Relaxion with Particle Production

Gustavo Marques-Tavares Stanford University

with A. Hook: 1607.01786

Why is the Higgs mass small?

 $m_h^2 \sim \Lambda^2$?

Why is the Higgs mass small?

 $m_h^2 \longrightarrow m_h^2(\phi)$

Landscape

Landscape

P. W. Graham, D. E. Kaplan, and S. Rajendran, Phys. Rev. Lett. 115, 221801 (2015), 1504.07551

P. W. Graham, D. E. Kaplan, and S. Rajendran, Phys. Rev. Lett. 115, 221801 (2015), 1504.07551

$$\mathcal{L} \supset -(\Lambda^2 - \epsilon \phi)|h|^2 - V_{\epsilon}(\epsilon \phi) - \Lambda^3_{\text{QCD}}\langle h \rangle \cos(\phi/f)$$

$\mathcal{L} \supset -(\Lambda^2 - \epsilon \phi)|h|^2 - V_{\epsilon}(\epsilon \phi) - \Lambda^3_{\text{QCD}}\langle h \rangle \cos(\phi/f)$

$$\phi \sim \Lambda^2 / \epsilon$$

 $V_{\epsilon}(\epsilon \phi) \sim -\epsilon \Lambda^2 \phi$

 $V'(\phi) = 0 ?$

$\mathcal{L} \supset -(\Lambda^2 - \epsilon \phi)|h|^2 - V_{\epsilon}(\epsilon \phi) - \Lambda^3_{\text{QCD}}\langle h \rangle \cos(\phi/f)$

$$\phi \sim \Lambda^2 / \epsilon$$

 $V_{\epsilon}(\epsilon \phi) \sim -\epsilon \Lambda^2 \phi$

 $\langle h \rangle \sim \frac{\epsilon \Lambda^2 f}{\Lambda_{\rm QCD}^3}$

Stopping mechanism cos() potential

Dissipation Hubble friction

Relaxion: Slow roll regime

 $\ddot{\phi} + 3H\dot{\phi} = -V'$

 $\dot{\phi} \approx -\frac{V'}{3H} \sim \frac{\epsilon \Lambda^2}{H}$

Relaxion: requires many e-foldings

Slow Roll

 $\dot{\phi} \sim \epsilon \Lambda^2 / H$

 $\Delta \phi|_{1 \text{ e-fold}} \sim \epsilon \Lambda^2 / H^2$

Relaxion: requires many e-foldings

Slow Roll

 $\dot{\phi} \sim \epsilon \Lambda^2 / H$

 $\Delta \phi|_{1 \text{ e-fold}} \sim \epsilon \Lambda^2 / H^2$

 $\Delta\phi\sim\Lambda^2/\epsilon$

 $\Delta N_e = H^2 / \epsilon^2$

Relaxion: requires many e-foldings

- Stopping mechanism: barrier depends on Higgs vev
 - Tension with strong CP problem
 - Non-trivial to have barrier height larger than v
- Dissipation mechanism: Hubble
 - Super Planckian field excursions
 - Requires many e-foldings
 - Scanning must happen during inflation

Particle production: kill 2 birds with 1 stone

Stopping mechanism

Friction

Outline

- Basic mechanism
- Implementing particle production relaxion in the SM
- Relaxing with particle production:
 - During inflation
 - After inflation

Toy Model: Abelian Higgs + relaxion (static universe)

$$\mathcal{L} \supset (\Lambda^2 - \epsilon \phi) |h|^2 + (\epsilon \Lambda^2 \phi + ...) - \mu_s^4 \cos\left(\frac{\phi}{f'}\right) + \frac{\phi}{4f} F \tilde{F}$$

Toy Model: Abelian Higgs + relaxion (static universe)

$$\mathcal{L} \supset (\Lambda^2 - \epsilon \phi) |h|^2 + (\epsilon \Lambda^2 \phi + ...) - \mu_s^4 \cos\left(\frac{\phi}{f'}\right) + \frac{\phi}{4f} F \tilde{F}$$

$$m_h^2 = -(\Lambda^2 - \epsilon \phi) < 0$$

$$m_A \sim g\Lambda \sim \Lambda$$

Toy Model: Abelian Higgs + relaxion (static universe)

$$\mathcal{L} \supset (\Lambda^2 - \epsilon \phi) |h|^2 + (\epsilon \Lambda^2 \phi + ...) - \mu_s^4 \cos\left(\frac{\phi}{f'}\right) + \frac{\phi}{4f} F \tilde{F}$$

EOM for gauge fields

$$\ddot{A}_{\pm} + \left(k^2 + m_A^2 \mp k\frac{\dot{\phi}}{f}\right)A_{\pm} = 0$$

$$\omega^2 = k^2 + m_A^2 - \frac{k\phi}{f}$$

Tachyonic modes for:

$$\frac{\dot{\phi}}{f} \gtrsim m_A$$

$$A(t) \sim e^{\frac{\phi}{f}t}$$

$$\mathcal{L} \supset (\Lambda^2 - \epsilon \phi) |h|^2 + (\epsilon \Lambda^2 \phi + ...) - \mu_s^4 \cos\left(\frac{\phi}{f'}\right) + \frac{\phi}{4f} F \tilde{F}$$

 $\dot{\phi} > \mu_s^2$

 $m_A \sim \langle h \rangle \sim \Lambda$

 $rac{\dot{\phi}}{f} < \Lambda$

$$\mathcal{L} \supset (\Lambda^2 - \epsilon \phi) |h|^2 + (\epsilon \Lambda^2 \phi + ...) - \mu_s^4 \cos\left(\frac{\phi}{f'}\right) + \frac{\phi}{4f} F \tilde{F}$$

Scans until

$$\langle h \rangle \ll \Lambda$$

When

 $\frac{\dot{\phi}}{f} \gtrsim \langle h \rangle \sim \mathcal{O}(100 \,\mathrm{GeV})$

Finite Temperature

Relaxion kinetic energy transferred to gauge fields

$$T\sim \sqrt{\dot{\phi}}$$

Gauge symmetry restoration

 $m_A \sim 0$

Plasma effects (screening)
 $m_D \sim T$

Finite Temperature

$$\omega^2 - k^2 \pm \frac{k\phi}{f} = \Pi_t(\omega,k) = m_D^2 F(\omega/k)$$
 We are interested in the regime

 $\omega = i\Omega, \quad |\Omega| \ll k \ll m_D$

Finite Temperature

$$\begin{split} \omega^2 - k^2 \pm \frac{k\dot{\phi}}{f} &= \Pi_t(\omega, k) = m_D^2 F(\omega/k) \\ \text{We are interested in the regime} \\ \omega &= i\Omega, \quad |\Omega| \ll k \ll m_D \\ -\Omega^2 - k^2 \pm \frac{k\dot{\phi}}{f} \approx \frac{m_D^2 |\Omega| \pi}{4k} \\ \Omega \sim \frac{\dot{\phi}}{f} \frac{(\dot{\phi}/f)^2}{m_D^2} \end{split}$$

Quick Summary

•
$$\mathcal{L} \supset (\Lambda^2 - \epsilon \phi) |h|^2 + (\epsilon \Lambda^2 \phi + ...) - \mu_s^4 \cos\left(\frac{\phi}{f'}\right) + \frac{\phi}{4f} F \tilde{F}$$

• Tachyonic mode for A:
$$\Omega \sim \dot{\phi}/f$$
 ______ selects v ______ creates friction

Temperature dilutes tachyon time-scale:

$$\Omega \sim \frac{(\dot{\phi}/f)^3}{T^2}$$

Can it work in the real world?

Particle Production relaxion in SM

$$\mathcal{L} \supset (\Lambda^2 - \epsilon \phi) |h|^2 + (\epsilon \phi \Lambda^2 + ...) - \mu_s^4 \cos\left(\frac{\phi}{f'}\right) + \frac{\phi}{4f} \left(\alpha_Y B\tilde{B} - \alpha_W W\tilde{W}\right)$$

Particle Production relaxion in SM

$$\mathcal{L} \supset (\Lambda^2 - \epsilon \phi) |h|^2 + (\epsilon \phi \Lambda^2 + ...) - \mu_s^4 \cos\left(\frac{\phi}{f'}\right) + \frac{\phi}{4f} \left(\alpha_Y B\tilde{B} - \alpha_W W\tilde{W}\right)$$

Relaxion does not couple to the photon!

Relaxion setup

$$\mathcal{L} \supset (\Lambda^2 - \epsilon \phi) |h|^2 + (\epsilon \phi + ...) - \mu_s^4 \cos\left(\frac{\phi}{f'}\right) + \frac{\phi}{4f} \left(\alpha_Y B\tilde{B} - \alpha_W W\tilde{W}\right)$$

- Sub planckian: $\epsilon > \Lambda^2/M_P$
- Many minima: $\mu_s^4 > \epsilon \Lambda^2 f'$
- Fine scanning: $\epsilon f' < v^2$

Relaxion setup

 $\mu_s^2 < \dot{\phi} \sim \text{const} \lesssim \Lambda^2$

"Self-tune" to Weak Scale

 $\dot{\phi}/f \sim v = 246 \text{ GeV}$

Need to ensure energy loss is efficient

Energy Loss

Not overshooting v

 $\delta m_H^2 = \epsilon \delta \phi$ $\delta m_H \sim \frac{\epsilon \dot{\phi}}{v} \delta t$

$$\delta t \sim \Omega^{-1} \sim \frac{f}{\dot{\phi}} \left(\frac{\dot{\phi}/f}{T}\right)^{-2}$$

Energy Loss

Not overshooting v

$$\delta m_H^2 = \epsilon \delta \phi$$

$$\delta m_H \sim \frac{\dot{\epsilon \phi}}{v} \delta t \sim \frac{\epsilon T^2 f^3}{v \dot{\phi}^2} < v$$

$$\epsilon < \frac{v^5 \mu_s^4}{T^8}$$

Possible realization

Initial Conditions

Take this inflationary initial conditions

Initial Conditions

Take this inflationary initial conditions

Relaxing during inflation

$$T \sim \sqrt{\dot{\phi}} \sim \sqrt{\frac{\epsilon \Lambda^2}{H}}$$

 $\Delta N_e \sim \left(\frac{H}{\epsilon}\right)^2$

Relaxing during inflation

$$T \sim \sqrt{\dot{\phi}} \sim \sqrt{\frac{\epsilon \Lambda^2}{H}}$$

 $\Delta N_e \sim \left(\frac{H}{\epsilon}\right)^2$

$$\frac{\Lambda^2}{M_P} < \epsilon < \frac{v^5 \mu_s^4}{T^8}$$

$$\Lambda^6 < v^5 M_P \Delta N_e$$

Relaxing during inflation

Inflation too brief

$$\left(\frac{H}{\epsilon}\right)^2 > N_e$$

Can the scanning continue after inflation ends?

Inflation too brief

$$\left(\frac{H}{\epsilon}\right)^2 > N_e$$

Can the scanning continue after inflation ends?

Yes!

*but before SM reheats

Scanning after inflation

Hubble decreases

 ϕ $\dot{\phi} \sim \epsilon \Lambda^2 / H$

increases

Scanning very fast once: $H \leq \epsilon$

 $\dot{\phi} \sim \Lambda^2$

Scanning after inflation

$$\frac{\Lambda^2}{M_P} < \epsilon < \frac{v^5 \mu_s^4}{T^8} \qquad \& \qquad \dot{\phi} \sim \Lambda^2$$

 $\Lambda^{10} \lesssim v^5 \mu_s^4 M_P$

 $\Lambda \sim \mu_s \qquad \Lambda < 40 \text{ TeV}$

	Λ	ϵ	f	f'	Λ_c
Values in GeV	10^{4}	10^{-10}	10^{6}	10^{14}	10^{3}

Conlusions

- Particle production is an efficient mechanism to both dissipate energy and to select small Higgs mass
- Qualitatively new approach to relaxion
- It can work without super planckian field excursions and with normal amounts of inflation
- The scanning can happen after inflation