What can we learn from the current Higgs data?

Peisi Huang Texas A&M University Theory seminar, UW-Madison 04/25/2017

Current Higgs Profile

7+8 TeV data

Interesting Excess: Excess at Both Experiments

ttH, H->W+W⁻, multi-lepton

 $\mu = 2.1^{+1.4}_{-1.2}$

ATLAS 1506.05988

Excess at Both Runs

Moriond 2017

CI

 $\mu = 1.7^{+0.7}_{-0.8}$

 $-17^{+0.7}$

SM + An Enhanced Top Yukawa Coupling

Combine with other channels

If combine all channels in tth searches,

The excess becomes less significant, or the signal strength is more SM-like is the excess really about tth?

Take a Closer Look at the Signature

- What are we seeing exactly?
 tth, h->w⁺w⁻
- It is really a search for 2t + 2W, or equivalently 2b + 4W final states
- 2b + 4W gives rise to the multi-lepton
 + multi-(b)jets + MET signatures
- tth, h->W+W- is really not about tth, but about new physics!

2t + 2W final states, exactly what you would do when you search for sbottoms Caveat in the simplified model: can not have 100% Branching ratio, some BR goes to

CMS-SUS-13-008

Just an Example: A Right-handed Stop

PH, A. Ismail, I. Low, C. Wagner, 1507.01601

 $\tilde{b}_{1} \rightarrow b + \tilde{\chi}_{1}^{00}$

Distinguishing Stops from Enhanced Top Yukawa?

Stops are heavier, cross section increases faster from the pdf

	$\sigma(8 \text{ TeV})$	$\sigma(13 \text{ TeV})$	Ratio(13 TeV/8 TeV)
$\overline{\sigma(pp \to \text{ttH})}$	129 fb	509 fb	3.9
$\sigma(pp \to \tilde{t}_1 \tilde{t}_1^*)$	$45~{\rm fb}$	$296~{\rm fb}$	6.6

Expect a signal strength ~ 3.69 at 13 TeV

PH, A. Ismail, I. Low, C. Wagner, 1507.01601

Distinguishing Stops from Enhanced Top Yukawa?

More missing energy from stop than th

 μ (13 TeV) ~ 6.94 reach 50 with about 40 fb-1

In the stop events, b-jets are more centrally produced, while the b-jets from ttH tend to be more forward, from the t-channel kinematics

PH, A. Ismail, I. Low, C. Wagner, 1507.01601

Other Signatures

Charged Wino: Disappearing Tracks

same sign Trilepton

- For a 260 GeV pure wino, the mass splitting between the neutral wino and the charge wino ~ 160 Me∨ (about the CMS limit)
- A small amount of higgsino mixing, would significantly increase the mass splitting
- A 1 TeV higgsino, the mass splitting is ~
 240 Me∨

$$\tilde{t}_R \to t + \tilde{B} \to t + (\tilde{W}^{\pm} + W^{\mp})$$

- Ws from the bino decay are charge symmetric
- Expect same sign trileptons
- With 40 fb⁻¹, expect about 5 same sign trilepton events

Confronting the current data

- The multi-lepton + bjets + missing energy search should place a further limit on this scenario
- The sbottom->t chargino search with a wino-like LSP is not updated
- SUSY-AI claims the Benchmark point is consistent with 13 TeV 3.2 fb⁻¹
- 610 GeV stops(winos ~ 320 GeV) will lead to a signal strength about 2 at 13 TeV
- 640 GeV stops will lead to a signal strength about 1.5 at 13 TeV

Enough room for this scenario

Current Higgs Profile

Interpretations

- tth coupling is SM like. The excess is from stop pair production
- The signal strength will be higher at 13 TeV
- Will see it in same sign trilepton, or disappearing tracks

PH, A. Ismail, I. Low, C. Wagner, 1507.01601

Other possibilities?

ATLAS and CMS, 1606.02266

Enhanced Top Yukawa + New Physics

Enhanced Top Yukawa + New Physics

Has an impact on the double Higgs production

Electroweak Baryogenesis – Sakharov Conditions

- Generates Extra Baryons
 - Baryon number violation
- Prefers Matter Over Anti-matter
 - CP violation
 - Or else, for each process creating matter at the cost of anti-matter, the CP-mirrored, inverse process would take place with equal probability

• Irreversible Process

- Departure from thermal equilibrium A first order phase transition
- Or else, for each process creating matter at the cost of anti-matter, the inverse process would take place with equal probability

Electroweak Phase Transition

• EWPT is difficult to study from cosmology

- EWPT in the SM is not first order (unless the $m_h < 40$ GeV)
- New physics is required for a strongly first-order phase transition
- The new physics will alter the finite-temperature Higgs potential
- We can measure the zero temperature Higgs potential at the LHC!

Measure the Higgs Potential

Measure the Higgs Potential

Relate the Trilinear Coupling with the EWPT

A lot of models can be consistent with a first order EWPT

SM + singlet
SM + scaler doublet (like MSSM stops)
SM + chiral fermion (like MSSM gauginos)
SM + varying Yukawas (like flavons)

The trilinear coupling could deviate significantly from its SM value in the region consistent with a first order EWPT

O(1) deviation is typical can go up to $7\lambda_3^{SM}$

...

PH, A. Joglekar, B. Li, and C. Wagner, arxiv:1512:00068; PH, A. Long, and L.T. Wang, arxiv:1608.06619

Vacuum stability

$$A_t^2 \lesssim \left(3.4 + 0.5 \frac{|1 - r|}{1 + r}\right) m_T^2 + 60 m_2^2$$

$$m_T^2 = (m_{Q_3}^2 + m_{U_3}^2), m_2^2 = (m_{H_u}^2 + \mu^2), \text{ and } r = m_{U_3}^2 / m_{Q_3}^2$$

Blinov, and Morrissey, 2014

Stops – current limit

Weak constraints when stops are heavier than 500 Gev

How to hide the light stops?

Compressed region

small islands, stops can hide in the holes

Weak constraints for di-lepton channel, make that channel dominant

e leptons are relatively solf the stops?

Weak constraints for di-lepton channel, make that channel dominant

Main constraint: trilepton search for EW-ino compressed region, winos around 300 GeV can $\widetilde{Be}^{\pm} \widetilde{a}_{B}^{0}$ owed

How to hide the light stops?

Constraints can be further lowered with a light stau

 $\tilde{\chi}_1^0$

b

 u/ℓ

 $\ell/
u$

~ 200 GeV possible

 $\tilde{\chi}_1^{\pm}(\sim \tilde{W})$

Implications on Double Higgs – Decay channels

Double Higgs : production

 Sum of the two diagrams on each line is gauge invariant

SM, interface with each other destructively

- Stop contribution without mixing is small enough in the current stop limit
- (7)+(8) dominates the stop contribution

large modification in double Higgs

- Without enhanced top coupling
- dark orange, effective gluon Higgs coupling is consistent with current best fit within 1σ
- light orange, consistent with the current best fit within 2σ
- Maximum Xt allowed
- cross section for pp->hh->bbγγ
 (SM value 60ab)
 Double Híggs can be at
 least twíce the SM value

work in progress with Joglekar, Li, and Wagner

large modification in double Higgs

• $\kappa_{\rm t} = 1.1$

- orange, consistent with current best fit within 2σ
- cross section for pp->hh->bbγγ (SM value 60ab)
- Maximum Xt allowed

Double Higgs can be about five times the SM value

work in progress with Joglekar, Li, and Wagner

- The destructive interference occurs between the real part of the triangle and the box diagrams
- Above the tt threshold, the amplitudes develop imaginary parts, the cancellation does not occur
- When λ_3 increases, the amplitudes increases more below the tt threshold than above the threshold

 m_{hh} shifts to smaller value for large λ_3

Barger, Everett, Jackson, and Shaughnessy

Kinematic Distributions : λ_3

- Re-design the cuts for large λ^3
- The distribution can be used to distinguish λ³ that have the same production cross sections (maybe for future colliders).

PH, A. Joglekar, B. Li, and C. Wagner, arxiv:1512.00068

Kinematic Distributions : λ_3 , κ_t

- κ_t does not change the distribution for the SM
- When the triangle diagram and the box diagram are comparable ($\lambda_3 \sim 3 \lambda_3^{SM}$), κ_t changes the location of the complete cancellation

Kinematic Distributions : stops

BMA:

$$\begin{array}{l} m_{\tilde{t}_1} = 300 \; \mathrm{GeV}, \; m_{\tilde{t}_2} = 1 \; \mathrm{TeV} \\ X_t = 1.5 \; \mathrm{TeV}, \; \kappa_t = 1, \; \kappa_g = 0.8 \\ \sigma_{hh \rightarrow bb\gamma\gamma} = 0.19 \; \mathrm{fb} \end{array}$$

BMB, same as BMA, but

$$\kappa_t = 1.1, \ \kappa_g = 0.9$$

 $\sigma_{hh \rightarrow bb\gamma\gamma} = 0.16 \text{ fb}$

Collider study

 $p_t(b) > 30 \text{ GeV}, |\eta(b)| < 2.5, p_t(\gamma) > 30 \text{ GeV}, |\eta(\gamma)| < 2.5$

112.5 GeV $< m_{bb} < 137.5$ GeV, 120 GeV $< m_{\gamma\gamma} < 130$ GeV.

 $n_{lep} + n_{jet} < 4$

arxiv:1512.00068 PH, A. Joglekar, B. Li, and C. Wagner

Collider study

 $p_t(b) > 30 \text{ GeV}, |\eta(b)| < 2.5, \ p_t(\gamma) > 30 \text{ GeV}, |\eta(\gamma)| < 2.5$ 112.5 GeV $< m_{bb} < 137.5$ GeV, 120 GeV $< m_{\gamma\gamma} < 130$ GeV.

 $n_{lep} + n_{jet} < 4$

 $\lambda^{3} < 3\lambda^{3}_{SM}, m_{hh} > 350 \text{ GeV}$ $\lambda^{3} > 3\lambda^{3}_{SM}, 250 \text{ GeV} < m_{hh} < 350 \text{ GeV}$

λ_3	λ_3^{SM}	$3 \lambda_3^{SM}$	$5 \ \lambda_3^{SM}$	
S/\sqrt{B}	11	4.5	5.3	100 TeV, 3000 fb ⁻¹

5
$$\sigma$$
 for λ^3 ~ 5 λ^3_{SM} , or λ^3 ~ 1.6 λ^3_{SM}

arxiv:1512.00068 PH, A. Joglekar, B. Li, and C. Wagner

Current Higgs Profile

Interpretations

Stop pair production

PH, A. Ismail, I. Low, C. Wagner, 1507.01601

- Enhanced htt coupling + new physics. The new loop particles compensate the enhanced htt coupling to keep gluon fusion SM-like
- The new physics will show up in double Higgs production.

ATLAS and CMS, 1606.02266

backup

Boosted Higgs

In the boosted region

Above $p_{\tau}(h) \sim m_t$, expect full theory and EFT diverge

Sensitive to possible new loop particles

Expect that the p_{τ} distributions change for different loop particles, helps to resolve the degeneracy in gluon fusion

Current signal strength on gluon fusion

Inclusive: $\mu = 1.13^{+0.18}_{-0.17}$

