The Fate of Axion Stars

Hong Zhang

The Ohio State University

In collaboration with Eric Braaten and Abhishek Mohapatra PRL 117, 121801 (2016) PRD 94, 076004 (2016) arXiv:1609.05182

Outline

- \diamond (Dilute) Axion Star
- \diamond Dense Axion Star
- \diamond Observables
- \diamond Axion EFT
- \diamond Summary

PRL 117, 121801 (2016)

arXiv:1609.05182

PRD 94, 076004 (2016)

Axions

- Peccei-Quinn U(1) symmetry solves strong CP problem
 Peccei & Quinn (1977)
- Introduces a Goldstone boson -- Axion

Weinberg (1978), Wilczek (1978)

• Strongly motivated candidate for cold dark matter.

Lect. Notes Phys. 741 (2008) A recent review: Kim & Carosi (2010)

Relativistic Axions

Real pseudoscalar field Energy scale below 1GeV

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \mathcal{V}(\phi)$$

Two models for potential

• Instanton
$$\mathcal{V}(\phi) = m_a^2 f_a^2 \left[1 - \cos(\phi/f_a)\right]$$

 m_a : axion mass

$$f_a$$
: axion decay constant

• Chiral
$$\mathcal{V}(\phi) = m_{\pi}^2 f_{\pi}^2 \left(1 - \left[1 - \frac{4z}{(1+z)^2} \sin^2(\phi/2f_a) \right]^{1/2} \right)$$

 $z = m_u/m_d \approx 0.48$

Relativistic Axion Potential

Periodic potentials
$$\mathcal{V}(\phi) = \mathcal{V}(\phi + 2\pi f_a)$$

4

Parameters & Current Constraints

Two parameters in relativistic axion Lagrangian:

 m_a and f_a

Not independent, related by QCD

$$m_a^2 f_a^2 = \frac{z}{(1+z)^2} m_\pi^2 f_\pi^2 \longrightarrow m_a f_a = (80 \text{ MeV})^2$$

 $z = m_u/m_d \approx 0.48$

Constraints from astrophysics & cosmology

 $10^8 \text{ GeV} < f_a < 10^{13} \text{ GeV} \implies 10^{-6} \text{ eV} < m_a < 10^{-2} \text{ eV}$ Very weak self-interaction! Tiny Mass !! In this talk, I choose $m_a = 10^{-4} \text{ eV}$ 5

Loop Contribution is Small

Each loop is suppressed by

$$(m_a/f_a)^2 \sim 10^{-48}$$

• Diagrams with loops can be safely ignored.

Axion-Photon Coupling

Very weak coupling

$$\mathcal{L}_{\rm em} = \frac{c_{\rm em}\alpha}{16\pi f_a} \epsilon^{\mu\nu\alpha\beta} F_{\mu\nu} F_{\alpha\beta}\phi$$
$$c_{\rm em} \sim 1 \quad \text{Model dependent}$$
Suppressed by $f_a \sim 10^{11} {\rm GeV}$

00

Decay rate into two photons

$$\Gamma_a = \frac{c_{\rm em}^2 \alpha^2 m_a^3}{256\pi^3 f_a^2}.$$
 Axion lifetime ~ 10³⁶ years
Age of Universe ~ 10¹⁰ years

Photon energy: $m_a/2 \sim 10 \text{ GHz}$ Radio frequency

Axion Cosmology

 Cold dark matter axions are produced abundantly at QCD phase transition scale T ~ 1 GeV

Non-relativistic axion production mechanism

For more details, see Lect. Notes Phys. 741 (2008)

 Vacuum misalignment
 Coherent
 Coherent
 Preskill, Wise & Wilczek (1983) Abbot & Sikivie (1983) Dine & Fischler (1983)
 Davis (1986) Hararie & Sikivie (1987)

Occupation number $n_a \lambda_{dB}^3 |_{T=1GeV} \approx 10^{58}$ Sikivie & Yang PRL (2009)

Form Bose-Einstein condensate if can be effectively thermalized

Gravitational Thermalization

- Axion self-interaction may be too weak to thermalize axions
- Gravitational interaction can thermalize axions

Sikivie & Yang PRL (2009)

Bring initially incoherent axions into coherence

- Keep the axion field as a Bose-Einstein Condensate as the Universe evolves
- Correlation length

Galactic scale? Sikivie & Yang PRL (2009)

Stellar scale due to attractive self-interaction?

Guth, Hertzberg & Prescod-Weinstein PRD (2015)

Is there a (meta)stable axion star solution?

Outline

 \diamond Axions

- \diamond Dense Axion Star
- \diamond Observables
- \diamond Axion EFT
- ♦ Summary

PRL 117, 121801 (2016)

arXiv:1609.05182

PRD 94, 076004 (2016)

Non-relativistic EFT (Part I)

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \mathcal{V}(\phi)$$

Real Scalar

Chavanis PRD (2011) Chavanis & Delfini PRD (2011)

11

Instanton potential / Chiral potential

Naïve non-relativistic reduction Complex scalar $\phi(\mathbf{r},t) = \frac{1}{\sqrt{2m_a}} \left[\psi(\mathbf{r},t)e^{-im_a t} + \psi^*(\mathbf{r},t)e^{+im_a t} \right]$

Ignore all terms with rapid oscillating phase

Non-relativistic EFT (Part I)

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \mathcal{V}(\phi)$$

Real Scalar

Chavanis PRD (2011) Chavanis & Delfini PRD (2011)

Instanton potential / Chiral potential

Naïve non-relativistic reduction Complex scalar $\phi(\mathbf{r},t) = \frac{1}{\sqrt{2m_a}} \left[\psi(\mathbf{r},t)e^{-im_a t} + \psi^*(\mathbf{r},t)e^{+im_a t} \right]$

Ignore all terms with rapid oscillating phase

$$\begin{split} \mathcal{L}_{\text{eff}} &= \frac{1}{2}i\left(\psi^*\dot{\psi} - \dot{\psi}^*\psi\right) - \frac{1}{2m_a}\nabla\psi^*\cdot\nabla\psi - \mathcal{V}_{\text{eff}}\\ \mathcal{V}_{\text{eff}} &= m_a\psi^*\psi - \frac{1}{16}\frac{(\psi^*\psi)^2}{f_a^2} + \frac{1}{288}\frac{(\psi^*\psi)^3}{m_af_a^4} + \dots \quad \begin{array}{l} \text{Dilute}\\ \text{limit}\\ \text{Attractive interaction!} & \text{Expand by } \frac{\psi^*\psi}{m_af_a^2} \end{array}$$

Dilute Axion Stars

Assume: • Instanton potential, dilute axion limit

Newtonian gravity
 Spherically symmetric

(First) Critical Point

- Heavier dilute axion stars have smaller radii.
- Critical mass: beyond which the kinetic pressure cannot balance the attractive self-interaction and gravity

Critical point: $M_* = 10.2 f_a / \sqrt{Gm_a^2}$ $= 6 \times 10^{-14} M_{\odot}$ $R_* = 3 \times 10^{-4} R_{\odot}$ = 200 km

Formation of Dilute Axion Stars

- Dilute axion stars can be produced in early universe.
- Vacuum misalignment mechanism produces coherent and non-relativistic axions.
- Spatial fluctuations in the axion field evolve into gravitationally bound "miniclusters" of axions.
- Gravitational thermalization drives the axion minicluster to form a dilute axion star.
- Dilute axion stars attract more axions and gradually reaches the critical mass.

End of Dilute Axion Stars

- Dilute axion stars collapse when its mass exceeds the critical mass,
- What is the remnant?

Less massive dilute axion star? by emitting extra axions

Black hole: Schwarzchild radius is ~20 orders of magnitude smaller

Chavanis arXiv: 1604.05904 Helfer et al. arXiv: 1609.04724

Dense axion star? Radius is 5 orders smaller

Eby et al, arXiv: 1608.06911

Outline

\diamond Axions	
\diamond (Dilute) Axion Star	
Oense Axion Star	PRL 117, 121801 (2016)
\diamond Observables	arXiv:1609.05182
\diamond Axion EFT	PRD 94, 076004 (2016)

 \diamond Summary

Non-relativistic EFT (Part II)

$$\mathcal{L}_{\text{eff}} = \frac{1}{2}i\left(\psi^*\dot{\psi} - \dot{\psi}^*\psi\right) - \frac{1}{2m_a}\nabla\psi^*\cdot\nabla\psi - \mathcal{V}_{\text{eff}}$$

• Dilute axion field

$$\mathcal{V}_{\text{eff}} = m_a \psi^* \psi - \frac{1}{16} \frac{(\psi^* \psi)^2}{f_a^2} + \frac{1}{288} \frac{(\psi^* \psi)^3}{m_a f_a^4} + \dots \quad \begin{array}{c} \text{Dilute} \\ \text{limit} \end{array}$$

- In dense axion field $(\psi^*\psi)\sim m_a f_a^2$, must keep all orders

Both instanton and chiral potential can be summed to all orders

Instanton potential:

$$\mathcal{V}_{\text{eff}}(\psi^*\psi) = \frac{1}{2}m_a\psi^*\psi + m_a^2 f_a^2 \left[1 - J_0(2\psi^*\psi/m_a f_a^2)\right]$$

Eby, Suranyi, Vaz & Wijewardhana (2015)

Non-relativistic Instanton Potential

$$\mathcal{V}_{\text{eff}}(\psi^*\psi) = \frac{1}{2}m_a\psi^*\psi + m_a^2 f_a^2 \left[1 - J_0(2\psi^*\psi/m_a f_a^2)\right]$$

Not periodic Decreasing Amplitude

Braaten, Mohapatra, HZ, PRD (2016)

Dense Axion Stars

Assume: • Instanton potential • Newtonian gravity

• Spherically symmetric

Compare axion number density

- Dilute axion star: Gaussian-like
- Dense axion star: almost flat, with a fast-dropping edge

Self-interaction Force

Forces Balancing

 $-\frac{\nabla^2}{2m_a}\psi + \left[\left(\mathcal{V}_{\text{eff}}'(\psi^*\psi) + m_a\Phi\right]\psi = (\mu - m_a)\psi, \quad \nabla^2\Phi = 4\pi G m_a\psi^*\psi.$

 Recall in dilute axion star, kinetic pressure balances gravity and self-interaction force

In dense axion star

Bulk:

- self-interaction force balances gravity,
- \succ kinetic pressure ~ 0
- ➤ wave-function is almost flat

Surface:

- Iarge kinetic pressure needed to balance the other two,
- wave-function drop rapidly

Braaten, Mohapatra, HZ, PRL (2016)

self-interaction force balances gravity,

- \succ kinetic pressure ~ 0
- > wave-function is almost flat

Surface:

- Iarge kinetic pressure needed to balance the other two,
- wave-function drops rapidly

Braaten, Mohapatra, HZ, PRL (2016)

Thomas-Fermi Approximation

• When the surface thickness is small compare to the bulk, Thomas-Fermi approximation can be applied.

- Interaction force (mean-field pressure) exactly balances gravitational force
- Not applicable to small dense axion star, in which the surface thickness is important

Radius vs. Mass

• Heavier dense axion stars have larger radii

Braaten, Mohapatra, HZ, PRL (2016)

Formation of Dense Axion Stars

Possible remnants of dilute axion stars collapsing

26

Outline

\diamond Axions	
\diamond (Dilute) Axion Star	
\diamond Dense Axion Star	PRL 117, 121801 (2016)
\diamond Observables	arXiv:1609.05182
\diamond Axion EFT	PRD 94, 076004 (2016)

Axion Detection

Depends on the tiny axion-photon coupling

$$\mathcal{L}_{em} = \frac{c_{em}\alpha}{16\pi f_a} \epsilon^{\mu\nu\alpha\beta} F_{\mu\nu} F_{\alpha\beta}\phi.$$

$$c_{em} \sim 1 \text{ Model dependent}$$
Suppressed by $f_a \sim 10^{11} \text{GeV}$

$$\Gamma_a = \frac{c_{em}^2 \alpha^2 m_a^3}{256\pi^3 f_a^2}.$$
Axion lifetime $\sim 10^{36}$ years
Age of Universe $\sim 10^{10}$ years

Direct detection, indirect detection and laser experiment.
 Lect. Notes Phys. 741 (2008)

Indirect Detection

- Detect radio-frequency photons
- Currently no experiment available (tiny $a\gamma\gamma$ coupling)
- Two photon-production channels

 \succ One-step: NR axions $\rightarrow \gamma$

 \succ Two-step: NR axions $\rightarrow\,$ relativistic axions $\rightarrow\,\gamma$

1st Channel: NR Axions to Photons

• Odd-integer harmonics of the fundamental radio frequency.

Braaten, Mohapatra, HZ, arXiv:1609.05182

2nd Channel

• Two relativistic axions production

suppressed by one power of $(m_a^2/f_a^2) \sim 10^{-48}$

- More relativistic axions suppressed by more powers
- Much weaker photon signal than 1st channel

Two Types of Sources

- Continuous photon emission
 - Stable axion stars
- Catastrophic phenomenon:

a lot of energy released in a short time

- Collapse of dilute Axion stars
- Collision of an axion star with a neutron star
- ▶ ...

Emission From Dense Axion Star

 $4a \rightarrow 2a, 6a \rightarrow 2a, 8a \rightarrow 2a$ are all zero for instanton potential Braaten, Mohapatra, HZ, arXiv:1609.05182

Emission From Dilute Axion Star

 $4a \rightarrow 2a, 6a \rightarrow 2a, 8a \rightarrow 2a$ are all zero for instanton potential Braaten, Mohapatra, HZ, arXiv:1609.05182

Photon Flux Estimate

- Single axion decay to two photons is independent of the configuration.
- Solar system

radius ~ 125,000 AU, DM density ~ 0.3GeV/cm^3 Total DM in Solar system ~ $0.01 M_{\odot}$ 10⁶⁸ axions Photon production rate ~ $10^{22}/\text{sec}$ Energy released: ~ $10^9 \text{GeV/sec} \sim 0.4 \text{ Watt}$

• Milky way:

Total DM: $\sim 10^{12} M_{\odot}$ 10⁸² axions Largest 1st branch dense axion star has ~10⁷⁰ axions $\sim 10^{11} {\rm GeV/sec} \sim 40 {\rm ~Watt}$

Axion Stars are Not So Bright !

PRL 117, 121801 (2016) Editors' suggestion

Picture chosen by PRL

Hydrogen Axion Star ?

- Hydrogen gas is captured by the gravitational potential well of axion star, forming dense metallic fluid state.
- Electron interacts with axion, generating heat, resulting in blackbody radiation with peak in the UV region.

• Energy released:
$$10^{13} \text{ W} \times \left(\frac{m_a}{5 \text{ meV}}\right)^4$$

The signal should be readily visible to current high-resolution telescopes.

Bai, Barger and Berger, JHEP (2016)

Catastrophic Phenomena

Fast Radio Burst (FRB)

- A ultra-fast (milli-sec) burst of photons in radio frequency.
- Nothing similar observed in optical, X rays and Y rays
- Since 2007, 17 events have been reported.
- Estimated rate ~ 10^4 sky ⁻¹ day ⁻¹
- Reported frequency is 1.4 GHz (telescope design)
- Extra-galactic sources from dispersion measure
- Energy released up to 10^{40} erg ~ 10^{-14} M_{\odot} (If isotropic)
- Strong linear polarization observed.

Recent review: Katz, arXiv:1604.01799 Online database: http://www.astronomy.swin.edu.au/pulsar/frbcat

Fast Radio Burst

Figure from Nature 530, 453 (2016)

Are Axion Stars an Explanation?

- ✓ Observed frequency: 1.4 GHz
 - $10^{-6} \mathrm{eV} < m_a < 10^{-2} \mathrm{eV}$ 0.2 GHz $< \nu < 2400$ GHz Also explains why such burst is not observed in other bands.
- ✓ Total energy released: up to $\sim 10^{-14} M_{\odot}$
 - Dilute axion star critical mass $6 \times 10^{-14} M_{\odot}$
 - Dense axion star mass $10^{-20} M_{\odot}$ to $2 M_{\odot}$
- ✓ <u>Time duration</u>: ~ 1 ms
 - Dilute axion star critical radius: 200 km
 - Dense axion star radius: 1m to 10 km
- ✓ Polarized photons

Axions in axion stars are in coherence

Scenarios with Axion Stars

• Collision of a dilute axion star with a neutron star

Coherent electric dipole radiation

From electrons in atmosphere Iwazaki, hep-ph/9908468

From neutrons in outer core Raby, PRD (2016)

Collapse of dilute axion stars above the critical mass

Tkachev, JETP Lett. (2014)

Collision of two axion stars

Eby et.al., arXiv:1701.01476

Collision of a dense axion star with a neutron star

Observe Odd-integer Harmonics

- One unique feature of axion stars: odd-integer harmonics of the fundamental radio frequency.
- Can we observe the fast radio burst at other frequencies?
 1.4 GHz, 3 × 1.4 GHz, 5 × 1.4 GHz ...
 or

 $1/3 \times 1.4$ GHz, 1.4 GHz, $5/3 \times 1.4$ GHz ... Many possible combinations

• Need more events in more frequency windows.

Outline

- \diamond Axions
- \diamond (Dilute) Axion Star
- \diamond Dense Axion Star

- PRL 117, 121801 (2016)
- ♦ Observables arXiv:1609.05182
 - PRD 94, 076004 (2016)

 \diamond Axion EFT

Axion EFT

Relativistic Axions: real scalar

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \mathcal{V}(\phi)$$

Instanton or chiral potential

Non-relativistic axions: complex scalar

$$\mathcal{H}_{\text{eff}} = \frac{1}{2m_a} \nabla \psi^* \cdot \nabla \psi + \mathcal{V}_{\text{eff}}(\psi^* \psi)$$

Integrate out axion mass scale

- Much simpler, but equally accurate in the NR limit
- Need to find the NR potential $\mathcal{V}_{ ext{eff}}(\psi^*\psi)$

Naïve NR Reduction

• Zeroth order approximation

$$\phi(\mathbf{r},t) = \frac{1}{\sqrt{2m_a}} \left[\psi(\mathbf{r},t)e^{-im_a t} + \psi^*(\mathbf{r},t)e^{+im_a t} \right]$$

Dilute $\mathcal{V}_{\text{eff}} = m_a \psi^* \psi - \frac{1}{16} \frac{(\psi^* \psi)^2}{f_a^2} + \frac{1}{288} \frac{(\psi^* \psi)^3}{m_a f_a^4} + \dots$

Dense $\mathcal{V}_{\text{eff}}(\psi^*\psi) = \frac{1}{2}m_a\psi^*\psi + m_a^2 f_a^2 \left[1 - J_0(2\psi^*\psi/m_a f_a^2)\right]$

- Used to get dilute and dense axion star solutions
- Not considering virtual axions

Match the amplitude

- Matching low-energy scattering amplitudes.
- Includes all virtual axion contributions
- Only tree diagram: loops are suppressed by $(m_a/f_a)^2 \sim 10^{-48}$

• Example: 3 to 3 scattering

Match Low-power Couplings

• Expand the NR potential

$$\mathcal{V}_{\text{eff}}(\psi^*\psi) = m_a\psi^*\psi + m_a^2 f_a^2 \sum_{n=2}^{\infty} \frac{v_n}{(n!)^2} \left(\frac{\psi^*\psi}{2m_a f_a^2}\right)^n$$

• Check (v_2, v_3, v_4, v_5) for instanton potential

NR reduction:(-1,1,-1,1)With matching:(-1, -1.125, -2.25, 1.76)

Deviation: (0, -189%, -56%, -43%)

Contribution of virtual axions is important !

Braaten, Mohapatra, HZ, PRD (2016)

Dense Regime

- Cannot truncate the power expansion
- Impossible to extract all couplings by matching (infinitely many)
- One scheme: include more and more virtual axion propagators in the matching

Naïve NR reduction

Match diagrams with no virtual propagator

<u>1st improvement</u>

Match diagrams with 0 or 1 virtual propagator

Braaten, Mohapatra, HZ, PRD (2016)

Summary

- Gravity can thermalize axions toward Bose-Einstein condensates and form dilute axion stars.
- A dilute axion star accumulates axions and collapses once its mass exceeds the critical mass $10^{-14} M_{\odot}$
- Dense axion star is a possible remnant.
- Catastrophic phenomena involving axion stars can release a large amount of coherent radio-frequency photons in a very short time, which may explain fast radio burst.
- The photons in odd-integer harmonics of a fundamental radio frequency are a unique signature of axions.