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Physics of particle acceleration: a cornerstone of high-energy multi-messenger astrophysics

— ¥ — ¥ — CR connection: acceleration of ions = cosmic rays, photons and neutrinos [e.g. Waxman + Bahcall 97, 98]

— what are the accelerating machine(s) and the acceleration process(es) at work ?!
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Stochastic Fermi acceleration on all scales: from large-scale jets to the blazar zone

— in large-scale jets: continuous acceleration in turbulent flows invoked to explain the non-thermal emission seen
on scales exceeding the cooling length scale of high-energy electrons... Refs.: e.g. Liu+17, Rieger 19, Webb+18,20

— in blazars (radio-galaxies with jet head-on to observer): characteristic double-hump spectrum (synchrotron —
inverse Compton) from non-thermal electrons... acceleration physics: reconnection, turbulence, shocks?
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Stochastic Fermi acceleration on all scales: down to black hole surroundings

— Importance of microphysics: radiation of black hole flows shaped by the physics of dissipation in collisionless turbulence...

— Flares seen in NIR and X around SgrA*: suggest powerlaw extension with slope ~ — 3 ... — 2, + synchrotron cooling ...
= key scenarios: reconnection (at large magnetization), or turbulence (if large fluctuations)?
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Note: EHT image well reconstructed by GRMHD simulations... which however use recipes to describe particle heating + acceleration!



Stochastic Fermi acceleration as an origin for the high-energy neutrinos from NGC1068

— |ce Cube 22: a clear excess of high-energy (1-10 TeV) neutrinos from nearby AGN NGC7068
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— interpretation: e.g. [Murase+], particle acceleration in corona of accretion disk + neutrino production in p — y process
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Numerical studies of particle acceleration in collisionless magnetized turbulence

— a non-linear, multi-scale problem:

... e.g. in turbulence: a fully nonlinear interplay between particles and e.m. fields... (
= HPC numerical simulations using « particle-in-cell » (PIC) method o

— numerical experiments of particle acceleration in magnetized, collisionless turbulence:

0.1

... recent breakthrough results in (trans- and fully-) relativistic turbulence?
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Refs: 1. Zhdankin+17,18,20,... Wong+ 19, Comisso+Sironi 18, 19, Nattila + Beloborodov 20, ... Groselj+23 (+ many MHD sims)

2. discussion in M.L. + Malkov 20




Challenges in modeling particle acceleration from first-principles

— a challenge of scales:
... microscopic acceleration scales: ... gyroradius: rg ~3x 10%cm Egev Bg'
... macroscopic source scales: ..e.g. blazarzone R ~ 10'°cm
= a strong limitation for applicability of PIC simulations: 1 0003 ~ 2 orders of magnitude in dynamic range..

... in practice: phenomenology (macro — micro) vs theory (micro — macro)

— a need for microscopic recipes to model particle acceleration in complex, random velocity flows:

— multi-stage acceleration:

... scattering m.f.p. increases with
energy = particle probes different
velocity flows as energy increases

... from non-ideal/reconnection —

, turbulence — sheared velocity flows
© C. Demidem, rel. MHD turb.




Particle acceleration in magnetized,
astrophysical turbulent plasmas

Quitline:
1. General motivations and context
2. A colourized picture for stochastic Fermi acceleration:
— contribution of non-resonant acceleration supported by numerical simulations

— physics of acceleration shaped by the intermittency of turbulence

3. Discussion + remarks toward phenomenology



The Fermi picture for particle acceleration (1949, 1954)

— assumption: perfectly conducting magnetized plasma composed of moving scattering centers...
particle acceleration on motional electric fields E = —vg X B/c

— sequence of discrete interactions with point-like scattering
centers... in each scattering center rest frame: elastic collision
(ideal MHD = E = 0 in rest frame)

Fermi type A reflection of a cosmic-ray particle

— kinematics: two-body collision, isotropic + elastic scattering in
1 —p scattering center rest frame
i = Ap > 0 for head-on, Ap < 0 tail-on

F1G. 1. Type B reflection of a cosmic-ray particle.

— stochastic acceleration (diffusion in momentum space)...

VE e.g. Fokker-Planck equation:
vE 0 9 0
1
—f(p,t) = = — |p?> D,, — f(p, t
2 2
VE momentum diffusion coefficient: D, ~ U_SJ P
Vg & tint

— an issue: implementing stochastic acceleration in turbulence?



Generalized Fermi acceleration: implementation in a large-scale, random velocity flow

— what matters is the shear of the velocity flow d,uzP:

ideal MHD conditions: E vanishes in (comoving) frame movingat ug < E X B

= no acceleration in absence of shear...

... in original Fermi scenario: ... in turbulent flow:
shear < difference in velocity of scattering centers 0, Uz’ D compression, shear, vorticity...
with contributions from all scales of cascade...

— follow the particle momentum in the (non-inertial) frame where E = 0 ®:

in that frame, no electric field...
= momentum variation « non-inertial forces characterized by velocity shear of uy

.. ~instantaneous Lorentz transform to non-inertial frame where interaction with e.m. field is elastic

(+ mandatory in relativistic settings)

Refs: 1. M.L. 19, 21; see also previous works by Webb 85, 89



Generalized Fermi acceleration: interaction with large scale modes
v 1

— what (also) matters is how a particle experiences different scales:

. €.8.: forr, /€. — 0 adiabatic limit (MHD)
forry /€, — oo decoupling from turbulence

power spectrum

v

.. for large scale modes: k (mode wavenumber) < A3k (scattering m.f.p.) < rg_l (gyroradius)
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= inefficient acceleration in comoving frame...
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= “shielding” from large scale modes k << A3k

Refs: 1. Bykov+Toptygin 83, Ptuskin 88, ..., M.L. 19, Rieger 20 + refs, Demidem+20



Generalized Fermi acceleration: interaction with intermediate scale modes

— dominant contribution: intermediate-scale modes with A;1 < k < gyroradius rg‘l

... transport ~ gyration around local magnetic field lines, i.e. coarse-grained on scale 7,

/
— model?: dy — Yuag-b —u,>0O —lu’ ‘0
dr T aE [ B

energy change effective gravity velocity shear compression transverse

/0,

<+

in local comoving along field line to field line

frame along field line

— 1% O, = af __ bab[)’ ou
u»"‘ =p’-b/me A = Ug Oy UE ®|| = babﬁaauﬁ,ﬁ 1 (77 ' ) alEp
- [ 2 _ ’2} 1/2 [Fermi type-B] [Ferm|.typ.e-A]
B [field line curvature] [magnetic mirrors]
— remarks:

..terms ag - B, © and O, are random forces: = random walk in momentum space
= provides the required generalization of Fermi model to turbulent modes...

... average over gyro-orbit: ~drift-kinetic theory in magnetic field coarse-grained on r; scales (energy-dependent!)

Refs: 1. ML19 2. ML21 (assumes gyroradius << coherence scale of turbulence)



Non-resonant Fermi-type acceleration in velocity gradients: distinctive features

. . . . 2
— acceleration scales with gradient of magnetic energy t = 4.32 ¢ /c o 200
density
... unlike quasi-linear theory: < magnetic energy density 1250
. . . . 19200
— in each site, particle gains or loses energy regularly,

according to sign of gradient

150
... unlike Fermi: head-on vs tail-on

100

— acceleration sites occupy only a small filling fraction of the
total volume

50

= direct connection to intermittency

... unlike quasi-linear theory: homogeneous statistics -1 -0.5 0 0.5 1
2/l

~3-5 x thermal

~20-40 x thermal

© V. Bresci, L. Gremillet, M. L.: 2D PIC, driven turb., e*e’, 10000%, 6B/B~ 3,0~ 1



Non-resonant Fermi-type acceleration: comparison to numerical experiments

2D PIC simulation?: forced and decaying, 10 000%, ee*, 6B/B~ 3,0~ 1 3D PIC simulation?: forced, 1 0803, ee*,6B/B~ 3,0~ 1
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3D MHD simulation?: forced, 1 024°x 1024,< B >=0,v,/c = 0.4 + synthetic turbulence3: sum of plane waves (Alfvén
or fast magnetosonic)

mag. energy dens.

© Eyink+13 Note: magnetization parameter o =
plasma energy dens.

Refs: 1. V. Bresci, ML, L. Gremillet, L. Comisso, L. Sironi, C. Demidem 22 2. JHU database 3. Demidem+ 20



Non-resonant Fermi-type acceleration: comparison to numerical experiments

d~’ , ;2 1,9 uj =p'-b/me 1
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— model: o = YU GE b ) O QuL O, o, = [uz_ulz]
— test!: for each particle history in a simulation, reconstruct y’(t) using above model and velocity

gradients measured in the simulation at x, t...
... then measure degree of correlation rp,.,, between the observed and reconstructed y’(t)

PIC simulation: 3D, 1 0803, ee*, B/B~ 3,0 ~ 1 PIC simulation: 2D, 10 000?, ee*,6B/B~ 3,0~ 1 driven incompress. MHD?, 3D, 10243, v, = 0.4c
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= model captures the dominant contribution to particle energization

+ note: in wave turbulence w/ resonant wave-particle interactions, no apparent correlation seen (as expected)



Powerlaw spectra: shaped by the intermittency of turbulence

— statistics of the random force (~velocity gradient):
... velocity gradients become increasingly non-Gaussian (intermittent) at
small scales (< small gyroradii), taking large values in localized regions...

y/le

— particle acceleration:
... some particles interact frequently with strong scattering centers,
some not at all, even over long timescales ...
= anomalous transport! + powerlaws in momentum

— transport equation for distribution function?:
... failure of Fokker-Planck3: noise is non-Gaussian + non-white noise...

... derivation of a new transport equation:

pdf(momentum jump) ~ intermittency statistics 3 localized, strong

negative gradient

... transport equation produces powerlaws, accounts for particle spectra
from time-dependent tracking in MHD simulation

Refs.: 1. Trotta+19, ML + Malkov 20, Maiti+21, Pezzi+22 2. ML 22 3. see however Wong+19, Zhdankin+20



A transport equation for non-resonant particle acceleration in intermittent turbulence

— note: random forces (ag - b, 9y, ®,) ~ I} # Gaussian white noise
= transport equation deviates from Fokker-Planck...
intermittency ~ origin of powerlaw

— scheme: random force I (coarse-grained on scale [ ~ 1), p.d.f. Prob(I})

= momentum p jumps on timescale ~ [/c by

Alnp ~ I't At = Prob. (Alnp) ~ Prob. (I'})

N

+o00 / /
— kinetic equation?: Oty = / dp’ » plp )np, (t) — @ (lp) np(t)
\ 0 by tp
dN
ny, = d_p tp ~ l/C

... hope: gain fundamental knowledge on Prob(I’) to model
acceleration (e.g. intermittency studies?)
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Accelerated particle spectra from phase space transport in intermittent turbulence

— comparison to numerical data:

integrate kinetic equation and compare solution (Green function) to distribution
measured in MHD 10243 simulation by time-dependent particle tracking...
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= transport equation can reproduce time- and energy- dependent Green functions... + capture powerlaw spectra

... in sub-relativistic regime: dN /dp < p~

4

and acceleration timescale ~ £./v;

[see also Comisso + Sironi 22]




Colourizing the Fermi picture...
— the original picture: stochastic acceleration as Brownian motion...

Brownian motion <= Fokker-Planck description,
characterized by one diffusion coefficient D, (+advection)

one diffusion coefficient D, does not describe spectra...
... particle acceleration dominated by intermittency...

... spectra exhibit powerlaw shapes...

... dominant acceleration: field line curvature...



Summary + discussion

— Implementing (non-resonant) Fermi-type acceleration in a realistic turbulence setting:

... track particle history in frame in which E=0...
... particles are accelerated in regions of strong velocity gradients

— Test on PIC + MHD simulations: the Fermi picture is well alive
... model captures bulk of energization in supra-thermal powerlaw region... atc = 0.1

— Deriving a transport equation for Fermi acceleration:

... velocity gradients are non-Gaussian on small scales: intermittency rules...
... a multi-fractal model of gradient statistics, and a transport equation... —

/0,

<+

— Some limitations:
... extrapolation to small spatial length scales ?
... role of turbulence anisotropy, particle trapping in structures?

— Some perspectives:
.. better understanding the role and nature of intermittency wrt acceleration...
.. consequences for phenomenology: flares etc...
.. generalization to transport: e.q., role of intermittent magnetic mirrors...
.. recipes for incorporating particle phase space transport in large-scale numerical simulations?



Statistics of turbulence intermittency

- intermittent statistics: e.g. (|du?|) oc I*"but {(|dw;|™) ¢ 1" (n > 2)

10[] -
... structure functions: S, = (|6w|?) = i
10*
(,, inone-to-one correspondence with p.d.f. of du; r
10°
10°
. . . - s 102 F
— intermittent statistics of random forces: £
14 “standard” model for |
. Elsasser fields® | ... la o0t
... more extended, broader powerlaw tails than “standard” ,
. . .. . 10° - ——
statistics for Elsasser fields 6z, = 6v; + 6b, o0l » /6. —098 -
51 | p.d.f. random forces
. . = 10
... p.d.f. of random forces connected to field line curvature, 2 - ..
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Refs.: 1.e.g. She+Levéque 94, Dubrulle 94,..., Miller+ 03,..., Chandran+15 2. Yang+19, Yuen+Lazarian20 3. Schekochihin+01 4. Zhdankin 20



Stochastic Fermi acceleration as an origin for the high-energy neutrinos from NGC 1068

— Ice Cube 22: a clear excess of high-energy (1-10 TeV) neutrinos from nearby AGN NGC 1068...
... a possible scenario: stochastic acceleration in turbulent corona + p — y neutrino production!

v
Comptonized X rays
CR-induced cascade ;7% ‘5;
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— model: integrate spectra through transport eqn...
... including relevant energy losses?!

= p acceleration to >100TeV possible for
turbulent Alfvén velocity vy, = 0.1c
... +shear contribution??

Refs.: 1. e.g. Murase 22 + refs.

edL/de

o g black hole §
disk ;“ 5& ‘Ssv‘
/ \ Ref.: Murase+Stecker 22

[ NGC 1068

TXS 0506+056 —4— Diffuse flux from vev, (17)

Diffuse flux from v, (25)

107
- ——
§ | e
P .
§ 107 4 3 T
g R
r?’ 10713 o
frig == Tl
103 1;)4 165 1loa 107 Ref.: Ice Cube 22
E, [GeV]
103 F e ——ey
E---- 1, vy =0.06c
[ —— p, va=006¢
2k =" vy =0.12¢
— p, vpa=0.12¢ ’f.ﬁ\
—_— vy =024¢ E \‘
#
—_—p, vy =0.24¢ ;f
10' | . J ‘\
[ ' ! \
7 “
L ” _ ‘
100 1 p ’l \ \‘
S e -qf £ Y ¥
L - - ” “‘\,{! ‘\ 1
-~ pd A 1 \
]n'l F I’ /, \ \\ |
b -~ I, Y
i 7 /’ / h
’;’ ’! ’ \‘ .
-~ # ’ \
102 | -~ s ," % v )
-~ ’/’ I, Y \‘ !
1
4 V. \ \ ‘\
rd Y 1} 0
I ’ \ \
]0-3 sl il .4./.....1 il el L " .‘.l MR WP M
100 10! 10 10° 104 10° 106 107
e [GeV]

2. M.L. + Rieger, in prep.



Does intermittency affect spatial transport?

— anomalous spatial transport by scattering on intermittent structures?

— in absence of resonant wave-particle interactions: scattering < magnetic mirrors?

p.d.f. of magnetic mirror force

= subject to intermittency... 10° B

107"

= expect spatial anomalous diffusion on scales ~ £_.:

... superdiffusion for some particles, %’ 10
... trapping for others... seen in some simulations3 =

= 1’
= phenomenological consequences for e.g. pulsar halos, 104 L

cosmic-ray anisotropies at high energies etc.?
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— note: for low-energy cosmic rays, no intermittency effect because of very large travel time...

Refs.: 1. e.g. Chandran 00, Malyshkin + Kulsrud 01, ..., Xu+Lazarian 20 3. Trotta+20, Maiti+21, Pezzi+22, ...
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Consequence of intermittency for radiative signatures

— intermittency and high-energy flares: particle distribution highly anisotropic with spectral shape non-uniform in space
close to the maximal energy?...

t=0.1%/c t=01%/c

p(vC) vC t=0.14/c
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10% 4

102 . . . : ‘ ’ 00

10° 10! 10? 10} 0* 10° 10? 10 10° 10¢ 10° 0 500 1000 1500 2000 2500 3000 3500
tw!
.

synchrotron map at cut-off v, pdN/dpvsp vF, vsv light curve at cut-off v,

— important phenomenological consequences for time-dependent flaring sources at high energies (e.g. blazars, GRBs etc.)
— a potential realization of [Bykov+13] scenario for Crab flares: injection of high-energy pairs in turbulence?

— note: in relativistic turbulence ¢ = 1, acceleration timescale t .. < 1/uz x 1/0 !

Refs.: 1. Zhdankin+19, 20, Nattila + Beloborodov 20, Comisso+Sironi 21



Summary and perspectives

— Implementing (non-resonant) Fermi-type acceleration in a realistic HEPRO VIII .- 4
turbulence setting: High Energy Phenomena in Relativistic Outflows VIII

... track particle history in frame in which E=0... Paris, 23-26 October 2023

... particles are accelerated in regions of strong velocity gradients &

Institut d’Astrophysique de Paris

— Test on PIC + MHD simulations: the Fermi picture is well alive Observatoire de Paris

... model captures bulk of energization in supra-thermal powerlaw https://hepro8.sciencesconf.org/
region... Contact: hepro8@iap.fr.
Scientific Organizing Committee
Felix Aharonian
— Deriving a transport equation for Fermi acceleration: Bl f
Kats'uakl Asano :
... hon-Gaussian velocity gradients on small scales: intermittency rules... uli
... a multi-fractal model of gradient statistics, and a transport equation... ;’,}i";;if;f,‘““
Martin Lemoine
Res}:mi Mukherjee
. . . Josep M. Paredes
— Some limitations: Anita Reiméc
ran leger
... extrapolation to small spatial length scales ? b

... role of turbulence anisotropy, particle trapping in structures? T Dt
Xiang-Yu Wang
Eli Waxman
Andreas Zech

— Some perspectives:

... role and nature of intermittency wrt acceleration... Local Organizing Committee
Martin Lemoine (chair)

... consequences for phenomenology: flares etc... e L

... generalization to transport: e.g., role of intermittent magnetic mirrors... e

... recipes for particle phase space transport in numerical simulations?
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