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a small dimensionful coupling to the Higgs. This small coupling will help set the weak scale, and will be technically
natural, making the weak scale technically natural and solving the hierarchy problem.

We add to the standard model Lagrangian the following terms:

(�M2 + g�)|h|2 + V (g�) +
1

32⇡2

�

f
G̃µ⌫Gµ⌫ (1)

where M is the cuto↵ of the theory (where SM loops are cuto↵), h is the Higgs doublet, Gµ⌫ is the QCD field strength
(and G̃µ⌫ = ✏µ⌫↵�G↵�), g is our dimensionful coupling, and we have neglected order one numbers. We have set the
mass of the Higgs to be at the cuto↵ M so that it is natural. The field � is like the QCD axion, but can take on field
values much larger than f . However, despite its non-compact nature it has all the properties of the QCD axion with
couplings set by f . Setting g ! 0, the Lagrangian has a shift symmetry � ! �+2⇡f (broken from a continuous shift
symmetry by non-perturbative QCD e↵ects). Thus, g can be treated as a spurion that breaks this symmetry entirely.
This coupling can generate small potential terms for �, and we take the potential with technically natural values by
expanding in powers of g�. Non-perturbative e↵ects of QCD produce an additional potential for �, satisfying the
discrete shift symmetry. Below the QCD scale, our potential becomes

(�M2 + g�)|h|2 +
�
gM2� + g2�2 + · · · � + ⇤4 cos(�/f) (2)

where the ellipsis represents terms higher order in g�/M2, and thus we take the range of validity for � in this e↵ective
field theory to be � . M2/g. We have approximated the periodic potential generated by QCD as a cosine, but in fact
the precise form will not a↵ect our results. Of course ⇤ is very roughly set by QCD, but with important corrections
that we discuss below. Both g and ⇤ break symmetries and it is technically natural for them to be much smaller than
the cuto↵. The parameters g and ⇤ are responsible for the smallness of the weak scale. This model plus inflation
solves the hierarchy problem.
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FIG. 1: Here is a characterization of the �’s potential in the region where the barriers begin to become important. This is the
one-dimensional slice in the field space after the Higgs is integrated out, e↵ectively setting it to its minimum. To the left, the
Higgs vev is essentially zero, and is O(mW) when the barriers become visible. The density of barriers are greatly reduced for
clarity.

We will now examine the dynamics of this model in the early universe. We take an initial value for � such that the
e↵ective mass-squared of the Higgs, m2

h, is positive. During inflation, � will slow-roll, thereby scanning the physical
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Relaxion

‣ Stopping mechanism: barrier depends on Higgs vev

‣ Tension with strong CP problem 

‣ Non-trivial to have barrier height larger than v 


‣ Dissipation mechanism: Hubble

‣ Super Planckian field excursions

‣ Requires many e-foldings

‣ Scanning must happen during inflation



Particle production: kill 2 birds with 1 stone

Stopping mechanism

Friction



Outline

‣ Basic mechanism

‣ Implementing particle production relaxion in the SM

‣ Relaxing with particle production:

‣ During inflation

‣ After inflation



Basic Mechanism

‣ Toy Model: Abelian Higgs + relaxion (static universe)
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Basic Mechanism

‣ Toy Model: Abelian Higgs + relaxion (static universe)

‣ EOM for gauge fields
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Basic Mechanism

‣ Tachyonic modes for: �̇

f
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Basic Mechanism
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Basic Mechanism
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‣ Scans until


‣ When

hhi ⌧ ⇤
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f
& hhi ⇠ O(100GeV)



Finite Temperature

Relaxion kinetic energy transferred to gauge fields


 

‣ Gauge symmetry restoration 


‣ Plasma effects (screening)

T ⇠
q

�̇

mA ⇠ 0

mD ⇠ T



Finite Temperature
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‣  


‣ Tachyonic mode for A:


‣ Temperature dilutes tachyon time-scale:

Quick Summary
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Can it work in the real world?



Particle Production relaxion in SM
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Particle Production relaxion in SM

‣ Relaxion does not couple to the photon!
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Relaxion setup

‣ Sub planckian:


‣ Many minima: 


‣ Fine scanning: 

µ4
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Relaxion setup
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‣ “Self-tune” to Weak Scale

�̇/f ⇠ v = 246 GeV

‣ Need to ensure energy loss is efficient
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Energy Loss

‣ Not overshooting v
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Energy Loss

‣ Not overshooting v
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Possible realization



Initial Conditions

‣ Take this inflationary initial conditions
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Initial Conditions

‣ Take this inflationary initial conditions
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Relaxing during inflation
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Relaxing during inflation
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Relaxing during inflation
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⇤ . 105 GeV
7

⇤ H ✏ Ne f f 0 ⇤c

Values in GeV 105 10�5 10�6 102 3⇥ 106 109 1.5⇥ 104

TABLE II: A sample point for relaxation after inflation which saturates many of the inequalities. Rather than choosing a data
point that allows for the highest UV cuto↵ possible, we chose a data point which has only 100 e-foldings of inflation.

energy from the linear slope to compensate for Hubble friction. In fact, one can show that under certain conditions
the relaxion approaches an e↵ective slow-roll solution at long times characterized by

�̇ ⇠ ✏⇤2

3H
+ �(t) (30)

Where � is a small oscillatory contribution.
Using Eq. 30 and the equation of motion for �, one can show that there are three conditions that must be satisfied

to get to this approximately slow roll solution. These conditions are

• Start with su�ciently large kinetic energy to go over the barriers5: �̇
0

& ⇤2

c .

• Slow-roll velocity must be large enough to go over barriers: ✏⇤2

3H & ⇤2

c .

• Time scale to go over one period of the cosine potential must be fast compared to Hubble: H <
q

✏⇤2

f 0 .

One can show, see Eq. 14, that the second condition is always stronger than the third. If these conditions are satisfied,
the relaxion evolution approaches the almost slow roll behavior of Eq. 30 quickly.

The kinetic energy of � is always below the cuto↵, since ✏ < H in this scenario. The number of e-folds required to
e↵ectively scan the Higgs mass is given by

Ne ⇠
✓
H

✏

◆
2

(31)

If inflation ends before the relaxion finishes scanning the Higgs mass, the scanning process can still continue after
inflation as discussed in the next section. There is an upper bound on the number of e-foldings required to finish
scanning which comes from using that f & ⇤ and �̇ ⇠ fv. This gives us the bound that

Ne .
⇤2

v2
(32)

An additional conservative constraint is that the time scale for the tachyon is faster than Hubble. This conservative
assumption means that we can use the previous results without worrying about the temperature getting diluted away
and without taking into account Hubble friction. This gives the constraint that

⇤6

c

f3�̇
& H (33)

This constraint is much weaker than any of the others present.
Once the relaxion reaches the quasi slow roll behavior, the scanning mechanism happens as was described in the

beginning of Sec. III, with �̇ = ✏⇤2/3H. As in the almost instantaneous scanning of the previous section, the main
constraint in this scenario comes from not overshooting the correct Higgs mass, given the large velocity of �. Using
Eq. 24 and Eq. 32 we find

⇤4 . Mpv
3 ⇤ . 106 GeV (34)

5 One can relax this condition if there is a coincidence of scales ⇤4
c ⇠ ✏⇤2f 0, in which case a generic point in � space will roll over the

barriers even if it started at rest.
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*but before SM reheats



Scanning after inflation
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‣ Scanning very fast once:
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Scanning after inflation
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MP
< ✏ <

v5µ4
s

T 8 & �̇ ⇠ ⇤2

⇤10 . v5µ4
sMP

⇤ ⇠ µs ⇤ < 40 TeV
8

⇤ ✏ f f 0 ⇤c

Values in GeV 104 10�10 106 1014 103

TABLE III: A sample point for relaxation after inflation, which saturates many of the inequalities.
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V

FIG. 1: A plot of the potential for � when Eq. 35 is satisfied. By eye, one can see that a generic starting point on the potential
can result in � traveling past all of the subsequent minima.

C. Relaxation after inflation

Relaxation can also occur after inflation. In order for relaxation to occur after inflation, we need our initial
conditions to be obtainable in reasonable models of inflation. After inflation and before reheating, one naturally has
T = 0. We focus on cases in which the Higgs mass is at least of order Hubble during inflation, either because Hubble
is small compared to the cuto↵ as in the previous sections, or because the renormalizable hh†R coupling is O(1). This
causes the Higgs to relax to the minimum of its potential during inflation. Thus, the only initial condition that is not
satisfied is the large � velocity.

The large � velocity as an initial condition was needed in order for � to scan many vacua. As discussed in the
previous section, the relaxion could exit inflation with a steady state velocity that allows for � to go over the bumps,
see Eq. 30. In this case, if inflation ends before the relaxion had time to scan the Higgs mass, one has the right initial
conditions to finish the scan after inflation.

There is another possibility, where a large � initial velocity is not needed in order to scan many Higgs vacua. As
shown in Fig. 1, if

✏⇤2f 0 ⇠ ⇤4

c (35)

then it is possible that a generic starting point will roll past the first minimum and slowly gather momentum as it
rolls past many minima. Thus a large initial �̇ is not needed as long as there is a coincidence of scales shown in Eq. 35.
If the linear term is too large, then there are no wiggles on top the linear term to stop the �. If the linear term is
too small, then a generic starting point won’t have enough kinetic energy to roll past the first minimum. Because
the friction term scales as H ⇠ 1/t, � will roll a non-trivial amount between the time right after inflation to when �
starts to fast roll past the various minima. Due to this e↵ect, numerically one finds that one needs these scales to be
within O(10%) of each other.

Regardless of whether or not � started with a small initial pseudo-slow roll velocity or not, � is not able to scan
its entire field range until H ⇠ ✏ simply due to not having enough time. Since � gains O(⇤4) kinetic energy while
scanning its potential, �̇ very quickly approaches ⇤2. Now the story proceeds as mentioned before. � overshoots all
of its minima until h ⇠ 100 GeV and particle production kicks in. After losing most of its kinetic energy into particle
production, � gets stuck in the nearest vacua. The only di↵erence from before is that H ⇠ ✏ rather than H > ✏ or
H < ✏. As before, the largest UV cuto↵ that can be reached with this approach is ⇤ . 5⇥ 104 GeV.

After � finds the correct Higgs vacuum, reheating can occur. Because H ⇠ ✏ > ⇤2/Mp, most of the energy density
in the universe is still in the inflaton. The only constraint on reheating is that it occurs after � finds the correct Higgs
vacuum, otherwise the relaxion would have scanned the thermal Higgs mass instead of the zero temperature mass.

Another possibility is if the inflaton decays into dark sector radiation while the relaxion particle production reheats
the visible sector. Because initially the dark sector would have more energy than the visible sector, a period of matter
domination would need to occur in the visible sector, possibly giving baryogenesis at the same time. This would allow
the dark sector radiation to red shift away to acceptably small levels.



Conlusions

‣ Particle production is an efficient mechanism to both 

dissipate energy and to select small Higgs mass


‣ Qualitatively new approach to relaxion


‣ It can work without super planckian field excursions 

and with normal amounts of inflation


‣ The scanning can happen after inflation


