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Random Fields on the Sky

CMB Lensing

(almost) Gaussian (very) non-Gaussian



Outline

• Overview of weak lensing and current results            

• Lensing is not Gaussian!                                            

• Cosmology with peak counts                                      

• Application to CFHT data                                            

• Alternative non-Gaussian statistics

• Systematic errors: theoretical + observational



The accelerating universe

Vikhlinin et al. (2008)
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F⇥�. 7.— Constraints on the present dark energy density MX and constant
equation of state parameter w0 derived from cluster mass function evolution
in a spatially Jat Universe. �e results for Mgas and YX -based total mass esti-
mates are shown in red and blue, respectively.�e inner solid red region shows
the eGect of adding the mass function shape information (§5) to the evolution
of the Mgas-based mass function.

be found in Hu & Jain (2004):

L̃R ⇤ ⇥8
1.79 ⇤ 104 ⌅

Mbh2
0.024

⌥1�3 ⌅MMh2
0.14

⌥�0.563

⇤ (7.808 h)(1�n)�2 ⇤ h
0.72
⌃�0.693 0.76

G0

(3)

(we adjusted numerical coeHcients to take into account that
the Hu & Jain approximation uses the CMB amplitude at k =
0.05 Mpc�1 while the WMAP-5 results are reported for k =
0.02 Mpc�1). In this equation, G0 is the perturbation growth
factor between the CMB redshiK and the present, normal-
ized to the growth function in the matter-dominated universe:
G(z) ⇥ (1 + z) �(z)��(zCMB). �is Itting formula helps to
understand the nature of the ⇥8 vs. CMB amplitude constraint.
�e relation between ⇥8 and LR depends on the absolute mat-
ter and baryon densities, MMh2 and Mbh2 (well-measured by
the CMB data alone), and on the total growth factor, G0, and
the absolute value of the Hubble constant, h. Both of these
quantities provide powerful constraints on any parametriza-
tion of the dark energy equation of state (Hu 2005), and their
combination does so as well.
Inclusion of this information in the total likelihood is

straightforward. Given the usual set of cosmological param-
eters (MX , w0, h) plus ⇥8, one computes

⇤2CMBnorm = (L̃2
R ⇤ 109 � 2.21)2�0.092, (4)

where L̃R can be obtained either from eq.[3] or as described in
Komatsu et al. (2008).�e ⇤2CMBnorm component is then added
to the cluster ⇤2 and the sum marginalized over ⇥8.

8.2. w0 from Cluster Data Only
Constraints on the present dark energy densityMX and con-

stant equation of state are presented in Fig. 7. For compar-
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F⇥�. 8.— Comparison of the dark energy constraints from X-ray clusters and
from other individual methods (supernovae, baryonic acoustic oscillations,
and WMAP).

ison, we show separately the results derived only from evo-
lution of the Mgas and YX-based mass functions, and the ef-
fect of including the mass function shape information (§ 7 de-
scribes the procedure for removing shape information from
the cluster likelihood function). We do not consider here the
TX based mass estimates because they provide little sensitivity
to the dark energy parameters (§ 7). Just like in the MM � MN
case, evolution of theMgas and YX-based mass functions con-
strains diGerent combinations ofw0 and MX . �e width of the
conIdence regions across the degeneracy direction is similar
but the gas-based results are less inclined giving a little more
sensitivity tow0 for aIxed dark energy density—Lw0 = ±0.17
from the Mgas-based functions and Lw0 = ±0.26 from YX .
Adding the mass function information combined with the

HST prior on h breaks the degeneracy along theMX direction.
For example, the ellipse in Fig. 7 shows the 68%CL region from
Itting both the evolution and shape of the Mgas-based mass
function. �e one-parameter conIdence intervals in this case
areMX = 0.75±0.04 andw0 = �1.14±0.21.�ese results com-
pare favorably with those from other individual methods —
supernovae, BAO, WMAP (Fig. 8), although the supernovae
and CMB data provide tighter constraints on w0 for a Ixed
MX .�e real strength of the cluster data is, however, when they
are combined with the CMB and other cosmological datasets.
�e combined constraints are very similar for theMgas andYX-
based clustermass functions, and therefore we discuss only the
former hereaKer.

8.3. w0 from the Combination of Clusters with Other Data
First, we consider a combination of the cluster data with

the WMAP distance priors (see § 5.4 in Komatsu et al. 2008).
Cluster data bring information on growth of density pertur-
bations and normalized distances in the z ⌅ 0.0 � 0.9 inter-
val, and — weakly — on the MMh parameter. Adding this in-
formation reduces the WMAP-only uncertainties on w0 and
MX approximately by a factor of 2 (dark blue region in Fig. 9):
w0 = �1.08 ± 0.15, MX = 0.76 ± 0.04.
A much more signiIcant improvement of the constraints

Nature of dark energy:
1. vacuum energy density
2. dynamical field
3. modification to GR

Need, in the future:
- more sensitivity (esp. to w)
- combinations of 

experiments to break 
degeneracies + systematics

- especially useful to 
combine probes of 
geometry & growth



Cosmological Probes: Figures of Merit
Report of Dark Energy Task Force,  Albrecht et al. (2006)
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Results for models 
 

   MODEL        !(w")     !(wa)     !(#DE)       ap           ! (wp)    [!(wa)$%!(wp)]
&'

 

 

Stage II 

(CL-II+SN-II+WL-II)    0.115     0.523       0.01       0.79        0.04            53.82 

BAO-IIIp-o    0.911    3.569     0.06     0.76     0.26         1.06 

BAO-IIIp-p    1.257    5.759     0.06     0.79     0.32         0.55 

BAO-IIIs-o    0.424    1.099     0.04     0.63     0.11         8.04 

BAO-IIIs-p    0.442    1.169     0.04     0.64     0.12         6.97 

BAO-IVLST-o   0.489  1.383     0.04     0.65     0.09         7.78 

BAO-IVLST-p   0.582    1.642     0.05     0.65     0.13         4.58 

BAO-IVSKA-o   0.202    0.556     0.02     0.64     0.03      55.15 

BAO-IVSKA-p   0.293    0.849     0.02     0.66     0.05      21.53 

BAO-IVS-o     0.243    0.608     0.02     0.61     0.04      42.19 

BAO-IVS-p     0.330    0.849     0.03     0.62     0.06      19.84 

CL-II         1.089    3.218     0.05     0.67     0.18         1.76 

CL-IIIp-o     0.256    0.774     0.02     0.67     0.04      35.21 

CL-IIIp-p     0.698    2.106     0.05     0.67     0.08         6.11 

CL-IVS-o      0.241    0.730     0.02     0.67     0.04      38.72 

CL-IVS-p      0.730    2.175     0.05     0.67     0.07         6.23 

SN-II         0.159    1.142     0.03     0.90     0.11         7.68 

SN-IIIp-o     0.092    0.872     0.03     0.95     0.08      13.91 

SN-IIIp-p     0.185    1.329     0.03     0.89     0.12         6.31 

SN-IIIs       0.105    0.880     0.03     0.94     0.09      12.39 

SN-IVLST-o    0.076    0.661     0.03     0.95     0.07      22.19 

SN-IVLST-p    0.150    1.230     0.03     0.91     0.10         7.93 

SN-IVS-o      0.074    0.683     0.02     0.93     0.05      27.01 

SN-IVS-p      0.088    0.692     0.03     0.94     0.08      19.10 

WL-II         0.560    1.656     0.05     0.67     0.12         4.89 

WL-IIIp-o     0.189    0.513     0.02     0.64     0.05      42.96 

WL-IIIp-p     0.277    0.758     0.03     0.65     0.07      19.55 

WL-IVLST-o    0.055    0.142     0.01     0.63     0.02            453.60 

WL-IVLST-p    0.187    0.495     0.02     0.64     0.06      32.04 

WL-IVSKA-o    0.039    0.118     0.00     0.68     0.01            645.76 

WL-IVSKA-p    0.195    0.723     0.01     0.73     0.03      39.84 

WL-IVS-o      0.063    0.169     0.01     0.64     0.02            310.10 

WL-IVS-p      0.103    0.249     0.01     0.60     0.03            131.72 

 

 
 

 

 

Baryon Acoustic 
Oscillations (BAO)
(geometry)

Galaxy Clusters (CL)
(geometry + growth)

Type Ia Sne (SN)
(geometry)

Weak Lensing (WL)
(geometry + growth)



Gravitational Lensing

lsst.org

bending of light in general relativity



Gravitational Lensing by a Cluster
Abell 1689; Benitez et al. (2003)



Cosmology with Weak LensingWEAK LENSING SIGNAL

Dark Energy and Weak Lensing Peak Counts Brookhaven, May 4, 2009 17

Distortion Tensor:

⌅ij = 2
⇤ �s

0
d⇤ (⇤s � ⇤)

⇤

⇤s⌃ ⇧⌅ ⌥
lensing kernel

�,ij(�x(⇤))

• �: gravitational potential.

• ⇤x(�): position of light ray at distance � from observer.

• �: distance from observer.

• �s: distance of source galaxy from observer.

⌅ij ⇥
�
�⇥� �1 � �2

��2 �⇥ + �1

⇥

⇥: convergence (magnification)
�1, �2: shear (distortion)

Kernel for source galaxy at
distance �s = 3000 Mpc:
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Cosmology with Weak Lensing

Source shape (𝜃j )        Observed shape (𝜃i )

Wikipedia



Measuring Shear in Practice
Shear Measurement Problem

GREAT08 handbook, Bridle et al 08 Bridle et al. 2008



Weak Lensing by Large Scale Structure

θ

θ θ

cosmic shearrandom orientation

C(θ)=<γ1γ2>=0 C(θ)=<γ1γ2>≈10-4≠0

signal is weak, must average over many* galaxies

γ1 γ2 γ1 γ2

* =  (0.2/√400)  à 400 galaxies for S/N=1 detection of a systematic γ ~0.01  

“cosmic shear”: random direction on the sky averages over l.o.s. fluctuations à O(1%)

à 400×104 = 4×106 galaxies for 1% error on  γ ~0.01  è need ~100 deg2



Observable: convergence map
• Smoothing: average over ~ arcmin

• Tomography: bin galaxies by redshift
Kaiser & Squires 1993
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Weak Lensing: 2-point functions
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A&A 516, A63 (2010)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ωm

σ 8

 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0.0

0.5

1.0

1.5

2.0

Ωm

Ω
Λ

 

0.0 0.5 1.0 1.5 2.0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

ΩΛ

σ 8

 

Fig. 12. Constraints on Ωm, ΩΛ, and σ8 from our 3D weak lensing analysis of COSMOS for a general (non-flat) ΛCDM cosmology using our
default priors. The contours indicate the 68.3% and 95.4% credibility regions, where we have marginalized over the parameters which are not
shown. The non-linear blue-scale indicates the highest density region of the posterior.

6.3.3. Flat wCDM cosmology

For a flat wCDM cosmology we plot our constraints on the (con-
stant) dark energy equation of state parameterw in Fig. 14, show-
ing that the measurement is consistent with ΛCDM (w = −1).
From the posterior PDF we compute

w < −0.41 (90% conf.)

for the chosen prior w ∈ [−2, 0]. The exact value of this upper
limit depends on the lower bound of the prior PDF given the non-
closed credibility regions. We have chosen this prior as more
negative w would require a worrisome extrapolation for the non-
linear power spectrum corrections (Sect. 6.2). For comparison,
we repeat the analysis with a much wider prior w ∈ [−3.5, 0.5]
leading to a stronger upper limit w < −0.78 (90% conf.). While
the COSMOS data are capable to exclude very high values
w ≫ −1, larger lensing data sets will be required to obtain re-
ally competitive constraints on w.

To test the consistency of the data with ΛCDM, we compare
the Bayesian evidence of the flat ΛCDM and wCDM models,
which we compute in the PMC analysis as detailed in Kilbinger
et al. (2009b). Here we find completely inconclusive probabil-
ity ratios for wCDM versus ΛCDM of 52 : 48 (w ∈ [−2, 0]) and
45 : 55 (w ∈ [−3.5, 0.5]), confirming that the data are fully con-
sistent with ΛCDM.

6.4. Model recalibration with the millennium simulation
and joint constraints with WMAP-5

Heitmann et al. (2010) and Hilbert et al. (2009) found that
the Smith et al. (2003) fitting functions slightly underestimate
non-linear corrections to the power spectrum. To test whether
this has a significant influence on our results, we performed
a 3D cosmological parameter estimation using the mean data
vector of the 288 COSMOS-like ray-tracing realizations from
the Millennium Simulation. Here we modify the strong priors
given in Sect. 6.1 to match the input values of the simulation
(Ωm = 0.25, σ8 = 0.9, ns = 1, h = 0.73, Ωb = 0.045), and find
σ8 = 0.947 ± 0.00611 for Ωm = 0.25. This confirms the result

11 Here we have scaled the uncertainty for the mean ray-tracing data
vector from the uncertainty for a single COSMOS-like field assuming
that all realizations are completely independent. This is slightly opti-
mistic given the large but finite volume of the simulation, and fact that
the realizations were cut from larger fields.
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Fig. 13. Posterior PDF for the deceleration parameter q0 as computed
from our constraints on Ωm and ΩΛ for a general (non-flat) ΛCDM cos-
mology, using our default priors (solid curve), and using weaker pri-
ors from the HST Key Project and Big-Bang nucleosynthesis (dashed
curve). The line at q0 = 0 separates accelerating (q0 < 0) and deceler-
ating (q0 > 0) cosmologies. We find q0 < 0 at 96.0% confidence using
our default priors, or 94.3% confidence for the weaker priors.
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Fig. 14. Constraints on Ωm and w from our 3D weak lensing anal-
ysis of COSMOS for a flat wCDM cosmology, assuming a prior
w ∈ [−2, 0]. The contours indicate the 68.3% and 95.4% credibility re-
gions, where we have marginalized over the parameters which are not
shown. The non-linear blue-scale indicates the highest density region of
the posterior.
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Schrabback et al. (2010)

Cosmology: Cosmic Shear 

COSMOS survey
1.64 deg2 of deep imaging 
with the Advanced Camera 
For Surveys (ACS) on HST

power spectrum tomography
450,000 galaxies in 5 z-bins,
<z>~1.3, tail out to z>2

2σ detection of dark energy,
independent of  other probes

Also helps in combination 
with CMB, SN



Cosmology: Cosmic Shear 
CFHTLenS survey
154 deg2 of deep imaging 
with 3.6m CFHT - ~6×106 galaxies 

2D - Kilbinger al. (2013)
single z-bin 

”3D” - Heymans al. (2013)
tomography in 6 z-bins,
0.2  < z < 1.3, with <z>~0.75
(includes IA model)

CFHTLenS: cosmological model comparison using 2D weak lensing 15
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Figure 10.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(red) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is flat
ΛCDM (left panel) and curved ΛCDM (middle and right panel), respec-
tively.

flat wCDM
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Figure 11.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(magenta) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is
flat wCDM.

Since the magnitude of the covariance is much smaller than the
statistical uncertainties, the cosmological results are virtually un-
changed.

Large scales only. The largest ratio of signal-to-noise for cosmic
shear is on small, non-linear scales. Unfortunately, those scales are
the most difficult to model, because of uncertainties in the dark-
matter clustering, and baryonic effects on the total power spectrum.
To obtain more robust cosmological constraints, we exclude small
scales from the 2PCFs in two cases, as follows. First, we use the
cut-off ϑc = 17 arc minutes. At this scale, the non-linear halofit
prediction of ξ+ is within 5 per cent of the linear model. Baryonic
effects, following Semboloni et al. (2011), are reduced to sub per
cent level. The component ξ−, being more sensitive to small scales,
is still highly non-linear at this scale. However, since most of the
constraining power is contained in ξ+, the resulting cosmological
constraints will not be very sensitive to non-linearities. Neverthe-

c⃝ 2009 RAS, MNRAS 000, 1–18

16 C. Heymans et al.

Figure 7. Joint parameter constraints on curvature showing constraints on the curvature parameter ⌦
K

and the matter density parameter ⌦
m

from WMAP7-
only (blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11 (pink) and CFHTLenS combined with BOSS,
WMAP7 and R11 (white).

Figure 8. Joint parameter constraints on the dark energy equation of state parameter w
0

and the matter density parameter ⌦
m

, and curvature parameter ⌦
K

for a curved wCDM cosmology from WMAP7-only (blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11
(pink) and CFHTLenS combined with BOSS, WMAP7 and R11 (white).

✓ = 1 arcmin for ⇠
+

. With only 20 per cent of the data contained
in the early-type sample, it is unsurprising that the measured signal
to noise is significantly weaker than for the late-type sample which
are well fit by the fiducial GG-only model, shown dotted. We can,
however, optimise the measurement of the intrinsic alignment sig-
nal from early-type galaxies, to get a clearer picture, if we assume
the II contribution to cross-correlated bins is small in comparison
to the GI signal. If this is the case, we can decrease the noise on
the GI measurement by using the full galaxy sample as background
galaxies to correlate with the early-type galaxies in the foreground
bin. The result of this optimised analysis is shown, in compressed
tomographic data form, in Figure 10. The open circles show the

tomographic signal measured in the auto-correlated redshift bins
between early-type galaxies (these auto-correlation bins are also
shown in Figure 9). The closed symbols show the tomographic sig-
nal in the cross-correlated redshift bins where early-type galaxies
populate the foreground bin and the full galaxy sample populates
the background higher redshift bin. The data can be compared to
the fiducial GG-only model, shown dotted. What is interesting to
note from this Figure is that at low redshifts, where the intrinsic
alignment signal is expected to be the most prominent, the auto-
correlated bins tend to lie above the GG-only model. We expect
this from the II term. For the cross-correlated bins, however, the

c� 0000 RAS, MNRAS 000, 000–000



Outline

• Overview of weak lensing and current results            

• Lensing is not Gaussian!                                            

• Cosmology with peak counts                                      

• Application to CFHT data                                            

• Alternative non-Gaussian statistics

• Systematic errors: theoretical + observational



A 2D Gaussian Random Field
® CMB: goal is to look for tiny non-Gaussianity
® we can borrow some tools and apply to WL



Millennium simulation – Volker Springel, MPA

Cosmic Shear is Not Gaussian
cosmic web



Cosmic Shear is Not Gaussian
® WL probes full projected overdensity field, including δ>1
® one-point function of convergence: skewness, kurtosis, … 

Fact: WL datasets contain large non-Gaussian features

Wang, Haiman & May
(2009)

(2006)

F=∫ns P(k)dk



Cosmic Shear: 3-point function

three-point shear statistics: 
more difficult to predict and to measure

* <M3
ap>(Θ1Θ2Θ3) can help tighten errors by ~10-20% 

Semboloni et al. (2011)
* small field not ideal Vafaei et al. (2010)16 Semboloni et al.
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Figure 11. Left panel: the black diamonds show the amplitude of the cosmological signal ⟨M3
ap⟩(θ1, θ2, θ3) measured for each of the 56 combinations of

θ1, θ2 and θ3 as a function of an identification number which we assigned to each triplet (see table 2). The amplitude of the cosmological signal is compared

with the fiducial WMAP7 cosmology (pink solid line) and the non-gravitational component ⟨MapM2
×⟩(θ1, θ2, θ3) is also shown (red diamonds). The solid

error-bars for ⟨M3
ap⟩(θ1, θ2, θ3) include only shape-noise and we omitted the identical error-bars for the non-gravitational component for clarity. The dashed

error-bars represent the total errors computed using the ray-tracing set II. Middle panel: likelihood analysis contours obtained using the measurement of

⟨M3
ap⟩(θ1, θ2, θ3). The black solid (dashed) contours show the likelihood 68% (95%) contours obtained using ⟨M2

ap⟩(θ) for comparison. Right panel:
likelihood analysis contours obtained using the measurement of ⟨M3

ap⟩(θ1, θ2, θ3) combined with ⟨M
2
ap⟩(θ).

excellent agreement with the WMAP7 best-fit model. We find, as expected, that this measurement improves the accuracy of the cosmological

constraints σ8 = 0.69+0.08
−0.14 for fixed Ωm = 0.30. The combined analysis of ⟨M2

ap(θ) and ⟨M3
ap⟩(θ1, θ2, θ3) further increases the strength

of the cosmological constraints. Indeed, the combined likelihood results yields σ8(Ωm/0.30)0.50 = 0.69+0.07
−0.12 .

We find this result very encouraging, however we would like to make clear once more that the lack of precision which affects the non-

linear evolution modelling, is today still significant. We already discussed how the cosmological constraints we obtained are sensitive to the

non-linear evolution of the power spectrum. Note that Lawrence et al. (2010) very recently provided a substantially improved prescription for

the non-linear power spectrum , but similar results will also be required for the bispectrum. Various aspects which have been neglected in this

paper are likely to affect our results. For example, we did not account for massive neutrinos and the effect of baryons on small angular scales:

both are expected to change the evolution of the matter fluctuations in particular in the non-linear regime. Furthermore, we did not account

for lens-clustering effects which are also expected to change the amplitude of the measured three-point shear statistics (Hamana et al. 2002).

Constraints from wide surveys will more strongly benefit from the inclusion of third-order statistics. Hence, for future surveys such

as Euclid, LSST and JDEM covering thousands of square degrees it will be possible to use the measurement of the two- and three-point

shear statistics together with photometric redshift information to infer tight cosmological constraints. In this paper we did not make use of

the photometric redshifts estimated for individual sources; we expect the tomographic measurement of the third-order shear statistics to add

further information and improve the precision of the cosmological constraints.

In the prospective of these future weak-lensing missions, it is important to show that it is today possible to measure three-point shear

statistics, to quantify the level of systematics and to interpret the cosmological origin of the signal. It is also important to point out which

are the limiting factors requiring further work. This paper shows that the measurement and interpretation of third-order statistics are possible

and have high potential; our detection is in very good agreement with the WMAP7 best fit-model and this together with the fact that our

measurement is robust against systematics, is a very encouraging outcome and an important proof of concept for future weak lensing missions.
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Figure 6. Moments of the convergence hni, n = 2, 3, 4, 5 measured on the CFHTLenS data. Error bars show the 1� deviation from the
mean of the the four CFHTLenS fields. Solid lines are the moments measured from the signal maps and de-noised using the procedure
described in Section 3.2. Open symbols show the di↵erent de-noised combination of the signal map 

obs

and systematics map ?, similar
to that shown in Figure 3 for the simulations. The solid line shows the second order moment (top-left) and third order moment (top-right)
predictions from Eqs14 and 17 using the WMAP7 cosmology (see text in Section 4.3).

that all galaxies are central galaxies and all follow the stel-
lar mass to halo mass relation in Leauthaud et al. (2012).
This will overestimate our predicted total mass, but to a first
approximation it should not dramatically a↵ect the relative
distribution of mass. Using the Figure 4 from Leauthaud
et al. (2011) we anticipate that, on average, there are roughly
one to two satellite galaxies for every central galaxy. This
should lead us to overestimate the total mass by roughly a
factor of 2 to 3. The exact calculation is not needed as we
are only interested in an order of magnitude estimate of how
wrong our predicted convergence can be. In a future work,
the same strategy will be applied to clusters instead of indi-
vidual galaxies, which should mitigate this e↵ect. In order
to complete our convergence prediction from the galaxies,
we need to assign a concentration to each halo. To this end,
we use the mass-concentration relation calibrated from nu-
merical simulations in Muñoz-Cuartas et al. (2011).

At this stage, each galaxy in the CFHTLenS catalogue
is associated with a dark matter halo of known concentra-
tion and mass. The last step is to apply the lensing kernel
in order to predict the convergence based on the redshifts
of the lenses and sources. Every galaxy is simultaneously
both a lens and a source, depending whether they are in the
background or the foreground relative to other galaxies. One
can then compute for each galaxy a predicted convergence
based on the foreground mass distribution coming from all
galaxies located at lower redshift. For a source galaxy at

location ✓ on the sky with redshift zS , and N foreground
lenses at redshifts zLi the total convergence predicted from
the baryonic distribution is given by:


gal

(✓) =
NX

i=1

⌃i(|✓ � ✓i|)
⌃crit(zLi , zS)

� ̄
gal

, (21)

where ⌃i(|✓ � ✓i|) is the projected halo mass of lens i cen-
tred at ✓i, and ⌃crit(zLi , zS) is the critical density given
by:

⌃crit(zLi , zS) =
c2

4⇡G

fK(wS)

fK(wL)fK(wS � wLi)
. (22)

Note that the average predicted convergence ̄
gal

is cal-
culated only after all haloes have been assigned to the
galaxies. The critical density depends on the observer-lens,
lens-source and observer-source angular diameter distances
fK(wL), fK(wS � wLi) and fK(wS). The sky-average pre-
dicted convergence is set to zero by subtracting the mean
̄
gal

in Eq.(21). We assume that the weak lensing approxi-
mation applies which means that the convergence from the
di↵erent lenses can be added linearly. It is important to em-
phasize that the lens redshift goes down to the lowest reli-
able value z = 0.2, and that the sources only cover redshifts
z = 0.4 and higher (in order to be consistent with our source
galaxy selection outlined in Section 4.2).

The convergence predicted from the baryonic content

© 2012 RAS, MNRAS 000, 1–17

CFHTLenS survey: 3.4m CFHT     154 deg2 6×106 galaxies  Kilbinger et al. (2013)
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Peak counts
® A simple statistic: # of convergence peaks, regardless of 

whether or not they correspond to true bound objects
as a function of height, redshift and angular size
Kratochvil, Haiman, Hui & May (2010), PRD
Yang, Kratochvil, Wang, Lim, Haiman & May (2011), PRD 

[Jain & van Waerbeke  2000 Marian et al. 2011, 2012, 2013; Maturi et al. 2010]       

® Fundamental questions about “false” (non-cluster) peaks:
1. How does Npeak depend on cosmology ?
2. What is the field-to-field variance DNpeak (or Cij

peak)?  

® Requires simulations

(Npeak  predictable in GRF:  Bond & Efstathiou 1987)



N-body Simulations  

- pure DM (no baryons, neutrinos, or radiation)
- public code GADGET-2, modified to handle w0 ¹ -1
- fiducial LCDM concodace cosmology :

(w0, WL, Wm, H0, s8, n) = (-1.0, 0.74, 0.26, 0.72, 0.8, 1.0)
- 5123 box, size 200h-1 Mpc, zin=60, MDM=4.3´109 M⊙
- gravitational softening length ePl =  7.5h-1 kpc
- output particle positions every 70h-1 comoving Mpc
- project mass onto 2D lens planes
- runs at NSF XSEDE  Stampede



Mock Lensing Maps
® Ray-tracing

- compute 2D potential (4096´4096) in each lens plane
- implement algorithm to follow rays (Hamana & Mellier 2001)
- compute shear (g), convergence (k) and reduced shear (µ)

® Produce maps (‘mock observations’)
- produce simulated 3.5´3.5 deg2 maps
- raytrace towards the 2048´2048 pixels 
- add noise: rotate each galaxy by random angle
- reconstruct 2D k-map from g (Kaiser & Squires 1993)
- smooth k-map with 2D finite Gaussian 0.5 - 10 arcmin
- repeat 1,000 times

® Identifying peaks
- find all local maxima, record their height kpeak



Peak Counts  
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Which peaks dominate constraints?  
- high σ8: more peaks at high+low ends
- low σ8: peaks are more sharply peaked
- low (k»0.02-0.04, or 1-2s) peaks dominate total c2

Total # of peaks
Difference in Npeak

Contribution to c2



® What causes the low peaks?
(i)  one or more individual collapsed halos
(ii)  mildly over-dense large-scale filaments
(iii)  unvirialized ‘half-collapsed’ halos
(iv)  galaxy shape noise

- identify halos, match them to peaks [use fiducial cosmology]:

only ~10% of low peaks have unique halo match

® What drives cosmology-dependence of peak counts?
- compare two different cosmologies (e.g. vary s8) with 
identical noise realization and (quasi) identical initial condition
to match individual peaks in two different cosmologies:

low peaks ‘fragile’ – about 50% have a match

Origin of Peaks



What causes peaks?

constellation of 4-8 halos along the LOS
low peaks are created by shape noise +
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High peaks (S/N>3)
Massive halos

Low peaks (S/N<3)
Constellations of several 
small halos, or aligned 
filaments (?)

High vs low peaks
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CFHTLenS fields

154 deg2, iAB ≤ 24.5

6 million galaxies

zmean = 0.37

ngal = 10 gals / amin2



Emulating CFHTLenS

Liu et al. 2015

CFHTLenS
convergence 
maps



(1) N-body sims (Gadget):
91 cosmological models

(2) Ray-tracing to each of 
the 6 million galaxies

(3) Convergence maps 
(1000 realizations/model)

Emulating CFHTLenS

• Tile CFHT fields
• Raytrace to actual 4x106 galaxy positions
• Add random shape noise by random rotations of galaxies
• Create convergence maps
• Repeat in each of the 91 cosmologies (1000 per cosmology)



Emulator: cosmology-dependence

power spectrum

peak counts

• Irregular grid
• Latin hypercube in 3D
• 91 cosmologies



Results

• w unconstrained         
(without tomography)

• Adding peaks improves 
constraint by factor ~2   
power spectrum not needed

• Cross-check on systematics

Bayesian confidence levels computed directly (no MCMC)



Results: best fits

Power spectrum Peak counts



Results on amplitude parameter

Σ8=0.85 +/- 0.03

Σ8=0.79 + 0.07
-0.06

(CFHT)



Results: multiple smoothing scales



Similar results from recent DES SV 
Kacprzak et al. 2016 (arxiv:1603.05040)

Marginalized over systematics:
- photo-z errors 
- intrinsic alignment model
- multiplicative shear bias
- blending, source contamination

Σ8=σ8(Ωm/0.3)0.6 = 0.77 +/- 0.07
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Results for CFHTLenS
5

that the observed ellipticity for a particular galaxy al-
ready contains the lensing shear by large scale structure,
but the random rotation makes this contribution second
order in κ. Consistent with the weak lensing approxima-
tion, the lensing signal from the simulations is first order
in κ and hence the randomly rotated observed ellipticities
can be safely considered as intrinsic ellipticities.
We analyze the simulations in the same way as we ana-

lyzed the CFHTLenS data – constructing the simulated κ
maps as explained in §II A. These final simulation prod-
ucts are then processed together with the κ maps ob-
tained from the data to compute confidence intervals on
the parameter triplet (Ωm, w,σ8).

III. STATISTICAL METHODS

The goal of this section is to describe the framework to
combine the CFHT data and our simulations, and to de-
rive the constraints on the cosmological parameter triplet
(Ωm, w,σ8). Briefly, we measure the same set of statisti-
cal descriptors from the data and from the simulations;
these are then compared in a Bayesian framework in or-
der to compute parameter confidence intervals.

A. Descriptors

The statistical descriptors we consider in this work
are the Minkowski Functionals (MFs) and the low–order
moments (LMs) of the convergence field. The three
MFs (V0, V1, V2) are topological descriptors of the conver-
gence field κ(θθθ), probing the area, perimeter and genus
characteristic of the κ excursion sets Σκ0

, defined as
Σκ0

= {κ > κ0}. Following refs. [20, 21] we use the
following local estimators to measure the MFs from the
κ maps:

V0(κ0) =
1

A

∫

A
Θ(κ(θθθ)− κ0)dθθθ,

V1(κ0) =
1

4A

∫

A
δ(κ(θθθ)− κ0)

√

κ2
x + κ2

ydθθθ, (8)

V2(κ0) =
1

2πA

∫

A
δ(κ(θθθ)−κ0)

2κxκyκxy − κ2
xκyy − κ2

yκxx

κ2
x + κ2

y

dθθθ.

Here A is the total area of the field of view and κx,y

denotes gradients of the κ field, which we evaluate us-
ing finite differences. The first Minkowski functional, V0,
is equivalent to the cumulative one–point PDF of the κ
field, while V1, V2 are sensitive to the correlations between
nearby pixels. The one–point PDF of the κ field, ∂V0, can
be obtained by differentiation ∂V0(κ0) = dV0(κ0)/dκ0.
In addition to these topological descriptors, we con-

sider a set of low–order moments of the convergence field
(two quadratic, three cubic and four quartic). We choose

these moments to be the minimal set of LMs necessary to
build a perturbative expansion of the MFs up to O(σ2

0)
(see [38, 39]). We adopt the following definitions

LM2 : σ2
0,1 = ⟨κ2⟩, ⟨|∇κ|2⟩,

LM3 : S0,1,2 = ⟨κ3⟩, ⟨κ|∇κ|2⟩, ⟨κ2∇2κ⟩,

LM4 : K0,1,2,3 = ⟨κ4⟩, ⟨κ2|∇κ|2⟩, ⟨κ3∇2κ⟩, ⟨|∇κ|4⟩.

(9)

If the κ field were Gaussian, one could express the MFs
in terms of the LM2 moments, which are the only inde-
pendent moments for a Gaussian random field. In re-
ality, weak lensing convergence fields are non–Gaussian
and the MF and LM descriptors are not guaranteed to
be equivalent. Refs. [38, 39] studied a perturbative ex-
pansion of the MFs in powers of the standard deviation
σ0 of the κ field. When truncated at order O(σ2

0), this
can be expressed completely in terms of the LMs up to
quartic order. Such perturbative series, however, have
been shown not to converge [21] unless the weak lensing
fields are smoothed with windows of size ≥ 15′. Because
of this, throughout this work, we treat MF and LM as
separate statistical descriptors.
We note that this choice is somewhat ad-hoc. In gen-

eral, the LMs that contain gradients are sensitive to dif-
ferent shapes of the κ multispectra Pn

κ (l1, ..., ln) because
a particular LMn has the general form

LMn =

∫

dl1...dlnρ(l1...n)P
n
κ (l1...n) (10)

where ρ is a polynomial of order n in the l’s. For exam-
ple for K2 we have ρ(l1234) = l24 and this moment em-
phasizes quadrilateral shapes for which one side is much
larger than the others. On the other hand, for K4 we
have ρ(l1234) = (l1 · l2)(l3 · l4) and this moment is most
sensitive to trispectrum shapes that are close to rectan-
gular. There are moments which include derivatives in
addition to those included in Eq. 9. In the future, we
will investigate whether there is additional constraining
power in these additional quartic moments.
In addition to the MFs and LMs, we consider the an-

gular power spectrum Pl ≡ P 2
l of κ, defined as

⟨κ̃(l)κ̃(l′)⟩ = (2π)2δD(l + l′)Pl, (11)

where κ̃(l) is the Fourier transform of the κ field and δD is
the usual Dirac delta function. Previous works have stud-
ied cosmological constraints from the convergence power
spectrum extensively. Here our purpose is to compare
the constraints we obtain from the MFs and LMs to ones
present in the literature, which are based on the use of
quadratic statistics (see for example [1]). The statistical
descriptors used in this work are summarized in Table II.

When measuring statistical descriptors on κmaps, par-
ticular attention must be paid to the effect of masked
pixels. The MFs and LMs remain well–defined in the

Three Minkowski Functionals (MFs)

V0(ν) :   area above threshold

V1(ν) :   length of boundary

V2(ν) :    # of connected region − # of holes

Nine Low-Order Moments (LMs)



Results for CFHTLenS

Significant 
reduction in
allowed area
from LM

Entirely along
degenerate 
direction

MFs alone are
biased
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Some possible systematic errors
® Theoretical Issues

- observable:   κ è g=γ/(1-κ)    (reduced shear)
- explore full cosmological parameter space
- impact of (g)astrophysics
- intrinsic alignments
- selection bias (e.g. magnification/size bias)
- sufficient number of simulations

® Experimental issues
- shape measurement errors (PSF, telescope/optical aberrations)
- atmospheric PSF variations  spurious shear correlations
- photo-z calibration (bias and scatter)



Conventional Method:

Alternative Approach:
N-body simulations + modifying the halo density 
profiles by hand, by increasing concentration cNFW

justification: this mimics very closely the cooling and 
contraction  of baryons in DM halos.

caveat: does not capture AGN feedback 

Hydro simulations + modeling cooling, star 
formation and feed back from supernovae 
and AGN, using (phenomenological) recipes
e.g. Zentner, Rudd & Hu (2008), Semboloni  et al (2011)

Above is based on N-body simulations. How do baryons impact the result? 

Impact of  Baryons on Peak Counts



(sharp drop at l=20,000 is  due 
to 1 arcmin smoothing.) 

peak counts:
• strong increase in # of high peaks

• very little change in # of low peaks
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The Impact of Baryons



halos contributing to low peaks have lower mass (1012 – 1013 M⊙ vs. 1014 M⊙
for high peaks) and larger off-set from the line-of-sight towards each peak
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Why Are Low Peaks Robust ?



95% CL contours, LSST survey, 20,000 deg2 field.
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Conclusions

® Theory: Peaks, MFs, and moments constrain Ωm, w, s8  comparable 

or tighter than the power spectrum – errors improve by factors of 2-3. 

® This information is new: arises from non-linear, non-Gaussian 

regime, and is beyond the power spectrum

® Peaks: most info is in low (1-2σ) peaks, from projections of 4-8 

halos appear to be robust to baryonic effects – allow self-calibration 

® Fits to CFHTLenS data: predictions confirmed! Peaks and quartic 

moments offer factor of two improvement on Ωm-s8  constraints



The End


