave. The simplest radio receiver would consist of nothing more 
than an antenna, a diode (preferably germanium), and a pair of headphones. Such a 
receiver possesses little or no frequency selectivity, and will usually receive several of 
the strongest AM broadcast stations simultaneously. By simply adding a variable 
inductor that forms a resonant LC circuit with the antenna capacitance, as shown in 
figure 12.6, a quite usable radio receiver can be constructed which is capable of 
tuning in a number of different AM stations. 

Like modulation, the process of demodulation or detection is inherently 
nonlinear, thereby accounting for the necessity of the diode in figure 12.6 .. Recall that 
all of the Fourier components of a modulated radio wave lie in a small band of 
frequencies near the frequency of the carrier wave. The diode generates the low-

12.5 Radio Receivers 2 91 



Headphones 

Fig. 12.6 Simple diode receiver. 

frequency (audio) Fourier components which are absent in the transmitted wave. The 
operation is similar to a diode rectifier in which a low-frequency ( de) component is 
generated out of a higher-frequency (60-Hz) ac component. Figure 12. 7 shows how 
this is done. Figure 12. 7 (a) shows an amplitude-modulated wave. After passing 
through the diode, only the positive half of the wave remains, as shown in 
figure 12.7(b). This wave clearly contains low-frequency components in addition to 
components at the frequency of the carrier wave. With the addition of a low-pass 
filter, only the low-frequency components remain, as shown in figure 12. 7 (c). A de 
component is also present, but this is easily eliminated. For the case of the simple 
radio receiver in figure 12.6, the frequency response of the headphones and of the 
human ear provide the low-pass filter. The ear is actually an extraordinarily good 
filter, attenuating frequencies below ~20 Hz and above ~20 kHz by an amount that 
would be difficult to approach by the use of electrical components. 

The simple diode rec::eiver can be improved by adding radio frequency amplifiers 
between the antenna and the diode so that a smaller antenna can be used, additional 
frequency selectivity provided, and the nonideal properties of the diode overcome. 
Similarly, audio frequency (AF) amplifiers can be used after the diode so that the 
output can drive a loudspeaker. 

Although the scheme described above will work, it is seldom used. To produce 
adequate frequency selectivity, many resonant circuits are required, and it is difficu~t 
to keep them all tuned to precisely the same frequency as the receiver frequency is 
varied. A more common scheme is to use a superheterodyne circuit as shown in 
figure 12.8. The incoming radio frequency signal ( 1000 kHz in this example) is used 
to amplitude modulate a signal from a variable frequency local oscillator 
( 1455 kHz in this case) in a circuit called a mixer or converter. It produces an 
output equal to the sum and difference of the two frequencies ( 455 kHz and 
2455 kHz), as was shown in equation 12.6. These two frequencies can be thought of 
as sidebands of the 1455-kHz amplitude-modulated oscillator, although they are 
quite widely separated. The 455-kHz component is amplified by a highly selective, 
fixed frequency, intermediate frequency (IF) amplifier, and then fed into a 
circuit called a detector, which extracts the modulating signal in the same way as the 
diode in figure 12.6. The 2455-kHz signal is far outside of the passband of the IF 
amplifier and thus is rejected. 
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The advantage of the superheterodyne circuit is that the IF amplifier frequency 
can remain fixed, and thus it is easy to maintain a narrow bandwidth for a wide range 
of input frequencies. Also, the lower IF frequency means that for a given circuit Q., 
the bandwidth is smaller, since fJ..J = f 0 /Q Furthermore, sincef 0 is independent of the 
frequency of the received signal, a constant selectivity can be maintained over an 
unlimited range of received frequencies. Lower frequency amplifiers are also easier to 
construct so as to avoid unwanted oscillation and the like, because stray inductances 
and capacitances are less critical. 

A superheterodyne receiver is not without its difficulties; however. For example, 
note that a signal at 1910 kHz will also produce a 455-kHz IF signal for the case 
shown in figure 12.8. This is called the image frequency, and it is always present, 
separated from the frequency of the received signal by an amount equal to twice the 
IF frequency. Thus a strong signal at 1910 kHz might be heard when the receiver is 
tuned to 1000 kHz. The image is suppressed by providing adequate selectivity in the 
radio frequency amplifier stages preceding the converter. As the radio frequency 
becomes higher, image rejection becomes more and more of a problem. For a 100-
MHz receiver with a 455-kHz IF, the signal and its image are separated by only 
~ l %, and adequate selectivity is difficult to obtain while still allowing the receiver to 
tune over a wide frequency range. Consequently, double conversion super
heterodynes are sometimes used, in which the first IF (perhaps 5 MHz) provides the 
image rejection and the second IF ( often 455kHz) provides the selectivity. 

The presence of an oscillator in a super heterodyne receiver poses certain other 
difficulties. Care must be taken to isolate the oscillator from the receiving antenna, so 
that the receiver does not act as a transmitter and generate unwanted interference. It 
is also possible for harmonics of the local oscillator to interfere with the incoming 
signal at certain frequencies if the oscillator is on the low side of the signal frequency. 
In a dual-conversion receiver with two oscillators, a great many spurious frequencies 
can be generated by the beating together of various harmonics of the oscillators. A 
certain care must therefore be exercised in choosing appropriate IF frequencies, in 
maintaining good sine waves (low harmonic content), and in isolating the oscillators 
from one another. 

Another consideration in the construction of any AM receiver is the fact that a 
wide variation in signal strength usually exists for the various stations to which the 
receiver might be tuned. This fact would only be an annoyance, causing a variation 
in the audio volume as the receiver is tuned from one station to another, except that it 
is difficult to design amplifiers that have a sufficiently large amplification for weak 
signals without causing distortion to the strong signals because of nonlinearities in the 
amplifiers. Consequently, most AM receivers have an automatic volume control 
(AVC), more properly called an automatic gain control (AGC), whose function is 
to reduce the gain of the radio and intermediate frequency amplifiers by an amount 
that increases with the strength of the received signal. This is usually done by taking 
the de component of the detector output [see figure 12.7(c)], and using it to control 
the bias and hence the operating point of the preceding amplifiers. An AGC is thus a 
form of negative feedback, but at very low frequency. 
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The AGC voltage also provides a convenient means for monitoring the strength 
of the received signal. Such an S-meter is labeled in S-units (SI to S9) and dB over 
S9 and is usually calibrated so that a voltage of 50 µV at the receiver input gives a: 
reading of S9, and each S unit corresponds to 6 dB. S-meters are rarely calibrated 
with great accuracy, but they do provide an extremely useful indication of relative 
signal strength. An AM detector circuit containing volume control, AGC, and S
meter functions is shown in figure 12.9. 

IF in ~--1.A-- ..... --V'-rln __ ..., __ ,... __ 

I I 
AGC 
out o---------

S-meter I 

~--t~AF 
~ out 

Volume 

Fig. 12.9 AM detector circuit, containing volume control, AGC. 
and S-meter. 

An FM receiver is also usually a superheterodyne, but its detector contams a 
frequency-selective LC filter that produces an output voltage proportional to the 
deviation of the signal frequency from its unmodulated value. Since the audio volume 
of an FM signal is independent of the signal strength and depends only on the 
frequency deviation, the use of an AGC circuit is unnecessary. In fact, FM receivers 
are normally designed with such high amplification that the last IF stage is driven 
from cutoff to saturation for even a very weak signal. Such a saturated amplifier is 
called a limiter, and it serves to make the output quite insensitive to amplitude 
variations. Because of the large amplification, an annoying amount of noise is usually 
present in an FM receiver in the absence of a signal. A squelch circuit is thus often 
provided to suppress the audio output noise in the absence of an input signal. 

Because of the high frequencies used for FM broadcasting ( --100 MHz), even a 
small percentage drift in the local oscillator frequency can be quite objectionable. 
Consequently, most tunable FM receivers have an automatic frequency control 
(AFC) which detects the variation of the IF signal from the center of the IF passband 
and produces a corresponding de voltage which is used to stabilize the local oscillator 
frequency. An AFC circuit is yet another example of negative feedback. 

Whereas the bandwidth of a commercial AM broadcast signal is about 6 kHz, 
the bandwidth of an FM broadcast signal is about 36 kHz. The wide bandwidth not 
only improves the fidelity of an FM signal but also permits the transmission of 
stereophonic information by means of a modulated subcarrier displaced 19 kHz 
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from the main carrier. Although stereo could be achieved by modulating each carrier 
with one of the two audio channels, this would cause a monophonic receiver to 
receive only a single channel. The two systems are made compatible by modulating 
the main carrier with a signal proportional to the sum of the two channels and 
modulating the subcarrier with a signal proportional to the difference between the 
left and right channels. A stereo receiver then reconstructs the two channels by taking 
the appropriate sums and differences of the two signals. 

12.6 Television 

The video (picture) portion of a television signal is generated by a tel,evision (TV) 
camera which is the optical analog of the microphone. The type of TV camera used 
for live commercial television is the image orthicon in which the picture to be 
transmitted is imaged on a photocathode which emits electrons proportional to the 
amount of light striking each area of the cathode. These electrons strike a glass disc, 
causing it to emit secondary electrons. The secondary electrons are collected on a fine 
mesh screen, leaving the disc with a positive charge density proportional to the light 
intensity. A low-velocity electron beam from a cathode ray tube is then directed 
toward the positively charged disc, and the intensity of the reflected beam is 
measured by a photomultiplier tube ·(section 10.6). Some of the electrons are 
extracted from the beam to neutralize the positive charge, and so the detected signal 
is modulated by the light intensity. 

A second type of TV camera which is becoming increasingly popular because of its 
small size and simplicity is the vidicon. It consists of a thin layer of photoconductive 
material deposited on a transparent conducting film on which the image of the 
picture is focused. The surface is initially uniformly charged, but those areas on which 
the light falls discharge at a more rapid rate. Then, when a low-velocity electron 
beam is swept across the surface, a charging current flows to the conducting film in 
proportion to the light intensity. 

For either type of camera, a well-focused electron beam sweeps across the target 
in a pattern as shown in exaggerated form in figure 12.10. The beam sweeps slowly 
from left to right and then is turned off (blanked) during the rapid retrace when the 
beam moves back to the left. Actually, rather than sweeping through all 525 lines in 
sequence, the odd-numbered lines are first swept, and then the trace returns to the top 
and sweeps through the even-numbered lines. This interlacing reduces the 
bandwidth required for transmitting a picture without objectionable flicker. Even so, 
it is necessary to transmit 30 complete pictures per second, so the horizontal sweep 
frequency is 525 x 30 = 15,750 Hz. To obtain reasonable horizontal resolution, the 
video bandwidth m~st be several hundred times greater than this, so that the total 
bandwidth is about 4.5 MHz. Contrast this with the fact that the whole AM broadcast 
band is only about 1 MHz wide! 

A television transmitter is essentially the same as a radio transmitter, except that 
the carrier is amplitude modulated with a 4.5-MHz-wide video signal, and an FM 
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Fig. 12.10 Scan sequence of a television picture. 

audio subcarrier is added 4.5 MHz above the video carrier. To conserve bandwidth, 
the Fourier components above about 1 MHz are suppressed from the lower sideband 
Since only a vestige of the sideband remains, the process is· referred to as vestigial 
sideband modulation. 

A television receiver is a superheterodyne with an FM audio section and an AM 
video section. The detected video signal is fed to a picture tube, which is essentially an 
intensity-modulated CRT, usually with magnetic rather than electrostatic deflection. 
The sweep of the picture tube must, of course, be synchronized with the sweep of the 
TV camera tube. This is done by special horizontal and vertical sync pulses which 
are transmitted during the retrace of the beam. 

With color television, three separate camera tubes are used with red, green, and 
blue filters. To make the system compatible with black-and-white television, a signal, 
called the Juminant:=e signal, is produced by adding the outputs of the three color 
signals. This signal then amplitude-modulates the main video carrier. Then, in a 
manner similar to the way in which an FM stereo signal is transmitted (see 
section 12.5), two chrominance signals are generated by taking a linear com
bination of the differences of the three color signals. To keep the bandwidth of the 
color TV signal comparable to that of black-and-white, use is made of the fact that 
most of the Fourier components of the luminance signal occur near harmonics of the 
horizontal sweep frequency, 15,750 Hz. The chrominance signals are transmitted on 
two subcarriers 90° out of phase and having a frequency 3.579545 MHz above the 
picture carrier so that their harmonics fall midway between the harmonics of the 
luminance signal. In the usual color television receiver, the red, green, and blue 
signals are reconstructed and used to control three electron guns which are directed at 
the viewing screen through a shadow mask consisting of a metal sheet with 
thousands of accurately located holes. The mask allows each beam to illuminate a 
phosphor dot of the appropriate color on the screen. When viewed from a distance, 
the dots are indistinguishable and produce a shade of color that depends on the 
relative intensities of the various dots. 
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12.7 Radar 

An interesting application of electromagnetic radiation is radar (radio detection and 
ranging), in which radio waves in the microwave range are reflected off a distant 
object and detected in order to determine the position and/or velocity of the object. 
Microwave frequencies ( 109 

- 1012 Hz) are required, because they can be confined 
to narrow beams by modest-sized antennas and because they travel in straight lines 
and penetrate clouds and other nonconducting obstructions. 

There are two basic types of radar. _With pulsed radar, a short (typically l µs) 
pulse of radiation is transmitted at a rate of typically 1000 pulses/s by a rotating 
antenna. The position of an object is determined from the direction of the antenna 
and the time required for the pulse to be reflected from the target and return. The 
position is displayed on a device called a plan position indicator (PPI) which is just 
a cathode-ray tube with a circular sweep that is in sync with the rotation of the 
antenna. Such a radar is two-dimensional, since it provides bearing and range 
information only. Its most common application is in air traffic control. 

The other type of radar is called doppler radar. It makes use of the fact that an 
electromagnetic wave is shifted in frequency when it is reflected from a moving 
object. The frequency shift is given by 

( 12. 7) 

where v is the component of velocity of the target toward the radar and c is the 
velocity of light (v ~ c). The radar receiver mixes the transmitted signal and the 
received signal to produce a beat frequency equal to t!J The frequency difference is 
then converted to a voltage that can be read with a de voltmeter. The doppler radar 
need not be pulsed and is typically run continuously. Its most common application is 
in speed detection for law enforcement. 

The two types of radar can be combined to discriminate against stationary 
targets so as to reduce clutter on the radar screen caused by trees, buildings, and the 
like. Higher-frequency radars (A< l cm) give higher spatial resolution, but they tend 
to be strongly attenuated, especially in areas of high precipitation. Weather radars 
intentionally use frequencies at which significant reflection occurs from regions of 
precipitation. The range ofa typical radar is limited to a few hundred miles, but radio 
waves have been reflected from the moon and even from several of the closer planets. 

12.8 Summary 

When applied to an antenna, high-frequency oscillating voltages will generate 
electromagnetic waves that propagate over large distances without wires or other 
medium. These waves are characterized by their frequency or corresponding 
wavelength. They provide a highly effective means of communicating speech, 
pictures, or other types of information. At low frequencies ( .$10 MHz), radio waves 
reflect from the ionosphere and can travel around the earth. At high frequencies 
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(;::::;::; 10 MHz), they usually penetrate the ionosphere and travel deep into space, 
gradually losing their energy density. 

A radio transmitter consists of an oscillator, an amplifier, and a modulator that 
varies either the amplitude or frequency of the wave. A radio receiver can be nothing 
more than a diode and i pair of headphones, but more typically it contains a number 
ofamplifiers to improve its sensitivity, and, in the case of the common superheterodyne 
receiver, one or more frequency converters. 

The processes of rectification, amplitude modulation, detection, heterodyning 
(beating), and frequency multiplication are all nonlinear operations that generally 
result from passing one or more signals through any nonlinear circuit. Whether a . 
circuit is called a rectifier, a modulator, a detector, a mixer, or a multiplier depends 
on which of the operations the circuit is optimized for. By choosing appropriate 
nonlinear devices and connecting them in a suitable way with filters, any one of the 
operations can be emphasized and the other suppressed. 

Two important examples of the use of electromagnetic waves are television and 
radar. A television picture is produced by scanning an electron beam in a prescribed 
sequence and amplitude modulating a carrier in proportion to the light intensity. 
Color television uses three such beams to record the intensities of each of the primary 
colors: red, green, and blue. A radar transmits a wave and detects either the time 
lapse (pulse radar) or the frequency shift (doppler radar) of the wave reflected from a 
target. In this way the position and velocity of the target can be determined. 

Problems 

12.1 Calculate the wavelengths corresponding to the following frequencies: (a) an 
AM radio station at 1070 kHz, (b) an FM radio station at 88. 7 MHz, (c) a UHF 
television station at 700 MHz, (d) a citizen's band transmitter at 27.185 MHz, (e) a 
microwave oven at 2450 MHz. 

12.2 Use dimensional arguments to show that in free space ( Q = 0, I= 0), 
Maxwell's equations require 

E 
-=---=c 
B ~ 

12.3 You notice that the antenna on a police car is about 18 in. long. Assuming it 
to be ¼ wavelength, estimate the frequency of the police radio. 

12.4 Assume an antenna has a capacitive reactance corresponding to 1000 pf. 
Design a circuit that will cause the antenna to look purely resistive to a source at a 
frequency of I MHz. 

12.S A television tower is 1000 ft high. Estimate the range of its coverage if the 
receiving antenna is at ground level. How high must the receiving antenna be to 
double the range? 

12.6 Estimate the range that could be expected for a radio wave that reflects from 
the ionosphere at a height of I 00 km. 

Problema 299 



12.7 Calculate the amplitude and frequency of the Fourier components of the 
amplitude modulated wave given by V(t) = V0 cos w 0 t( I+ cos llwt). 

12.8 Calculate the ratio of the power in the sidebands to the power in the carrier 
for a 100% modulated AM signal. Assume power is proportional to the square of the 
voltage. 

12.9 Write a mathematical expression for the time dependence of a sinusoidal 
voltage of peak value 10 V and 100 MHz which is frequency modulated by a I-kHz 
sine wave with a deviation of ± 10 kHz. 

12.10 FM broadcast receivers often have a 10. 7-MHz IF. If such a receiver is tuned 
to 88.1 MHz, what are the two frequencies for which images might be expected? 
What determines which of the two frequencies will, in fact, be present? 

12.11 Assume an AM broadcast receiver (535-1705 kHz) has a 455-kHz IF and a 
local oscillator on the low side of the received signal (very unusual). Over what range 
of frequencies must the oscillator tune? At what frequencies on the radio dial might 
one expect to hear harmonics of the oscillator? At what frequency on the radio dial 
might the fundamental of the local oscillator be picked up directly by the IF 
amplifier? Give three reasons why the local oscillator is usually at a frequency above 
the received frequency in such a receiver. 

12.12 A double conversion superheterodyne has a first IF of 10. 7 MHz and a second 
IF of 455 kHz. If the receiver is tuned to 121.5 MHz, what are the possible 
frequencies of the first and second local oscillators? 

12.13 A "ghost image" is of.ten observed on a television screen slightly displaced 
horizontally from the main picture. Usually this is caused by a reflected wave which 
arrives at the TV antenna slightly later than the main wave. Calculate the difference 
in path length of the direct and reflected wave if the ghost is displaced by one inch on 
a screen with a width of 16 in. 

12.14 Disregarding the sync pulses, calculate the frequencies at which most of the 
Fourier components of the TV video signal occur for a carrier frequencx of 
61.25 MHz (Channel 3) if the picture consists of (a) a single vertical stripe, and (b) a 
single horizontal stripe. 

12.15 Consider a pulsed radar which operates at a frequency of 10 GHz and 
transmits 1-µs-wide pulses at a rate of 1000 pulses/s. Calculate (a) the number of 
waves in a pulse, (b) the spatial length ofa wavetrain, ( c) the spatial distance between 
pulses, and ( d) the minimum bandwidth of the radar signal. 

12.16 What is the maximum range of a pulsed radar that transmits 2000 pulses per 
second? If the pulse length is 0.5 µs, what is the approximate range resolution? 

12.17 What frequency shift would be produced in a doppler radar by a target 
moving at 55 mi/hr if the radar uses 1-cm microwaves? 
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A 
Bibliography 

Unfortunately, all the theory, data, and practices that are needed to solve electronic 
problems and design circuits have not been compiled in one reference source. This 
book provides but a starting point for circuit design and analysis. The serious student 
of electronics will require much more detailed treatments of the various topics. There 
are hundreds of good sources, but only a handful of the most useful are listed here, 
along with brief comments on their contents. In addition to these sources, the reader 
should be aware of the volumes of specifications and application data available free 
or at nominal cost from electronics manufacturers, especially the semiconductor 
manufacturers. The electronics magazines (Electronics, Electronic Design News, Electronic 
Design, Electronic Products, and Digital Design, to name a few) are very helpful in 
keeping up with new products, "the state of the art," and engineering practice. 

Study other's designs and methods, but don't blindly copy what you don't fully 
understand. Many published designs either contain errors or have never been fully 
tested. Perhaps because of the fundamental perversity of Nature, even the most subtle 
and sophisticated design methods often yield circuits requiring substantial amounts of 
"bench engineering" to obtain satisfactory performance. 

Halliday, David, and Resnick, Robert, Physics, Wiley ( 1978). The starting point for any study 
of electronics is an understanding of the underlying physical principles. This standard 
introductory physics text contains a complete, yet not overly involved, explanation of all the 
important physical processes that govern the behavior of electronic components. A book of this 
sort should be in the library of every scientist and engineer. 

Thomas, George B. Jr., and Finney, Ross L., Calculus and Anarytic Geometry, Addison-Wesley 
( 1979). The difference between someone who merely tinkers with electronics and someone who 
can successfully design complicated circuits lies largely in the person's level of mathematical 
ability. This freshman calculus text provides all the mathematical tools that are necessary for 
design and analysis of even the most complicated electrical circuits. Besides differentiation and 
integration, the sections on determinants and linear equations, Fourier series, complex 
numbers, and differential equations are especially useful in the study of electronics. 

Brophy, James J ., Basic Electronics for Scientists, McGraw-Hill ( 1977). This standard electronics 
text contains a good description, often simplified, of most of the topics covered in this book. For 
the reader who would like to see the topics treated here explained in different (and perhaps 
better) words, Brophy provides a highly readable text. 

Anderson, L. W., and Beeman, W. W., Electric Circuits and Modem Electronics, Holt, Rinehart 
and Winston (1973). This text, which is presently out of print but available in libraries, is 
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probably closer in level, order of topics, emphasis, and notation to the present text than any 
other electronics book available. It was for several years used as the tex.t in the course for which 
the present book was written. It delves in much greater detail into many of the topics presented 
here. 

Diefenderfer, A. James, Principles of Electronic Instrumentation~ Saunders (1979). This relatively 
modern text, as the title suggests, is slanted toward the use of analog and digital circuits in 
electronic instruments. It contains a large number of sample specification sheets for 
semiconductor devices and integrated circuits. 

Langford-Smith, F., ed., Radiotron Designers Handbook, distributed by Radio Corporation of 
America ( 1965). Although many people will scoff at this relic of the tube days, it is filled with 
valuable information on almost every electronic subject except semiconductors. Every chapter 
is followed by a thorough bibliography with detailed information on many subjects. 

Westman, H.P., ed., Reference Datafor Radio Engineers, Sams & Co. ( 1975). In many ways the 
modern version of the Radiotron Designers Handbook, this volume contains most of the reference 
information any electronics designer needs. Though it is slightly tilted toward the com
munications engineer, most of the articles are of general interest. It is excellent for reference 
and review but not a very good source for learning new material. It contains a great wealth of 
tables and formulas. 

Tremaine, Howard M., Audio Cyclopedia, Sams & Co. ( 1969). This is a very comprehensive 
source of information on audio recording and reproduction. Unfortunately, it is organized in a 
question-and-answer format, which can be annoying, but it has a fairly good index. It is a good 
source of audio engineering practice, although it contains nothing on semiconductors. 

The Radio Amateurs Handbook, American Radio Relay League, published yearly. The 
publications of the ARRL can be very useful, even to the non-ham, in providing basic, clearly 
written instruction in electronic principles and good construction practices. The Radio Amateur,s 
Handbook is strongly recommended for the beginner in electronics, especially for someone with 
only a modest mathematical training. It is also relatively inexpensive. 

Graeme, Jerald G., Tobey, Gene E., and Huelsman, Lawrence P., eds., Operational Amplifiers: 
Design and Application, McGraw-Hill ( 1971). There are many excellent textbooks on op amps as 
well as a wealth of application data available from manufacturers. This book, however, along 
with its companion volumes by Graeme,Jerald G., Applications of Operational Amplifiers: Third 
Generation Techniques, by Wong, Yu Jen, and Ott, William E., Function Circuits: Design and 
Applications, and Graeme,Jerald G., Designing with Operational Amplifiers: Applications Alternatives, 
provide the best reference on op amp technique available. Written under the aegis of Burr
Brown, a major supplier of operational amplifiers, this reference provides clear, complete 
information on almost every aspect of op amp application. 

Taub, Herbert, and Schilling, Donald, Digital Integrated Electronics, McGraw-Hill ( I 977). For 
one who was intrigued but frustrated by the brief treatment of digital electronics in Chapter 11, 
this book expands to over 600 pages on the fundamentals of digital circuits, exclusive of 
computers. Written in textbook style, with many examples and problems, this book begins 
where the present text leaves off in digital circuits. 

Cannon, Don L., and Lucke, Gerald, Understanding Microprocessors, Texas Instruments 
Learning Center ( 1979). Although texts on digital computers and microprocessors have a way 
of becoming outdated by the time they make it to press, this elementary text is as good a 
starting point as any for one who wants to understand in more detail the construction and 
operation of microcomputers. 
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Scientific American, September 1977 issue. This entire issue was devoted to the subject of 
microelectronics and contains eleven articles on topics ranging from the construction of 
integrated circuits to the organization and use of microcomputers. It also contains an extensive 
bibliography. 
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Gravitational constant: 

Acceleration due to gravity: 

Mean radius of the earth: 

Mass of an electron: 

Electronic charge: 

Velocity of light: 

Boltzmann's constant: 

Permeability of free space: 

Permittivity of free space: 

Planck's constant: 

3 a 6 Phys lea I Constants • 

B 
Physical 

Constants 

G=fi.672 x 10- 11 N·m 2/kg 2 

g = 9.81 m/s 2 

REB = 6371 km 

me=9.10953 X 10- 3
l kg 

e=l.60219 x 10- 19 C 

c = 2.99792 x 108 m/s 

1.38066 X 10- 23 J/K 

µ0 = 4n x 10- 7 N/A 2 

co= 8.85419 X 10- 12 C 2/N ·m 2 

h = 6.62618 x 10- 34 J/Hz 



C 
Units and 

Conversion Factors 

Some metric prefixes: 

1 ampere (A) = 1 C/s 
1 volt (V) = 1 J/C 
1 ohm (0) = 1 V/A 
1 siemens (U) = 1 A/V 
1 watt (W) = 1 J/s 
1 farad (F) = 1 C/V 
1 henry (H) = 1 Wb/A 
1 hertz (Hz) = l/2rr rad/s 
rr radians= 180° 

p = 10- 12 (pico) 
n = 10- 9 (nano) 
µ = 10- 6 (micro) 
m = 10- 3 (milli) 
c = 10- 2 ( centi) 
k = 103 (kilo) 
M = 106 (mega) 
G = 109 (giga) 

Temperature (Kelvin)= T(°C) + 273.16 
1 micron (µ) = 10- 6 m 
1 inch= 2.54 cm 
1 mile= 1.60934 km 
1 calorie= 4.184 J 
1 electron volt (eV) = 1.6 x 10- 19 J 
1 horsepower= 745. 7 W 
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Maxwell's equations: 

Current: 

Voltage: 

Magnetic flux: 

Resistance: 

Capacitance: 

Inductance: 

308 Electromagnetism 

D 
Electromagnetism 

f E·dA = Qj£0 (Gauss's law) 

jB·dA=O 

f B·dl = µof+ µ 0 B0 ff E·dA (Ampere's law) 

f E·dl = -f f B·dA (Faraday's law) 

l=dQ 
dt 

V= J E·dl 

<I>= J B·dA 

R= V/I 

C=OJV 

L = N<l>/1 



E 
Mathematical 

Formulas 

Quadratic equations: 

ax2 + bx+ c = 0 ~ x = 
2

1
a ( -b ± J b2 

- 4ac) 

Linear, first-order, homogeneous, differential equations: 

dx 
-+ax=O 
dt 

Linear, first-order, nonhomogeneous differential equations (xp =constant): 

~ -~ - + ax = ax ~ x = x0 e + x 
dt P P 

l'Hopital's rule: 

djldgl limf(x)/g(x) = - -
x--+a dx dx x=a 

(if f(a) = g(a) = 0) 

Partial derivatives: 

a11 a11 /JJ(x,y) = OX y bX + 0y X /Jy 

Average value: 

l J.T i= - X (t) dt 
T o 

rms value: 

Error analysis: 

Mathematical Formulas 309 



Taylor series: 

where n! = n(n - I) (n - 2) ... 1 

Fourier series: 

00 

f(t) = L c,ljnwot 
n=-oo 

1 IT/2 . 
where Cn = - f(t)e- 1nwot dt 

T -T/2 

Fourier transform: 

f(t) = _!_ f 00 J(w) ejwt dw 
2n -XJ 
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sin 0= -sin ( -0) = cos (n/2 - 0) 

cos 0 = cos ( -0) = sin (n/2 - 0) 

sin ( 0 ± ¢) = sin 0 cos ¢ ± cos 0 sin ¢ 

cos ( 0 ± ¢) = cos 0 cos ¢ + sin 0 sin ¢ 

sin 0 sin ¢ = ½[ cos ( 0 - ¢) - cos ( 0 + ¢)] 

cos 0 cos¢ =½[cos (0+ ¢)+cos (0- ¢)] 

sin 0 cos ¢ = ½[ sin ( 0 + ¢) + sin ( 0 - ¢)] 

sin 2 0 = ½ ( I - cos 2 0) 

cos2 0 =½(I+ cos 20) 

tan 0 = sin 0/cos 0 

cot 0 = 1/tan 0 

sec 0 = 1/cos 0 

cosec 0 = 1 /sin 0 

sin2 0+ cos2 0 = 1 

A cos 0 - B sin 0 = J A 2 + B 2 cos ( 0 + <jJ) 

F 
Trigonometric 

Relations 

where¢= tan - l (Bf A) 
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j=J=T /=-1 

ej(J = cos e + j sin e 

1 '(J '(J 
sin 0 = 

2
j ( e1 - e- J ) 

cos e =½(ei 0 + e-j(J) 

A+ jB=JA 2 + B2 eN> 

1 A-jB 
A+ jB = A 2 +B 2 

31 2 Complex Numbers 

G 
Complex Numbers 

1/j = -j 
e3nj/2 = -j elnj = 1 

where </>=tan - l (B/A) 



d(jg) =Jdg+ gdf 

d(f/g) =gdf-fdg 
g2 

d(f") = nj"- 1 dj 

d(eaf) = fl.eaf df 

d(ln f) = df/J 

d sin 0 = cos 0 d 0 

d cos 0 = - sin 0 d 0 

d0 
dtan 0=-

2
-

cos e 
df 

d tan -
1f = 

1 
+ j2 

H 
Derivatives 
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x"+ 1 

J x"dx=--+ C 
n+l 

J ea.:,;dx = eu/a. + C 

Hdx=lnx + C 

J ln x dx = x ln x - x + C 

J sin x dx = - cos x + C 

J cos x dx = sin x + C 

J tan x dx = -ln cos x + C 

J x sin x dx = sin x - x cos x + C 

J x cos x dx = cos x + x sin x + C 

J sin x cos x dx = ½ sin 2 x + C 

J sin 2 x dx = ½ x - ¼ sin 2x + C 

J cos 2 x dx = ½ x + ¼ sin 2x + C 

sm mx cos nx dx = - ----- - ----- + C I . cos ( m - n) x cos ( m + n) x 

2(m - n) 2(m + n) 

rff sin 2 X dx = rff cos 2 X dx = ~ 
Jo Jo 2 

I: sin x cos x dx = 0 

ioo -a:,; 2 d 1 /; e x= 2 -
o a 

I: ,J<m-n)x dx= {~ 

314 Integrals 

(m=n) 

(mfn) 
m, n integers 

I 
Integrals 



J 
Approximations 

The following formulas are valid for lxl ~ 1: 

( 1 + x) n ~ 1 + nx 
sin x ~ x 
cos x~ 1- x2/2 
tan x ~ x 
tan- 1 x ~ x 

e''~l+x 
a'::::::l +xlna 
ln (1 + x) ~ x 
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K 
Answers to Odd-Numbered 

Problems 

Chapter 1 

1.1 9.4 x 10- 5 m/s 1.15 IV 

1.3 9.8kW 1.1 7 12.5 V 

1.5 800 n 1.19 (a) 1 V, (b) 1.625 V 

1.7 o.833 n 1.21 40 A 

1.9 1.618 R 0 1.23 Connect meters in series: 
1.11 5V V1 = 880 V, V2 = 220 V 
1.13 0.5 A 

Chapter 2 

2.1 11 = 12 + 13 
2.13 Ru= 

RAR 8 + R 8 Rc+ RARc 
/4 = /3 + /5 RA+Rc 
fi = / 1R 1 + l 2R 2 

R22= 
RAR 8 + R 8 Rc+ RARc 

I2R 2 = l 3R 3 + /4 R 4 RA+RB 
J4R4 + V2 + lsRs = 0 R12 =R21 

2.3 J_l + l=l2 RAR 8 + R8 Rc+ RARc 
V = l 1R 1 + l 2R 2 = 

V+ IR 1 

RA 

12 = R1 + R2 
2.15 R 1 = 1 o n, R 2 = 40 n, 

R 3 = 10 n 
2.5 0.1 A 

R1R2 R3R4 
2.7 vT = 20 v, RT= 150 n, 2.17 + 

R1 + R2 R3+ R4 
/ 3 =0.lA 

2.19 vT = 1.5 v, RT = 13 n 
2.9 R=RT 2.21 lsc = 23 mA, V0 c = 2.3 V 
2.11 1 N = 1 A, RN = 11 n, v oc = 11 v 

Chapter 3 

3.1 0.0177 µF 

3.3 9.9 mH 
3.5 

V- V. 
I(t) = Te-t/Rc, 

Vc(t) = v+ ( Vo - V) e-r/RC 
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Chapter 4 

4.1 

4.3 

4.5 

4.7 

4.9 

I - wCVo [ 1 -1/Rc 

- w2R 2C2 + 1 wRC e 

+ wRC cos wt-sin wt] 

wCV0 
I= J cos (wt+</>), 

w 2R2C2+ 1 
where</>= tan- 1 (1/wRC) 

Q_=w 0L/R 

<I>= 154.3° 
VT= 3.54 elOOjt+ jn/4 

ZT = 50 + 50 J, RT = 50 n, 
LT=0.5 H 

4 • 11 IVou1/ ~n I 

Chapter 5 

5. 1 V ( t) = 2 
Vo I ~ [ 1 - cos nn] 
7t n= 1 n 2 

sin nw0 t 

5.3 V(t) = 2Vo - 4Vo I 
7t 7t n=2 

n even 
cos nw0 t 

n2 -1 

3.13 
~J 1 D 1 V 
-+--+-l=
dt2 RC dt LC LRC 

di V 
1(0) = V/R, dt (0) = - R2C 

d2JR 1 d]R I V 
3' 15 dt2 + RC dt + LC JR= RLC 

3.17 Ve= 100 t2, VL=0.l V 

4.13 
R+RL 

Wc=--
RRLC 

4.15 16 Hz to 8 MHz 

2 1 
W=---

R3C3R4C4' 
4.17 

R 2R 3 R 1R4 + R 1R 3 --=-- --
C3 C3 C4 

R2 
4.19 IVou1/~nl = R + R 

1 2 

(independent of w) 

4.21 L = 4H,/nns = 7.07 A 
4.23 Lp=4 H, k=0.998 

co 

5.7 V001 ::= -8.1 x 10- 4 V0 L 

sin nw0 t 

n3 

n= 1 
n odd 
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5.9 
- 2V0 IV ( w) I = - ( 1 - cos WT) 

w 

V. C f 'X) 5.11 l(t) = - 0
-
n -'X_) 

wRC+ j(l -w 2LC) 

w 2R2C2 + ( 1 -w 2LC) 2 

sin (wr/2)eJwr dw 

Chapter 6 

6.1 I= 10.2 mA, V = 54 V 

6.3 0.48 to 0.66 V 

6.5 0.25 W (half-wave), 
0.5 W (bridge) 

6.7 Open: looks like a half-wave 
rectifier. 
Short: draws large current from 
source. 

6.9 /surge//av = 2~ 

Chapter 7 

7.1 

7.3 

7.5 

7.7 

7.9 

Vpc=82 V, lp=27 mA 

(a) increases, (b) decreases, 
( c) decreases 

Rp :::::::: IO Hl, Re= 50 n, 
Ra= 100 kn, 
A:::::::: 50, CG= 0.016 µF 

µRp 
A=-------

Rp+ rP + (1 + µ)Re 
Rp 

:::::::: - - (for µ large) 
Re 

cin = (1 + IAl)C 

7.11 A=0.46 

7.13 Common cathode: A:::::::: -100, 
Rin = I Mn, Rout :::::::: IO kn 
Cathode follower: A::::::: 0.5, 
Rin = 1 Mn, Rout :::::::: 50 n 
Grounded grid: A ::::::: I 00, 
Rin:::::::: 50 n, Rout:::::::: 10 kn 
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5.13 cp = -51° 

5.15 R=Zt/RL, C=LL!Zt 

5.1 7 C' = cw/d, L = µd/w, 

Zo = Jµf; d/w 

5.19 V = VP 

g 1 + (A/2w)2 < VP <c 

6.11 20% 

6.13 VR(dc) = 6.37 V, 
L=l7.7H 

6.1 7 T = 15. 7 ms, /max = 1 A 

6.19 Ps=4W, PR=2W,PL=l W, 
P 2 =1 W 

6.21 4% 

7 .15 Peaks of wave are flattened 

7. 1 7 Ra = l Mn, Rn = l kn, 
Rs= IO0n 

7.19 A 1 =0.995, A 2 = -0.995 

7.21 Common source: A= -g 1sRD, 

Rin = Ra, Rout= RD 
Source follower: A = 1, 
Rin =Ra 



Chapter 8 

8.1 VcE=llV,le=4.5mA 

8.3 VcE = 0.5 V, le= 9.5 mA 

8.5 

8.7 

8.9 

TB 
T1r=--+ TE 

I+ p 
VB = 2 V, VE ~ I. 4 V, Ve = 3 V, 
IB = 14 µA, IE = le = 1.4 mA 

A= -3 

Chapter 9 

9.1 A= -(R 1 + R2 + R 2R1/Ri)/Ri 

9.3 Rin = 5 X 1010 fl 
9.5 R1 =R2 = 1000 n, R3 = 2000 n 
9.7 A= R1 + R2 

9.9 A= I 

Chapter 10 

IO.I R = IO MO 

10.3 A 0 = 29 

10.5 R 1/ Ri = I 
10.7 ~n =6 V 
10.11 T=4 ms 
10.13 V = V0e- I12Rc sin wt 

Chapter 11 

11.1 107, 2018, 2671 

11.3 1001010012, 12916 
I 100011000002, C50 16 

11.5 -354 

Chapter 12 

12.1 280 m, 3.38 m, 43 cm, 11 m, 
12 cm 

12.3 164 MHz 

12.5 62.3 km, 1000 ft 
12. 7 V0 at w0 , V0 /2 at w0 ± ~w 

12.9 V = IO sin 2n ( 108 + 104 

sin 6283t)t 

8.11 vout = 4--0.99 sin wt 

8.1 3 c1 = 6 µF, c2 = 12 3 µF 

8.15 Rin = 75 n, A= 49.5 

8.17 IL=IA,PL=IOW,Pr=IOW, 
PR= 0.25 W, Pz = 0 W 

8.19 CMRR = 100 

9.11 Rin = -R 1R 3/R 2 

9.13 R 1C= 1/7, R2C=4 

kT 
9.17 vou1= --ln (~n/PloR) 

e 

9.19 v;.ms = 0.513 µV 

10.15 P1P2 > I 

Vo 
10.17 V(t) = -+ V0 cos w0 t 

2n 

Vo . + -sm w0 t 
2n 

10.19 voul ~ 100 ( I - e-lOOO/f) 

11.7 V0 =(A+ B) ·C 
11.19 lOll, 0101, 0010, 1001, 0100 

11.21 6.25%, 0.0015% 

12.11 8CH250 kHz; 910, 682.5, 
606. 7, 568.8, 546 kHz; 
910 kHz 

12.13 1.19 km 

12.15 I 04
, 300 m, 300 km, I MHz 

12.17 4.9 kHz 
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L 
Laboratory 

Experiments 

Included here are fourteen suggested laboratory experiments to accompany the text. 
The experiments are each designed to be completed in a single three-hour laboratory 
period. 

It is suggested that students work in pairs at benches provided with the following 
basic equipment: 

Dual power supply, current-limited, regulated (0-20 V) 

Volt-ohm-milliammeter (20 k!l/V) 

High-impedance voltmeter ( 210 M!l) 

Function generator, sine, square, triangular waves ( 10 Hz-500 kHz) 

Oscilloscope ( dc-1 MHz) 

In addition, an assortment of resistor, capacitor, and inductor substitution boxes or 
individual components are required. Several of the experiments are facilitated by 
having preassembled circuit boards containing most of the required components. 

Students are encouraged to write up the results of the experiments with some 
care. The wise student will do enough for the analysis during the laboratory period to 
ensure that the experiment was done properly. Wherever possible, the measured 
values of quantities should be compared with theoretical calculations and the 
percentage error given. When plotting graphs, make sure the axes are adequately 
labeled with the quantity and its units, and put the measurements on the graph as 
discrete data points and the theory, where appropriate, as a solid line. It is a good 
idea to write a short, one-paragraph summary at the end of the report, stating what 
was learned from the experiment. 
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Experiment 1 

D.C. Measurements 

The purpose of this experiment is to acquaint the student with the vanous 
instruments available in the laboratory for measuring de currents and voltages and to 
acquaint the student with the limitations of these devices. 

Apparatus required: 0-20 V power supply, two resistor substitution boxes, VOM, 
VTVM ( or equivalent), 24-V incandescent lamp. 

Pr~cedure: 

1. Set up the voltage divider shown in figure 1. t using R 1 and R 2 of approximately 
100 n. Test the voltage divider relation using the VOM and again using the VTVM. 

2. Repeat the above measurements using 1 Mn for R 1 and R 2. When does a 
voltmeter give a useful measurement in this circuit? 

3. Measure at least two resistances, one about 100 n and one about 50 kn, using 
each of the circuits below: 

+ 

V I V 

(a) 

(l) 
I 

(b) 

For each case, correct the measured resistance for the finite internal resistance of the 
meters. Explain under what circumstances each circuit is best for such resistance 
measurements. 
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4. By varying the power supply voltage, measure and plot the voltage across the 
resistance as a function of current through the resistance in one of the best circuits. 
Determine R from the slope of the line. Estimate the percentage accuracy of the 
measurement. 

5. Measure and plot the voltage across an incandescent lamp as a function of 
current through the lamp. Is the lamp a linear component? 
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Experiment 2 

Circuit Theorems 

This experiment illustrates the superposition theorem, Thevenin's theorem, and the 
reciprocity theorem for linear circuits; and the failure of these theorems when the 
circuit contains nonlinear components. 

Apparatus required: Dual 0-20 V power supply, VOM, VTVM, 3-port resistor 
network with switch to add an incandescent lamp. 

Procedure: 

1. With the switch in the R pos1t10n, apply various voltages V2 at port 2 and 
simultaneously apply V3 at port 3 and measure the short circuit current at port 1. 
Does the superposition theorem hold? 

2. With the switch in the R position, apply a voltage V1 of IO V at port 1 and 
determine the open circuit voltage V2 and the short-circuit current 12 with terminals 3 
short circuited. Find the Thevenin and Norton parameters for port 2. 

3. With the switch in the R position, place a voltage source V1 at port 1 and an 
ammeter at port 2 with terminals 3 short circuited. Now interchange the voltage 
source and the ammeter and repeat the measurements. Is the reciprocity theorem 
obeyed? 

4. With the switch in the R position, measure all 9 R parameters for the circuit 
(Rii= V)IJ, remembering to short-circuit the unused terminal pair(s). 

5. With the switch in the L position, repeat as many of the above measurements as 
necessary to convince yourself that the circuit theorems are not obeyed. 

6. Make a diagram of the circuit. Analyze and display the results of the data and a 
comparison with the values calculated from the diagram for Vn RT, IN, R 11 , R 12 , and 
so on. 
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Experiment 3 

Wheatstone Bridge 

This experiment is to familiarize the student with the Wheatstone bridge and its 
ability to make very precise measurements using the null method. 

Apparatus required: 0-20 volt power supply, sensitive galvanometer, 0.5% pre
cision 1000-0 resistor, 0.05% precision resistor decade box. 

Procedure: 

1. Set up a Wheatsone bridge circuit as shown in figure 2.13. Use a precision 
(0.05%) resistor decade box set to 1000 0 for R 3 . Use a precision (0.05%), 1000-0 
resistor for R4 . Use low-precision, 1000-0 resistors for R 1 and R 2 . Since R 1 and R 2 will 
not be precisely equal, it will be necessary to place high-value resistors in parallel with 
either R 1 or R2 in order to achieve a balance. Once this is done, verify that a 1-0 
change in R 3 either above or below 1000 0 will produce a noticeable reading on the 
galvanometer. 

2. Use the already-balanced bridge with R4 changed to an unknown resistor to 
measure by direct reading of R 3 the correct resistance of resistors of about 500 0, 
1000 0, and 2000 0, with an accuracy of approximately 0.1 %- Repeat until the 
results agree with those obtained by your instructor. 
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Experiment 4 

Oscilloscope 

The purpose of this experiment is to permit the student to become familiar with the 
operation of the cathode ray oscilloscope. 

Apparatus required: Oscilloscope, function generator, 0-20 V power supply, 
VOM, resistor substitution box, 6.3-V transformer. 

Procedure: 

1. With the function generator connected to the vertical input of the oscilloscope, 
observe sine, square, and triangular waves of several different frequencies. 

2. Check the sweep-speed calibration of the oscilloscope by applying a 60-Hz 
sinusoidal voltage from the 6.3-V transformer to the vertical input. 

3. Using a de voltage source in conjunction with a VOM, check the voltage 
calibration of the oscilloscope. 

4. Apply a 60-Hz voltage from the 6.3-V transformer to the horizontal input. Use 
the function generator to apply a sinusoidal ac voltage to the vertical input. Observe 
the Lissajous figure that results when the function generator is carefully adjusted to a 
frequency that is in a rational ratio to 60 Hz (i.e., 20 Hz, 30 Hz, 40 Hz, 60 Hz, 
120 Hz, etc.). How accurately calibrated is the function generator? 

5. Devise and execute an experiment to determine the input resistance of the 
oscilloscope. 
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Experiment 5 

Transient Series RLC Circuit 

The purpose of this experiment is to permit the student to study the transient response 
of a series RLC circuit in the overdamped, critically damped, and underdamped 
cases. 

Apparatus required: 0-20 V power supply, mercury relay, oscilloscope, resistor , 
inductor, and capacitor substitution boxes. 

Procedure: 

1. Construct the following circuit: 

s 

V 

L 

R 

C 
T 
l 

The switch Sis a mercury relay that is driven by the 60-Hz voltage from the power 
line. Verify that it opens and closes every 1/120 s. Adjust the oscilloscope so that it 
triggers on the opening of the switch. The behavior of the circuit will be studied just 
after the switch opens, at which time the source is disconnected and the circuit 
consists only of a series RLC. 

2. What are the initial conditions for I, fc, and dl/dt? 

3. Choose R, L, and C such that the circuit is underdamped with a Q of about 20. 
Measure the frequency of oscillation and compare with equation 3.23. 

4. Measure the damping rate of the oscillation and compare with equation 3.25. 

5. Increase R until the circuit is critically damped, and compare with the value 
predicted for R. 

6. Increase R further to produce strongly overdamped behavior and compare the 
rise and fall times of the current with the expected values. 
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Experiment 6 

Filter Circuits 

The purpose of this experiment is to acquaint the student with the measurement of 
phase and amplitude for various types of filter circuits with sinusoidal sources. 

Apparatus required: sine wave generator, oscilloscope, resistor, inductor, and 
capacitor substitution boxes. 

Procedure: 

1. Set up and measure the attenuation and phase of a low-pass RL filter as shown in 
figure 4.8(a) as a function of frequency. 

2. Set up and measure the attenuation and phase of a high-pass RC filter as shown 
in figure 4.9(a) as a function of frequency. 

3. Set up and measure the attenuation and phase of a resonant filter as shown in 
problem·4.10 as a function of frequency. Choose R, L, and C to give resonance at 
5000 Hz with a Q of 10. 

For each of the above cases, compare the results with the theoretical predictions. 
A programmable calculator or computer should prove very helpful here. 
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Experiment 7 

Fourier Series 

The purpose of this experiment is to demonstrate that a periodic waveform can be 
decomposed into an infinite sum of sine waves with harmonically related frequencies. 

Apparatus required: function generator, oscilloscope, 5-Q resistor, 100-Q resistor, 
100-mH inductor, and capacitor decade box. 

Procedure: 

1. Set up the following spectrum analyzer circuit: 

The 5-Q resistor lowers the Thevenin equivalent resistance of the 2-kHz square wave 
source and raises the Q of the RLC circuit. 

2. By adjusting C with the oscillator fixed at 2 kHz, measure the magnitude of each 
Fourier component up to at least n = 9. Record the capacitance required for 
resonance at each harmonic. It may be helpful to vary the oscillator frequency 
slightly (a few percent) to maximize V if the resonance falls between switch positions 
of the capacitor decade box. 

3. Plot the ratio I Vnf V0 I versus n on log-log graph paper and compare the results ' 
with the theoretical values predicted for the Fourier series representation of 
figure 5.4(a). 

4. Repeat steps 1-3 above using triangular rather than square waves. 
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Experiment 8 

Characteristics ~f Ge, Si, 
and Zener Diodes 

The purpose of this experiment is to enable the student to examine and understand 
the properties of germanium and silicon solid state diodes and Zener diodes. 

Apparatus required: 0-20 V power supply, resistor substitution box, VOM, 
VTVM, diodes (Ge, Si, Zener), 6.3-V transformer, and oscilloscope. 

Procedure: 

1. Set up the following circuit. 
R 

I 

By varying V0 and R, measure the V-1 characteristic of a germanium diode from V0 = 
-10 V up to whatever positive voltage is necessary to cause 10 mA to flow through 
the diode. Note that either the voltmeter must have a very high internal resistance or 
a correction to the measured current must be made. 

2. Compare the measured results with equation 6.4 and estimate the values of / 0 , 

kT/e, and rohmic· 

3. Repeat steps 1 and 2 for a silicon diode, using forward currents up to 100 mA. 

4. Set up the following circuit to display the 1-V characteristic of the diodes on an 

oscilloscope: ------ ...... ----~Horizontal 

11~ 

60~ 

6.3 V 

100 n -=-

.,__ ____ ...,_ ____ ~ - Vertical 
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What are the approximate forward voltage drops for the two diodes? 

5. Display using the circuit above the 1-V characteristic of a Zener diode. 
Determine the breakdown voltage, and decide whether the diode is germanium or 
silicon. 
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Experiment 9 

Rectifier Circuits 

The purpose of this experiment is to permit the student to examine the properties of 
various rectifier circuits and to examine the influence of a filter on the output of the 
rectifier. 

Apparatus required: 6.3 VCT transformer, four silicon diodes, 10-µF capacitor, 
resistor substitution box, and oscilloscope. 

Procedure: 

1. Set up the half-wave rectifier shown in figure 6.6, and compare the output 
waveform with the predicted value. Be sure to measure the output voltage of the 
transformer, since it is likely to be greater than 6.3 V rms when the output current is 
small. Also consider the forward voltage drop of the diode. 

2. Set up the full-wave rectifier shown in figure 6. 7, and compare the output 
waveform with the predicted value. 

3. Set up the bridge rectifier shown in figure 6.8, and compare the output waveform 
with the predicted value. 

4. Using a 10-µF capacitor, connect a capacitive filter as shown in figure 6.9 to each 
of the rectifier circuits and measure the de output voltage and ripple for several 
values of load resistance. Compare the observed ripple with that predicted by 
equation 6. 7. 
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Experiment 10 

FET and Bipolar Transistors 

The purpose of this experiment is to acquaint the student with the properties of field 
effect and bipolar transistors. 

Apparatus required: Dual 0-20 V power supply, VOM, VTVM, resistance 
substitution box, p-channel FET, and npn bipolar transistor. 

Procedure: 

1. Set up the following circuit: 
0 to - 20 V 

G 
0 to + 6 V 0-------~......,.,__--,1 

Measure and plot the drain current / 0 versus drain-to-source voltage Vos for several 
gate-to-source voltages V GS in the range 0---6 V. 

2. Identify on your graph the ohmic region, the pinch-off region, and the break
down region, and estimate the value of the output resistance r05 in the pinch-off region. 

3. Set up the following circuit: 
0 to + 20 V 
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Measure and plot the collector current le versus collector-to-emitter voltage VcE for 
several values of base current I 8 in the range 0- l 00 µA. 

4. From the graph estimate the value of beta for the transistor. 

5. Heat or cool the transistor, and note the effect of temperature on beta. 

6. Measure the base-to-emitter voltage as a function of base current, and verify that 
the base-to-emitter junction behaves like a forward-biased diode. Is the transistor 
germanium or silicon? 
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E~periment 11 

Common Emitter Amplifier 

The purpose of this experiment is to teach the student how to design a simple 
transistor amplifier. 

Apparatus required: 0-20 V power supply, silicon npn transistor, assorted resistors 
and capacitors, sine wave generator, and oscilloscope. 

Procedure: 

1. Design a common emitter amplifier as shown in figure 8.6 with the following 
characteristics: ~c = 15 V, A= -25, Rout= 50 kO, lower cutofffrequencyf = 100 Hz. 

2. Construct the circuit, and determine that the operating point is correct. It may 
be necessary to vary R1 somewhat from your design value to achieve proper 
operation. 

3. Apply a 1-kHz sine wave at vin, and observe the saturation and cutoff that occurs 
at the output when the input amplitude is too large. 

4. Using a suitably small value of vin, measure the amplification, input resistance, 
and output resistance, and compare with the predicted values. 

5. Measure the amplification as a function of frequency from 20 Hz to at least 
500 kHz, and plot the results on log-log paper. 

6. With a suitable capacitor in parallel with RE, repeat step 5, and plot the results 
on the same graph. Does the measured amplification agree with the prediction based 
on a reasonable estimate of the transresistance? 
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Experiment 12 

Linear Op Amp Circuits 

The purpose of this experiment is to permit the :udent to set up and examine the use 
of op amps to perform the four basic linear mathematical operations of addition, 
subtraction, integration, and differentiation. 

Apparatus required: Dual 0-20 V power supply, operational amplifier, assorted 
resistors and capacitors, function generator, 1.5-V battery, and oscilloscope. 

Procedure: 

1. Set up the circuit in figure 9.9(a) for adding two voltages. Use resistors in the 
range 10-100 Hl. With V2 = 0, select resistors so that V0 u, = -3 V1. Using a sinusoidal 
input for V1 , measure the amplification of the system at low frequency and small 
amplitude. 

2. Determine the value of V0 u, at which saturation occurs. 

3. Measure and graph the amplification as a function of frequency. 

4. Using a sinusoidal voltage for V1 with an amplitude such that V0 u, is close to 
saturation, increase the frequency until the slew rate is observed. How does the 
observed slew rate compare with the published specifications for the op amp? 

5. Using a sinusoidal voltage for V1 and a 1. 5-V battery for V2 , verify that the 
output is given by equation 9.14. 

6. Set up the circuit in figure 9.9(b) for subtracting two voltages. Using a sinusoidal 
voltage for V1 and a 1.5-V battery for V2 , verify that the output is given by 
equation 9.16. 

7. Set up the circuit in figure 9.9(c) for integrating a voltage. It may be necessary to 
place a high-value resistor ( 1-10 MQ) in parallel with the capacitor to prevent the 
input offset voltage from saturating the op amp. Using a square wave for Vin, verify 
that the output is given by equation 9.18. 

8.· Set up the circuit in figure 9.9(d) for differentiating a voltage. Using a triangular 
wave for Vin, verify that the output is given by equation 9. 19. 
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Experiment 13 

Nonlinear Op Amp Circuits 

The purpose of this experiment is to acquaint the student with some of the nonlinear 
applications of op amps. 

Apparatus required: Dual 0-20 V power supply, operational amplifier, assorted 
resistors, capacitors, and inductors, silicon diode, function generator, 1.5-V battery, 
and oscilloscope. 

Procedure: 

1. Set up the comparator circuit shown in figure 9. l 3(a). Set V1 at 1.5 V. Use a low
frequency sine wave with variable amplitude for V2. Verify that the circuit works as a 
comparator. How would one use an op amp to generate a symmetric square wave, 
starting with a sine wave at its input? 

2. Set up the latch circuit shown in figure 9. l 3(b). Show that the circuit remembers 
the last polarity of ~n· 

3. Set up the logarithmic amplifier shown in figure 9.11 (a). Sketch the shape of Vout 

when ~n is a triangular wave. 

4. Set up an exponential amplifier as shown in figure 9.11 (b). Sketch the shape of 
Vout when ~n is a triangular wave. 

5. Construct at least one oscillator circuit using positive feedback. Measure its 
frequency of oscillation and compare the result with the expected value. 

336 Laboratory Experiments 



Experiment 14 

Digital Circuits 

The purpose of this experiment is to introduce the student to the fundamentals of 
digital circuits. 

Apparatus required: 5-V power supply, circuit board containing TTL: 8 two
input NANO gates, 8 JK flip-flops, 4 toggle switches, and 16 indicator lamps. 

Procedure: 

1. Verify the truth table for the NANO gate in figure l l.4(b). 

2. Use NANO gates to construct the following circuits and verify their operation: 2-
input AND gate, 2-input OR gate, and 2-input NOR gate. 

3. Cross couple two NANO gates to make an RS flip-flop similar to that m 
figure 1 1.1 0. 

4. Make a clocked RS flip-flop and a D-flip-flop as shown in figure 11.11. 

5. Verify the truth table for the JK flip-flop in figure l l.12(b). 

6. Construct an 8-bit counter as shown in figure l l. l 3(a). Show that it acts as a 
frequency divider. 

7. Construct an 8-bit shift-register as shown in figure 11.13 (b). Connect the output 
to the input and make a circular shift-register. 
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Active circuit, 143 
Active differentiator, 210 
Active integrator, 209 
Address, memory, 2 7 0 
Admittance, 77 
Algebra, Boolean, 262 
All-pass filter, 92 
Alternating current (ac), 69 
Ammeter, 12 
Ampere, 1,307 
Ampere's law, 49,308 
Amplification, 148 
Amplification factor, 14 7 
Amplifier: antilogarithmic, 212 

audio frequency, 292 
cathode follower, 150 
class, 188 
common base, 181 
common cathode, 148 
common collector, 179 
common emitter, 176,334 
common source, 160 
complementary-symmetry, 187, 195 
difference, 185, 195 
efficiency, 190 
exponential, 212 
grounded gate, 160 
grounded grid, 153 
intermediate frequency, 29 2 
limitations, 216 
logarithmic, 221, 229 
multiple-transistor, 184 
operational, 195 
push-pull, 188 
radio frequency, 293 
source follower, 160 

Amplitude modulation (AM), 287 
Analog circuit, 255 

Index 

Analog computer, 210 
Analog multiplier, 213 
Analog-to-digital (A-to-D) converter, 270 
AND gate, 257 
Angular frequency, 62 
Anode, 121,123,244,251 
Anode gate, 245 
Answers to problems, 316 
Antenna, 283 
Anticoincidence circuit, 280 
An tilogarithmic amplifier, 212 
Apparent power, 7 8 
Approximations, 315 
Arithmetic logic unit (ALU), 274 
Assembler, 277 
Assembly language, 277 
Association, 262 
Astable multivibrator, 238 
Attenuation, 82 
Attenuator, compensated, 85 
Audio frequency (AF) amplifier, 292 
Automatic frequency control (AFC), 295 
Automatic gain control (AGC), 294 
Automatic volume control (AVC), 

294 
Avalanche diode, 136 
Average value, 309 
Ayrton shunt, 20 

Back diode, 241 
Balance condition, 38 
Bandwidth, 104,217,266 

open-loop, 217 
Barkhausen criterion, 2 31 
Base: bipolar transistor, 169 

MOSFET, 163 
number, 255 
UJT, 243 
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Baseline restoration circuit, 133 
BASIC, 277 
Battery, 5 
Baud rate, 266 
Beat frequency, 298 
Beat frequency oscillator (BFO), 290 
Beta, transistor, I 71 
Bibliography, 303 
Binary arithmetic, 255 
Binary-coded decimal (BCD), 272 
Binary-coded decimal counter, 280 
Binary counter, 268 
Binary number, 255 
Bipolar transistor, 169 
Bistable flip-flop, 213 
Bistable multivibrator, 2 36 
Bit, 255 
Blanking, 296 
Bleeder resistor, 130 
Blocking capacitor, 150 
Bode plot, 217 
Boltzmann's constant, 122,306 
Boolean algebra, 262 
Branch, 23 
Breakdown region, 159 
Breakdown voltage, 49, 136 
Breaker, circuit, 8 
Bridge, Wheatstone, 23, 25, 31, 37,324 
Bridge, Wien, 93 
Bridge circuit, 37 
Bridge rectifier, 127 
Bubble memory, 278 
Bulb, neon, 241 
Bus, 275 
Byte, 255 

Cable, coaxial, I 08 
Calorie, 30 7 
Capacitance, 48, 308 

coaxial cable, I 08 
equivalent, 54 
input, 165, 216 
parallel plates, 4 7 

Capacitor, 4 7 
blocking, 150 
charging, 54 
coupling, 150 
electrolytic, 49 
emitter bypass, 179 
parallel, 53 
polarized, 49 
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reactance, 7 l 
series, 54 

Carrier, 288 
Cathode,46, 121,123,143,244,251 
Cathode bypass capacitor, 150 
Cathode follower circuit, 150 
Cathode ray tube (CRT), 46,297 
Cat whisker, 138 
Cell, photovoltaic, 250 
Central processing unit (CPU), 275 
Channel, FET, 158 
Channeltron electron multiplier (CEM), 

251 
Characteristic impedance, I 09 
Charge, 1, 4 7 

of electron, 1, 306 
Charge pump, 130 
Charged-coupled device (CCD), 278 
Child's law, 122 
Choke, 49. See also Inductor 
Chrominance signal, 297 
Circuit: active, 143 

analog, 255 
bridge, 37 
digital, 255, 337 
distributed, 108 
filt~r, 81,128,327 
hardwired, 273 
integrated, 195 
linear, 7, 23 
lumped, 108 
nonsinusoidal, 95 
open,27 
passive, 30 
rectifier, 126,331 
resonant, 58, 79 
short, 27 
sinusoidal, 69 
transient, 45,326 

Circuit breaker, 8 
Circuit isolation, 221 
Circuit reduction, 8, 35, 52 
Circuit theorems, 23 
Circular shift register, 270 
Clamp, diode, 133 
Class A, B, C amplifier, 188 
Clipping circuit, 132 
Clock, 267, 271 
Clocked RS flip-flop, 267 
Coaxial cable, 108 
Code, computer, 277 



Coefficient of coupling, 88 
Coil, 49. See also Inductor 
Coincidence circuit, 258 
Collector, 169 
Collector characteristic, 1 70 
Collector dissipation power, 1 71 
Color code, 3 
Color TV, 297 
Colpitts oscillator, 2 34 
Common base amplifier, 181 
Common cathode amplifier, 148 
Common collector amplifier, 179 
Common emitter amplifier, 176,334 
Common grid amplifier, 153 
Common mode input impedance, 217 
Common mode rejection ratio (CMRR), 187, 

217 
Common plate amplifier, 151 
Common source amplifier, 160 
Communications, 283 
Commutation, 262 
Comparator circuit, 213 
Compensated attenuator, 85 
Compiled language, 277 
Compiler, 27 7 
Complement (2's), 257 
Complementary-symmetry amplifier, 187, 

195 
Complex conjugate, 78 
Complex number, 75,312 
Computer: analog, 210 

digital, 272 
languages compared, 277 

Condenser, 4 7. See also Capacitor 
Conductance, 2 
Conductor, 2 
Conjugate pairs, 15, 52 
Constants, 306 
Contactor, 46 
Control grid, 46, 143 
Controller, 27 6 
Conversion factors, 307 
Converter: A-to-D, 270 

current-to-voltage, 206 
D-to-A, 270 
frequency,292 

Core, 273 
Comer frequency, 2 20 
Coulomb, 1 
Counter, 268 

BCD, 280 

Coupling capacitor, 150 
Coupling coefficient, 88 
Critical damping, 60 
Cross-talk, 224 
Crowbar, 68, 133 
Crystal: liquid, 251 

quartz, 234 
Crystal filter circuit, 236 
Crystal oscillator, 235 
Current, 1, 308 

alternating (ac), 69 
direct (de), 28 
displacement, 48 
eddy,51,87 
holding, 245 
loop, 25 
magnetizing, 87 
Norton equivalent, 32 
offset, 217 
partial, 27 
short circuit, 29 

Current divider, 10 
Current limiting, 215 
Current-to-voltage converter, 206 
Cutoff, 145 
Cutoff frequency, 82, 115 

Damping, 60,326 
Darlington pair, 184,250 
D 'Arson val galvanometer, 13 
Data (D) flip-flop, 267 
Decade, 82 
Decibel (dB), 82 
Decimal number, 255 
Decoder, 266 
Delta-connection, 34 
Delta function, 104 
Delta-Y transformation, 34 
Demodulation, 291 
De Morgan's theorem, 262 
Dependent source, 147,197 
Depletion region, 123, 158 
Depletion-type MOSFET, 161 
Derivative, 313 
Detection, 291 
Detector: diode, 291 

light-sensitive, 251 
product; 290 
zero-crossing, 213 

Deviation, 289 
Diac,247 
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Dielectric constant, 49 
Difference amplifier, 185, 195 
Differential equation, 45,309 

homogeneous, 55 
nonhomogeneous, 5 7, 7 3 
second-order, 59 

Differentiator: active, 210 
passive, 85 

Digital circuit, 255,337 
Digital computer, 272 
Digital multimeter (DMM), 15 
Digital voltmeter (DVM), 14, 271 
Digital-to-analog (D-to-A), converter, 

270 
Diode, 121 

back,241 
capacitance, 137 
forward voltage drop, 124 
light-emitting, 250 
peak reverse voltage, 125 
pn junction, 12 3 
point contact, 138 
power dissipated, 125, 137 
and resistor logic (DRL), 261 
reverse current, 124 
silicon vs germanium, 124,329 
temperature dependence, 124 
tunnel, 240 
vacuum, 121 
varicap, 137 
Zener, 136, 329 

Diode clamp, 133 
Diode detector, 291 
Diode logic, 258 
Diode rectifier, 126 
Diode-transistor logic (DTL), 261 
Dipole antenna, 283 
Direct current (de), 28 
Direct memory access (DMA), 276 
Dispersion, 111, 117 
Displacement current, 48 
Display: liquid crystal, 251 

seven-segment, 272 
Distributed circuit, 108 
Distribution, 262 
Divider: current, 10 

frequency, 237, 270 
voltage, 9 

Dominant mode, 115 
Doppler radar, 298 
Doublt> conversion, 294 
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Drain, 158 
Dynamic memory, 270 
Dynamic resistance, 173 
Dynode,251 

Earth, radius, 306 
Eddy current, 51, 87 
Efficiency, amplifier, 190 
Electrical length, 111 
Electrically alterable ROM (EAROM), 267 
Electric field, 4 7, 114 
Electrolytic capacitor, 49 
Electromagnetic radiation, 224, 283 
Electromagnetic wave, 115, 283 
Electromagnetism, 308 
Electrometer, 14 
Electromotive force (emf), 2 
Electron: charge, 1,306 

mass, 306 
secondary, 157,251,296 

Electron multiplier, 251 
Electron volt (eV), 307 
Elementary loop, 24 
Emission limit, 1 22 
Emitter, 169, 243 
Emitter bypass capacitor, 1 79 
Emitter-coupled logic (ECL), 261 
Emitter follower circuit, 1 79 
Energy, stored, 49, 51, 71 
Enhancement-type MOSFET, 161 
Erasable PROM (EPROM), 266 
Error analysis, 309 
Even function, 98 
Exclusive-OR gate, 273 
Execute phase, 275 
Experiments, laboratory, 320 
Exponential amplifier, 212 

Fading, 286 
Fanout,258 
Farad, 48,307 
Faraday's law, 50,308 
Feedback: negative, 165, 1 79, 19 7, 

294 
operational, 200 
positive, 231 
voltage, 199 

Ferrite, 51 
Fetch phase, 275 
Fiber optics, 251 
Fidelity, 289 



Field: electric, 47, 114 
electromagnetic, 224 
magnetic, 50,114,222 

Field effect transistor (FET), 158, 161 
Filament, 46, 121 
Filter: all-pass, 92 

crystal, 236 
high-pass, 83 
low-pass, 81 
notch, 84 
power supply, 128 
resonant, 84 

Filter circuit, 81,128,327 
Flicker noise, 220 
Flip-flop, 213,236, 267 
FORTRAN, 277 
Forward bias, 123, 169 
Forward transconductance, 159 
Forward voltage drop, 124 
Forward wave, 112 
Four-bit adder, 265 
Fourierseries,95,288,328 
Fourier transform, 102,310 
Four-quadrant multiplier, 213 
Four-terminal network, 33 
Frequency,63,283 

angular, 63 
beat, 298 
corner, 220 
fundamental, 95 
image, 294 
plasma, 286 
resonant, 80 
unity gain crossover, 217 

Frequency converter, 292 
Frequency divider, 237, 270 
Frequency domain, 75 
Frequency meter, 270 
Frequency modulation (FM), 289 
Frequency multiplier, 138,189,290 
Full-adder circuit, 264 
Full-wave rectifier, 126 
Function: delta, 104 

even, 98 
nonperiodic, 95 
odd,97 
periodic, 95 

Fundamental&equency,95 
Fuse, 7 

Gain-bandwidth product, 218 

Galvanometer, 13 
Gamma-ray, 284 
Gate: anode, 245 

FET, 158 
logic, 25 7 
SCR, 244 

Gaussian, 103,219 
Gauss's law, 47,308 
Ghost image, 300 
Gravitational constant, 306 
Gravity, 2,306 
Grid: control, 46, 143 

screen, 156 
suppressor, 157 

Grid leak resistor, 150 
Grid-plate transconductance, 146 
Ground, 1 

virtual, 200 
Grounded gate amplifier, 160 
Grounded grid amplifier, 153 
Ground loop, 222 
Ground plane antenna, 283 
Ground wave, 286 
Group velocity, 117 
Guide, light, 251 
Guide wavelength, 116 

h-parameter equivalent circuit, 174 
Half-adder circuit, 263 
Half power point, 80 
Half-wave rectifier, 126 
Half-wave symmetry, 97 
Hardware, 278 
Hardwired circuit, 273 
Harmonic, 96 
Harmonic oscillator, 64 
Hartley oscillator, 2 32 
Heat sink, 125 
Henry, 50, 307 
Hertz, 63, 307 
Hexadecimal number, 255 
High-pass filter, 83 
Holding current, 245 
Hole, 123 
Homogeneous solution, 5 7 
Horsepower, 307 
Hybrid h parameter, 175 
Hysteresis, 51, 240, 253 

Ideal transistor, 172 
Ignitor, 250 
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Ignitron, 249 
Image frequency, 294 
Image orthocon, 296 
Impedance, 7 6 

antenna, 284 
cathode follower, altered by, 153 
coaxial cable, 109 
common mode input, 217 
emitter follower, altered by, ~80 
input,217 
output, 217 
transformer, altered by, 88 
transmission line, altered by, 111 

Incandescent lamp, 321 
lnductance,50,308 

coaxial cable, 1 08 
equivalent, 54 
leakage, 88 
solenoid, 49 

Inductor, 49 
parallel, 53 
reactance, 7 2 
series, 52 

Infrared radiation, 284 
Input/Output (I/O), 27 5 
Insulated-gate FET (IGFET), 161 
Insulator, 2 
Integral, 314 
Integrated circuit (IC), 195, 261 
Integrator: active, 209 

passive, 84 
Interface, computer, 276 
Interference, 221 
Interlacing, 296 
Intermediate frequency (IF) amplifier, 

292 
Interpreter, 277 
Interpretive language, 277 
Interrupt, 276 
Inverse tangent, 7 4 
Inverting input, 197 
Ionosphere, 286 
Isolation, 221 

JK flip-flop, 268 
Johnson noise, 219 
Joule, 1 
Junction FET OFET), 158 

Kirchhoff's laws, 23 
l'H~pital's rule, 309 
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Laboratory experiments, 320 
Lamp: incandescent, 321 

neon, 241 
Language, computer, 277 
Laplace transform, 104 
Latch circuit, 213,236 
Law: Ampere's, 49,308 

Child's, 122 
Faraday's, 50, 308 
Gauss's, 47,308 
Kirchhoff's, 23 
Ohm's, 2, 77 

Leakage inductance, 88 
Length, electrical, 111 
Light: frequericy, 284 

velocity of, 110,306 
Light-activated SCR (LASCR), 250 
Light-emitting diode (LED), 250 
Light guide, 251 
Light-sensitive detector (LSD), 251 
Limiter, 295 
Linear circuit, 8, 23, 28 
Line driver, 153 
Liquid crystal display (LCD), 251 
Loading, 184, 258 
Load line, 145, 1 71 
Local oscillator, 29 2 
Logarithmic amplifier, 211, 229 
Logic, types compared, 261 
Logic gate, 257 
Long wave, 284 
Loop,23 

ground, 222 
Loop current, 25 
Loudspeaker, 93,292 
Low-pass filter, 81 
Luminance signal, 297 
Lumped circuit, 108 

Machine language, 276 
Magnetic field, 50, 114, 222 
Magnetic flux, 50, 308 
Magnetizing current, 87 
Master-slave flip-flop, 268 
Mathematical formulas, 309 
Maxwell's equations, 52,308 
Memory, 266,270,273 
Memory address, 270 
Memory address register (MAR), 274 
Memory data register (MDR), 274 
Mesh, 24 



Metal oxide semiconductor (MOS) FET, 
161 

Meter, 12, 321 
ac, 135 
accuracy, 15 
frequency,270 
linearity, 15 
sensitivity, 13 
shunt, 14 

Metric prefixes, 307 
Mho, 2 
Microcoding, 276 
Microcomputer, 278 
Micron, 307 
Microphonics, 224 
Microprocessor, 275,278 
Microwave, 113,284,298 
Miller effect, 165 
Minicomputer, 278 
Mixer, 292 
Mode, waveguide, 115 
Modem, 266 
Modulation, 287 
Modulator, 290 
Monostable multivibrator, 237 
MOS logic, 261 
Multigrid tube, 15 6 
Multimeter, 14 
Multiple-transistor amplifier, 184 
Multiplexing, 272 
Multiplier: analog, 213 

frequency,138,189,290 
voltage, 130 

Multivibrator, 236,268 

n-channel FET, 158 
n-type semiconductor, 123, 15 8, 169 
N AND gate, 260 
Negative feedback, 165,179,197, 

294 
Negative logic, 280 
Negative resistance, 227, 240 
Neon bulb, 241 
Network, 28. See also Circuit 
Node, 23 
Noise, 219 
Noise figure, 221 
Noise temperature, 221 
Noninverting input, 197 
Nonlinear operation, 211, 336 
Nonperiodic waveform, 95 

Nonsinusoidal circuit, 95 
Nonvolatile memory, 270 
NOR gate, 259 
Norton equivalent current, 32 
Norton equivalent resistance, 32 
Norton's theorem, 32 
NOT gate, 259 
Notch filter, 84 
npn transistor, 169 
Null condition, 38 
Null method, 37 
Number, base, 255 
Nyquist noise, 219 

Object code, 277 
Octal number, 255 
Octave, 82 
Odd function, 98 
Offset current, 217 
Offset voltage, 21 7 
Ohm, 2, 71, 76,307 
Ohmic region, 159 
Ohmmeter, 20 
Ohm's law, 2, 77 
One-shot multivibrator, 238 
Open circuit, 27 
Open circuit voltage, 30 
Open-loop bandwidth, 21 7 
Open-loop voltage gain, 195 
Operating point, 145 
Operational amplifier ( op amp), 195, 

335 
Operational feedback, 200 
Optics, fiber, 251 
Optocoupler, 251 
Optoelectronics, 250 
Optoisolator, 251 
OR gate, 258 
Orthicon, image, 296 
Oscillation, 63 
Oscillator, 231,238,241,243,270, 

290 
harmonic, 64 

Oscilloscope, 46,325 
Output impedance, 217 
Overdamped circuit, 60 

p-channel FET, 158 
p-type semiconductor, 123,158,169 
Parallel operation, 266 
Parallel regulator, 183 
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Parameters, hybrid h, 1 75 
Norton, 32 
R-, 36 
Thevenin, 29 

Partial current, 27 
Partial derivative, 309 
Particular solution, 5 7 
Pascal, 277 
Passive circuit, 30 
Peak reverse voltage (PRV), 125 
Pentode, 157 
Percentage modulation, 288 
Period, 63, 70 
Periodic waveform, 95 
Peripheral, computer, 275 
Permeability, 50, 306 
Permittivity, 4 7, 306 
Phase, 71 
Phase shifter, 92 
Phase-shift oscillator, 2 34 
Phase velocity, 110 
Phasor, 75 
Photocathode, 251,296 
Photoconductor, 250 
Photo Darlington transistor, 250 
Photodetector, 250 
Photodiode, 250 
PHOTOFET, 250 
Photoflash, 248 
Photomultiplier tube, 251,296 
Phototransistor, 250 
Photovoltaic cell, 250 
Physical constants, 306 
Pi-network, 35 
Piezoelectric effect, 224, 234 
Pinch-off region, 159 
Plan position indicator (PPI), 298 
Planck's constant, 306 
Plasma, 286 
Plasma frequency, 286 
Plate, 121, 143 
Plate characteristic, 143 
Plate dissipation power, 145 
Plate resistance, 146 
pn junction diode, 123,250 
pnp transistor, 170 
Point contact diode, 138 
Polarization, antenna, 285 
Polarized capacitor, 49 
Port, 34 
Positive feedback, 231 
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Potential, 2. See also Voltage 
Potentiometer, 4 
Potentiometer circuit, 42 
Power, 4 

apparent, 78 
collector dissipation, 1 71 
maximum transfer, 41, 88, 113 
plate dissipation, 145 
reflected, 113 

Power factor, 78 
Power spectrum, 103 
Power supply, 4,130,246 

SCR, 246 
current limiting, 215 
filter, 128 
regulation, 130,183,213 
ripple, 128 

Primary winding, 87 
Priority arbitration, 276 
Problem answers, 316 
Product detector, 290 
Program, computer, 27 3 
Program counter (PC), 275 
Programmable ROM (PROM), 266 
Pulse, square, 104 
Pulsed radar, 298 
Pulser circuit, 24 7 
Pump, charge, 130 
Push-pull amplifier, 188 

Q-multiplier, 236 
Quadratic equation, 309 ' 
Quality factor (Q), 63, 80, 294 
Quartz crystal, 234 

R-parameter, 36 
Radar, 298 
Radian, 307 
Radiation: electromagnetic, 224, 283 

gamma-, 284 
infrared, 284 
ultraviolet, 284 
X-, 284 

Radiation resistance, 285 
Radio frequency (RF) amplifier, 293 
Radio receiver, 291 
Radio transmitter, 290 
Random-access memory (RAM), 270,273 
Reactance, 71 
Read,270 
Read-only memory (ROM), 266 



Receiver, radio, 291 
Reciprocity theorem, 33 
Rectifier, 126,331 

silicon-controlled, 244 
Reference diode, 13 6 
References, 303 
Reflected wave, 112,286,298 
Register, 270,274 
Regulation, 130 
Regulator: op amp, 213 

transistor, 183 
Zener, 137 

Relative permeability, 51 
Relative permittivity, 49 
Relaxation oscillator, 241, 243 
Relay, 46 
Remanence, 51 
Resistance, 2, 308 

bridge measurement, 37 
dynamic,173 
equivalent, 8 
internal, 5, 215 
negative, 227 
Norton equivalent, 32 
plate, 146 
radiation, 285 
source, 5 
Thevenin equivalent, 29 

Resistor, 3 
bleeder, 130 
color code, 3 
grid leak, 150 
parallel, 8 
power dissipated, 4 
series, 9 
temperature dependence, 39 
variable, 3 

Resistor-transistor logic (RTL), 261 
Resonant circuit, 58, 79 
Resonant filter, 84 
Resonant frequency, 80 
Retrace, 296 
Reverse bias, 123, 170 
Reverse current, 124 
Richardson's equation, 122 
Ripple, 128 
Root mean square (rms), 70,309 
RS flip-flop, 267 
Runaway, thermal, 178 

S-meter, 295 

Saturation, 145 
Schmitt trigger, 238 
Screen grid, 156 
Secondary electron, 157,251,296 
Secondary winding, 87 
Selectivity, 291 
Semiconductor, 123 
Serial operation, 266 
Series: Fourier, 95, 288, 328 

Taylor, 310 
Series regulator, 183 
Seven-segment digital display, 272 
Shadow mask, 297 
Shift register, 270 
Short circuit current, 29 
Short circuit, 27 
Short wave, 284 
Short-circuit protection, 215 
Shot noise, 220 
Shunt regulator, 183 
Shunt, 14 

Ayrton, 20 
meter, 14 

Sideband, 288 
Siemens, 2, 71, 77, 307 
Sign bit, 257 
Signal-to-noise ratio, 220 
Silicon-controlled rectifier {SCR), 

244 
Silicon-controlled switch {SGS), 

245 
Single sideband (SSB) modulation, 

290 
Single-quadrant multiplier, 213 
Sinusoidal circuit, 69 
Sky wave, 286 
Slew rate, 218 
Software, 278 
Solar cell, 250 
Solenoid, 49 
Source, 4, 158 

dependent, 147 
Source code, 277 
Source follower amplifier, 160 
Space charge limit, 122 
Speaker, 93,292 
Spectrum analyzer, 106 
Square pulse, 104 
Square wave, 96 
Squelch circuit, 295 
Standard cell, 42 
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Standing wave, 112 
Standing wave ratio (SWR), 112 
Static memory, 270 
Stereophonic broadcast, 29 5 
Subcarrier, 295,297 
Summing point, 207 
Superconductor, 2 
Superheterodyne circuit, 292 
Superposition theorem, 26 
Suppressor, transient, 8 
Suppressor grid, 157 
Surge current, 129 
Susceptance, 71 
Switch, 45 

silicon controlled, 245 
Symmetry: circuit, 12 
• half-wave, 97 
Maxwell's equations, 52 

Sync pulse, 297 

T-network equivalent circuit, 173 
T-network, 35 
T-pad, 42 
Tank circuit, 189 
Taper,4 
Taylor series, 310 
Television (TV), 296 
Terminal, 3 
Tetrode, 156 
Theorem: Boolean algebra, 262 

De Morgan's, 262 
Norton's, 32 
reciprocity, 33 
superposition, 26 
Thevenin 's, 28 

Thermal noise, 219 
Thermal runaway, 1 78 
Thermistor, 39 
Thevenin equivalent resistance, 29 
Thevenin equivalent voltage, 29 
Thevenin 's theorem, 28 
Three-dB point, 82 
Three-terminal network, 34 
Thyratron, 249 
Thyristor, 244 
Thyritc, 8 
Time constant, 56 
Time domain, 72 
Transconductance,146,159 
Transform: Fourier, 102,310 

Laplace, l 04 
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Transformer, 86 
Transient circuit, 45, 326 
Transient suppressor, 8 
Transistor amplifiers compared, 182 
Transistor linear equivalent circuit, 

172 
Transistor: beta, 171 

bipolar, 169,332 
field effect, 158, 332 
ideal, 172 
photo Darlington, 250 
unijunction, 242 

Transistor-transistor logic (TIL), 261 
Transistor voltage regulator, 183 
Translator, 266 
Transmission line, 108 
Transmitter, radio, 290 
Transresistance, 1 7 3, 178 
Transverse wave, 115 
Triac,246 
Trigger, Schmitt, 238 
Trigger circuit, 46 
Trigonometric relations, 311 
Triode, 143 
Triode linear equivalent circuit, 146 
Tristate logic, 275 
Truth table, 257 
Tube: cathode ray, 46, 297 

photomultiplier, 251,296 
vacuum, 121 

Tunnel diode, 240 
Twin-tee, 93 
Two's complement arithmetic, 257 
Two-terminal network, 28 

Ultraviolet radiation, 284 
Underdamped circuit, 62 
Unijunction transistor (UJT), 242 
Unipolar device, 169 
Units, 307 
Unity gain crossover frequency, 

217 

Vacuum diode, 121 
Vacuum pentode, 157 
Vacuum tetrode, 156 
Vacuum triode, 143 
Vacuum tube, 143 
Vacuum tube amplifiers compared, 156 
Vacuum tube voltmeter (V1VM), 14 
Varactor, 137,236,290 



Variable-frequency oscillator (VFO), 236 
Varicap diode, 137,236,290 
Velocity: group, 11 7 

of light, 110,306 
phase, 110 

Vestigial sideband modulation, 297 
Video, 296 
Vidicon, 296 
Virtual ground, 200 
Volatile memory, 270 
Volt-ohm-milliammeter (VOM), 14 
Voltage, 1,307, 308 

breakdown, 49, 136 
offset, 217 
open circuit, 30 
Thevenin equivalent, 29 

Voltage controlled oscillator (VCO), 
236 

Voltage divider, 9 
Voltage doubler, 130 
Voltage feedback, 199 
Voltage follower, 206 
Voltage multiplier, 130 
Voltage regulator, 137, 183, 213 
Voltage standing wave ratio (VSWR), 

112 

Voltmeter, 12 
digital, 14, 271 
vacuum tube, 14 

Watt, 4,307 
Wave: electromagnetic, 115,283 

reflected, 112, 286, 298 
square, 96 
standing, 112 
transverse, 115 

Waveguide, 113, 287 
Wavelength, 283 

guide, 116 
Wheatstone bridge, 23, 25, 31, 37,324 
White noise, 219 
Wien bridge, 93 
Word, 274 
Work function, 121,251 
Write, 270 

X-ray, 284 

Y -connection, 34 

Zener diode, 136,329 
Zero-crossing detector, 213 

Index 349 


	Blank Page



