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Introduction
Neutrinos have mass.

v In the SM, neutrinos are
© massless (mν = 0) and

© only left-handed (νL). No right-handed neutrinos (νR) observed yet.

v Giving neutrinos mass in the SM is possible iff we introduce νR,

LSM ⊃ −mν (νRνL + νLνR) , where mν =
Yν vp

2
,

Yν = Higgs-neutrino Yukawa coupling constant,

v= Higgs VEV.

v neutrino oscillation =⇒ mν 6= 0.
v Nobel Prize in Physics 2015

“for the discovery of neutrino
oscillations, which shows that
neutrinos have mass”.
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Introduction
How to give neutrinos mass?

There are various suggestions as to how neutrinos can get mass.
v Dirac mass:

© Assumption: νR exists.
© Lagrangian:

L D
mass = −mD

ν
(νRνL + νLνR) .

© Disadvantage: No reason for mD
ν

to be small.
© Challenge: Finding νR.

v Majorana mass:
© Assumption: neutrino ≡ anti-neutrino.
© Lagrangian:

LM
mass =

1
2 mM

ν

�

νC
LνL + νLν

C
L

�

.

© Disadvantage: LM
mass is not invariant under SU(2)L ×U(1)Y gauge group

∴LM
mass is not allowed by SM.

© Challenge: To ascertain the Majorana nature of light neutrino.
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Introduction
How to give neutrinos mass?

v Dirac-Majorana mass:
© Assumptions: νR exists, and neutrino ≡ anti-neutrino.
© Lagrangian:

L D+M
mass =

1
2 mL

ν

�

νC
LνL

�

+ 1
2 mR

ν

�

νC
RνR

�

−mD
ν
(νRνL) +H.c.

= 1
2

�

m1ν
C
1ν1 +m2ν

C
2ν2

�

+H.c.,

where νk = νkL + νC
kL (k= 1,2) are Majorana neutrinos and

m2,1 =
1
2

�

�

mL
ν
+mR

ν

�±
r

�

mL
ν
+mR

ν

�2
+ 4

�

�mD
ν

�

�

2
�

.

© Disadvantages:
å No explanation for small mass of neutrinos, and
å one mass out of mD

ν , mR
ν, mL

ν is complex, in general.
© Challenges:

å To prove that both ν1 and ν2 are Majorana neutrinos.
å What is the physical meaning of complex mass?
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Introduction
How to give neutrinos mass?

v See-saw mechanism: A simpler version of Dirac-Majorana mass,
with a nice twist.

© Assumptions: mL
ν
= 0 and mD

ν
�mR

ν
.

© Lagrangian:

L D+M
mass =

1
2 mR

ν

�

νC
RνR

�

−mD
ν
(νRνL) +H.c.

= 1
2

�

m1ν
C
1ν1 +m2ν

C
2ν2

�

+H.c.,

where m1 ≈ −
�

mD
ν

�2

mR
ν

and m2 ≈mR
ν
.

ν2

ν1

abracadabra

As ν2 gets heavier,
ν1 become lighter.© Advantage: m1�m2 =⇒ ν1 is a light neutrino

© Challenges:
å To find the heavy ν2 experimentally.
å To prove that both the light ν1 and heavy ν2 are Majorana neutrinos.
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Looking for Majorana neutrinos via ∆L= 2 processes

v Neutrinos: the only known elementary fermions that can have
Majorana nature (ν≡ ν).

v Majorana neutrino: very unique phenomenology (lepton number
non-conservation), they mediate ∆L= 2 processes.

W±∗

W±∗

`±i

`±j

×νk ≡ νk ∝
∫

d4p
(2π)4

∑

k

U`ik U`jk
mk+ 6 p
p2 −m2

k

v ∆L= 2 processes play crucial role to probe Majorana nature of ν’s.
© neutrinoless double-beta (0νββ) decay
© Rare meson decays with ∆L= 2
© Collider searches at LHC 7 / 53



Looking for Majorana neutrinos via ∆L= 2 processes

v Decay rate of any ∆L= 2 process with final leptons `+1 `
+
2 :

Γ∆L=2∝
�

�

�

�

�

∑

k

U`1kU`2k
mk

p2 −m2
k + imkΓk

�

�

�

�

�

2

,

where we have used the fact that (1− γ5) 6 p(1− γ5) = 0.
© Light ν:

Γ∆L=2∝
�

�

�

�

�

∑

k

U`1kU`2kmk

�

�

�

�

�

2

=
�

�m`1`2

�

�

2
.

© Heavy ν:

Γ∆L=2∝
�

�

�

�

�

∑

k

U`1kU`2k

mk

�

�

�

�

�

2

.

© Resonant ν:

Γ∆L=2∝
Γ (N→ i) Γ (N→ f)

mNΓN
.
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Looking for Majorana neutrinos via ∆L= 2 processes
Neutrinoless double-beta (oνββ) decay

A comparison with beta decay and double-beta decay:

β-decay2νββ-decay

0νββ-decay

++

+
+

A
Z N

++

+
+ +

−

A
Z+1N

++

+ +
+ +

−

−

A
Z+2N

++

+ +
+ +

−

−
A

Z+2N

+ ≡ proton (p)

≡ neutron (n)

− ≡ electron (e−)

≡ electron-antineutrino (νe)
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Looking for Majorana neutrinos via ∆L= 2 processes
Neutrinoless double-beta (oνββ) decay

Mechanism for 0νββ decay:

d

u

d

d

u

u

d

u

d

d

u

u

W−

W−

Neutron Proton

Neutron Proton

νe ≡ νeNucleus

e−

e−

Black-box diagrams for
0νββ:

n

n

e−

e−

p

p

0νββ

Nucleon level black-box

d

d

e−

e−

u

u

0νββ

Quark level black-box
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Looking for Majorana neutrinos via ∆L= 2 processes
Neutrinoless double-beta (oνββ) decay

v Double-beta (2νββ) decay has been observed in 10 isotopes,
48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128Te, 130Te, 150Nd, 238U,
with half-life T1/2 ≈ 1018 − 1024 years.

Giovanni Benato (for the GERDA collaboration), arXiv:1509.07792

v 0νββ (forbidden in SM) is yet to be observed in any experiment.

T0ν
1/2

�

76Ge
�

> 2.1× 1025 years (90% C.L.) .

M. Agostini et al. (GERDA Collaboration) Phys. Rev. Lett. 111, 122503 (2013). 11 / 53



Looking for Majorana neutrinos via ∆L= 2 processes
Neutrinoless double-beta (oνββ) decay

v The half-life of a nucleus decaying via 0νββ is,

�

T0ν
1/2

�−1
= G0ν |M0ν|

�

�mββ

�

�

2
,

where
© G0ν is phase space factor,
© M0ν is the nuclear matrix element, (large theoretical uncertainty)

© mββ is effective Majorana mass. mββ =
3
∑

k=1

U2
ekmk is complex, in

general, and can be zero due to possible cancellations arising from
phases in Uek.
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Looking for Majorana neutrinos via ∆L= 2 processes
Neutrinoless double-beta (oνββ) decay

NH: Normal hierarchy
IH: Inverted hierarchy

S. M. Bilenky and C. Giunti

Mod. Phys. Lett. A 27, 1230015 (2012),

arXiv:1203.5250

NH

IH

v If mββ < 10−2, only NH is viable and the T0ν
1/2 will be much larger

than the current experimental lower bound.
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Looking for Majorana neutrinos via ∆L= 2 processes
Rare meson decays: M+→M′−`+1 `

+
2

v Processes: M+→M′−`+1 `
+
2 ,

where M = K, D, Ds, B, Bc and M′ = π, K, D, . . .
G. Cvetic, C.S. Kim, arXiv:1606.04140 (PRD 94, 053001, 2016)

G. Cvetic, C. Dib, S. Kang, C. S. Kim, arXiv:1005.4282 (PRD 82, 053010, 2010)

M+ M′−

Q q1

q q2

`+1

`+2

×N
M+ M′−

Q

q

q1

q2

`+1`+2

×
N

v No nuclear matrix element unlike 0νββ , but probes Majorana
nature of massive neutrino(s) N.
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Looking for Majorana neutrinos via ∆L= 2 processes
Rare meson decays: M+→M′−`+1 `

+
2
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Looking for Majorana neutrinos via ∆L= 2 processes
Collider searches at LHC

v Processes: W+→ e+e+µ−νµ, W+→ µ+µ+e−νe. Involves heavy
neutrino N which can have Majorana nature as well.

C. Dib, C.S. Kim, arXiv:1509.05981 (PRD 92, 093009, 2015);

C. Dib, C.S. Kim, K. Wang, J. Zhang, arXiv:1605.01123 (PRD 94, 013005, 2016)

W+

W−∗

e+ e+
µ−

νµ

×
N

(Lepton Number Violating)

W+

W+∗

e+

N

µ−
e+

νe(Lepton Number Conserving)

v Decay widths:
© LNV: Γ

�

W+→ e+e+µ−νµ
�

= |UNe|4 Γ̂ ,
© LNC: Γ

�

W+→ e+e+µ−νµ
�

=
�

�UNeUNµ

�

�

2
Γ̂ ,

where Γ̂ =
G3

FM3
W

12× 96
p

2π4

m5
N

ΓN

�

1− m2
N

M2
W

�2�

1− m2
N

2M2
W

�

.
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Looking for Majorana neutrinos via ∆L= 2 processes
Collider searches at LHC

APS News (Nov 18, 2015) for
“Physics – Spotlighting Exceptional Research”

http://physics.aps.org/synopsis-for/10.1103/PhysRevD.92.093009

Particles & Fields
SYNOPSIS: LHC Data Might Reveal Nature of Neutrinos
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Looking for Majorana neutrinos via ∆L= 2 processes
Collider searches at LHC
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The ‘practical Dirac-Majorana confusion theorem’
Hurdle in deciphering the Majorana nature of neutrinos

v Practical Dirac-Majorana confusion theorem: By looking at the
total decay rate or any other kinematic test of a process allowed in
the SM, it is practically impossible to distinguish between the Dirac
and Majorana neutrinos in the limit neutrino mass goes to zero.

B. Kayser, Phys. Rev. D 26, 1662 (1982).

v Conceptual basis: Let mν = mass of neutrino (ν).
© When mν 6= 0, ν is not a chirality eigenstate, but a helicity eigenstate.

© In terms of helicity,
å a Dirac neutrino νD has four states νD

−, νD
+, νD

+ and νD
−, but

å a Majorana neutrino νM always has two states νM
+ and νM

− .

© When mν→ 0, its difficult to distinguish between
�

νD
−,νD

+

�≈ (νL,νR)
and

�

νM
− ,νM

+

�≈ (νL,νR).

© When mν 6= 0, νL can behave like a νR =⇒ all differences between νD

and νM present in a kinematic test suppressed by (mν/Eν)
x, where Eν is

the energy of neutrino, and x is some power.
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The ‘practical Dirac-Majorana confusion theorem’
How to overcome this hurdle in deciphering the Majorana nature of neutrinos?

Majorana condition:
ν` ≡ ν`, ` ∈ {e,µ,τ} Processes with

final state
containing ν`,ν`

in addition to
other particles

Fermi-Dirac statistics:
quantum mechanical

identicalness of ν` and ν`

amplitude must be
antisymmetrized under
ν`↔ ν` exchange

Independent of mν

To probe this exchange
symmetry, we need to know
the 4-momenta of ν` and ν`

Any kinematical observable which includes integration
over 4-momenta of ν`,ν` can’t be used for this study

Kinematic observables under practical Dirac-Majorana confusion
theorem include integration over 4-momenta of ν` and ν`.

Difference between Dirac and Majorana cases in such observables
are suppressed by some power of (mν/Eν).

Need to find a way to
infer the 4-momenta

of ν` and ν`

B current experimental
facilities might not be fully
optimised for such study
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Statistical Nature of Neutrinos
So far only the interaction properties of Majorana neutrinos have been exploited.

v Majorana neutrinos are a theorists favourite, because of their
simplicity and the resulting elegance in theory, with exception of the
nuclear matrix element in 0νββ .

v All major searches for Majorana neutrinos, for both active and heavy
neutrino cases, have exploited only their mass dependent
interaction property, Lint =mννν.
∴mν = 0 =⇒ no 0νββ decay or other ∆L= 2 processes.

v We want a better alternative to 0νββ decay or other ∆L= 2
processes. These alternative processes,

© should not be rare, and
© must have a unique, experimentally observable signature for Majorana

neutrinos.

v We shall explore the quantum statistical property of Majorana
neutrinos which is independent of neutrino mass.
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Statistical Nature of Neutrinos
The quantum statistical property of Majorana neutrinos does not depend upon their masses.

v ∵ quantum statistical property does not depend on mass, any
kinematic test designed to directly probe the exchange symmetry of
Majorana neutrino and anti-neutrino must not be dependent on
mass of neutrino.

v To directly probe the ν`↔ ν` exchange symmetry for Majorana
case, their 4-momenta must be deduced experimentally. This might
be possible if we could directly measure the 4-momentum of some
intermediate resonances.

v Our choice of decay modes and our kinematic observables are
guided keeping the following requirements in mind,

© 4-momenta of ν` and ν` must be deducible,
© observable must explicitly check ν`↔ ν` exchange symmetry,
© the difference between Dirac and Majorana cases should be very

distinct.
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‘Effective’ Daitz plot method
We consider only such decay modes in which the 4-momentum of neutrino and anti-neutrino can be
experimentally inferred.

v Example decay mode: B0→ π− �→ µ−νµ
�

µ+νµ
© 4-momentum of B0 is routinely measured by looking at 4-momentum

of the fully tagged B0 arising in the process e+e−→ Υ (4S)→ B0B0.

© 4-momentum of µ+ and µ− are also routinely observed experimentally.

© Assuming that 4-momentum of charged pion can be deduced
independent of the subsequent muon decay, the 4-momenta of νµ and
νµ can be known by applying conservation of 4-momentum.

© We analyse this 4-body final state as an ‘effective’ 3-body final state by
treating µ+µ− as an ‘effective’ third particle.

© We work in a frame of reference in which the exchange between ν`
and ν` is very easy to visualise.
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‘Effective’ Daitz plot method
We consider only such decay modes in which the 4-momentum of neutrino and anti-neutrino can be
experimentally inferred.

v Some more example decay modes:
© X

�

B0
�→ π− �→ µ−νµ

�

µ+νµ ≡ Y [µ+µ−]νµνµ,

© X
�

B0
s

�→ K−
�→ µ−νµ

�

µ+νµ ≡ Y [µ+µ−]νµνµ,

© X
�

B0
�→ π+ �→ µ+νµ

�

π−
�→ µ−νµ

�≡ Y [µ+µ−]νµνµ.

v Process: X→ Y [`+`−Y ]ν`ν` (an ‘effective’ three-body decay)

v Conditions:
1. X is some suitable resonance.

2. Y is an ‘effective’ particle, which must always include `+`−, with some
additional (not necessary) particle(s) Y .

3. The 4-momenta of X and all particles in Y as well as those of some
intermediate resonances must be experimentally measured such that
4-momenta of ν` and ν` are experimentally deducible.

v A tentative list of many more decay modes that can be used in our
study, will be shown before the numerical results.
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‘Effective’ Daitz plot method
We choose to work in a frame of reference in which exchange of ν and ν is more elegant.

Gottfried-Jackson frame: ~pν + ~pν = ~0.

zX(pX)

ν(pν)

ν̄(pν)

Y(pY)

θGJ

Invariant mass squares:

m2
νν
= (pν + pν)

2 = (pX − pY)
2,

m2
Yν = (pY + pν)

2 ≡ a− b cosθGJ,

mYν = (pY + pν)
2 ≡ a+ b cosθGJ.

where

a=
1
2

�

m2
X +m2

Y + 2m2
ν − s

�

,

b=
1
2

�Ç

λ
�

m2
X , m2

Y , s
� �

1− 4m2
ν/s
�

�

,

with the Källén function λ(x, y, z) defined as

λ (x, y, z) = x2 + y2 + z2 − 2 (xy+ yz+ zx) .
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‘Effective’ Daitz plot method
Our tool for investigating the Majorana neutrinos is the ‘effective’ Dalitz plot.

v m2
νν
+m2

Yν+m2
Yν =m2

X +m2
Y +2m2

ν ≡M2 (say). Since m2
Y varies from

event-to-event, M2 does so also.

v Define new dimensionless ratios to take care of these event-to-event
variations, m̃2

νν
≡m2

νν
/M2, m̃2

Yν ≡m2
Yν/M

2, m̃2
Yν ≡m2

Yν/M
2, such

that m̃2
νν
+ m̃2

Yν + m̃2
Yν = 1.

v We can always construct a ternary plot (which along with event
points we shall refer to as the ‘effective’ Dalitz plot) using
�

m̃2
Yν, m̃2

Yν, m̃2
νν

�

as Cartesian coordinates.

v ∵ m̃2
Yν, m̃2

Yν, m̃2
νν

are Lorentz scalars, the ‘effective’ Dalitz plot can be
constructed in any frame of reference.
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‘Effective’ Daitz plot method
Our tool for investigating the Majorana neutrinos is the ‘effective’ Dalitz plot.

Any point inside the ternary plot can be described by
either polar coordinates (r,θ ) or rectangular coordinates (x, y).

Y

ν ν

m̃2
νν

m̃2
Yν m̃2

Yν

θr
IIV

VI I

IIIIV

−p3
p

30

−1

2

0

x

y

m̃2
νν
=

1
3
(1+ r cosθ ) =

1
3
(1+ y) ,

m̃2
Yν =

1
3

�

1+ r cos
�

2π
3
+ θ

��

=
1
6

�

2+
p

3x− y
�

,

m̃2
Yν =

1
3

�

1+ r cos
�

2π
3
− θ

��

=
1
6

�

2−p3x− y
�

.

ν↔ ν≡ m̃2
Yν↔ m̃2

Yν ≡ θGJ↔ π+ θGJ ≡ θ↔−θ .

NOTE: θGJ is an angle in the Gottfried-Jackson frame,
however θ is the polar angle in the ‘effective’ Dalitz plot.
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‘Effective’ Daitz plot method
We analyse the distribution of events in the ‘effective’ Dalitz plot to distinguish Dirac and Majorana
neutrinos.

v The pattern of distribution of events in the ‘effective’ Dalitz plot is a
consequence of dynamics.

v The dynamics is encoded in the transition amplitude.

v The amplitude for all the processes under our consideration, should
be anti-symmetrized for Majorana neutrinos, while for Dirac case
there is no such anti-symmetrization.

v The distribution of events should be completely symmetric under
exchange of ν and ν for Majorana neutrinos. For Dirac neutrinos the
distribution must have some asymmetry under the above exchange.

v We shall mathematically show these assertions by considering one
example decay explicitly.
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‘Effective’ Daitz plot method
Let us analyse an example process: X

�

B0
�→ π− �→ µ−νµ

�

µ+νµ ≡ Y
�

µ+µ−
�

νµνµ.

Dirac case:
v Feynman diagram

W∗+ (q+)

π− (q−)

B0(pB)

µ+(p+)

νµ(p1)

νµ(p2)

µ−(p−)

v Amplitude

M D∝ (p− + p2)α
�

F1 (p− + p2)β + F2 (p+ + p1)β
�

×
�

ψµ− (p−)γ
α
�

1− γ5
�

ψν (p2)
� �

ψν (p1)γ
β
�

1− γ5
�

ψµ+ (p+)
�

,

where F1 and F2 are form factors related to B→ π transition, and
can be expressed in terms of the usual form factors f+ and f0:

F1 = f+, F2 = −
m2

B −m2
π

(pB − q−)
2 (f+ − f0) .
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‘Effective’ Daitz plot method
Let us analyse an example process: X

�

B0
�→ π− �→ µ−νµ

�

µ+νµ ≡ Y
�

µ+µ−
�

νµνµ.

Majorana case:

v Feynman diagram

W∗+ (q+)

π− (q−)

B0(pB)

µ+(p+)

(–)
νµ(p1)

(–)
νµ(p2)

µ−(p−)

W∗+ (q′+
)

π−
(
q′−
)

B0(pB)

µ+(p+)

(–)
νµ(p1)

(–)
νµ(p2)

µ−(p−)

v Amplitude (antisymmetric under p1↔ p2 exchange)

MM ∝
�

(p− + p2)α
�

F1 (p− + p2)β + F2 (p+ + p1)β
�

×
�

ψµ− (p−)γ
α
�

1− γ5
�

ψν (p2)
� �

ψν (p1)γ
β
�

1− γ5
�

ψµ+ (p+)
�

− (p− + p1)α
�

F1 (p− + p1)β + F2 (p+ + p2)β
�

×
�

ψµ− (p−)γ
α
�

1− γ5
�

ψν (p1)
� �

ψν (p2)γ
β
�

1− γ5
�

ψµ+ (p+)
��

.
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‘Effective’ Daitz plot method
Let us analyse an example process: X

�

B0
�→ π− �→ µ−νµ

�

µ+νµ ≡ Y
�

µ+µ−
�

νµνµ.

Taking square of the amplitudes, then summing over the final spins and retaining only those
terms that are independent of mν (for simplicity and also since mν is very small) we get,

¬
�

�M D
�

�

2¶∝ 64m2
µ (p− · p2)

�

|F1|2
�

2 (p+ · p− + p+ · p2) (p− · p1 + pν · p1)− (p+ · p1)
�

m2
µ + 2p− · p2

��

+ |F2|2 m2
µ (p+ · p1) + 2Re

�

F1F∗2
�

(p− · p1 + p1 · p2)m
2
µ

�

,

¬
�

�MM
�

�

2¶∝ 64m2
µ

�

(p− · p2)
�

|F1|2
�

2 (p+ · p− + p+ · p2) (p− · p1 + p1 · p2)− (p+ · p1)
�

m2
µ + 2p− · p2

��

+ |F2|2 m2
µ (p+ · p1) + 2Re

�

F1F∗2
�

�

(p− · p1 + p1 · p2)m
2
µ

�

�

+ (p− · p1)
�

|F1|2
�

2 (p+ · p− + p+ · p1) (p− · p2 + p1 · p2)− (p+ · p2)
�

m2
µ + 2p− · p1

��

+ |F2|2 m2
µ (p+ · p2) + 2Re

�

F1F∗2
�

�

(p− · p2 + p1 · p2)m
2
µ

�

�

�

,

where mµ is the mass of muon.

To evaluate the dot products we choose a particular frame of reference.
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‘Effective’ Daitz plot method
Let us analyse an example process: X

�

B0
�→ π− �→ µ−νµ

�

µ+νµ ≡ Y
�

µ+µ−
�

νµνµ.

Kinematics in the center-of-momentum frame of νµνµ

p+

νµ

θGJ

pB
B0

pν

pν

p−

νµ

µ+

µ−

z

x

y

φ
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‘Effective’ Daitz plot method
Let us analyse an example process: X

�

B0
�→ π− �→ µ−νµ

�

µ+νµ ≡ Y
�

µ+µ−
�

νµνµ.

The normalized angular distribution for the example decay mode has the
following form,

v for Dirac case, Full distribution for Dirac case is here

1
Γ D

d2Γ D

dφ d cosθGJ

= TD
0 + TD

1 cosθGJ + TD
2 cos2 θGJ

+
�

UD
1 sinθGJ +UD

2 sin2θGJ

�

cosφ

+ VD sin2 θGJ cos2φ,

where TD
0 , TD

1 , TD
2 , UD

1 , UD
2 and VD are the angular coefficients, terms

in red are odd under ν↔ ν≡ θGJ↔ π+ θGJ exchange, and
v for Majorana case, Full distribution for Majorana case is here

1
ΓM

d2ΓM

dφ d cosθGJ

= TM
0 + TM

2 cos2 θGJ +UM
2 sin 2θGJ cosφ

+ VM sin2 θGJ cos2φ,

where TM
0 , TM

2 , UM
2 and VM are the angular coefficients.
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‘Effective’ Daitz plot method
Let us analyse an example process: X

�

B0
�→ π− �→ µ−νµ

�

µ+νµ ≡ Y
�

µ+µ−
�

νµνµ.

v By looking at angular distribution in the cosθGJ-φ plane, we can
distinguish the Dirac and Majorana cases.

v Since ν↔ ν≡ m̃2
Yν↔ m̃2

Yν ≡ θGJ↔ π+ θGJ ≡ θ↔−θ , an
asymmetry under θGJ↔ π+ θGJ will also give rise to an asymmetry
under θ↔−θ .

v Signature of Majorana neutrinos:

Distribution
of events in
‘effective’
Dalitz plot

Symmetric
under

m̃2
Yν↔ m̃2

Yν?

Majorana ν

Dirac ν

YES

NO
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‘Effective’ Daitz plot method
The distribution of events in the ‘effective’ Dalitz plot can be described by a Fourier decomposition.

v Let D(r,θ ) denote the distribution of events inside the ‘effective’
Dalitz plot. Then,

© DD(r,θ ) =
∞
∑

n=0

�

SD
n (r) sin(nθ ) + CD

n (r) cos(nθ )
�

(Dirac neutrinos)

© DM(r,θ ) =
∞
∑

n=0

CM
n (r) cos(nθ ) (Majorana neutrinos)

where SD
n (r) and CD,M

n (r) are the Fourier coefficients which are some
functions of masses and energies of the particles involved.
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‘Effective’ Daitz plot method
The Dirac and Majorana neutrinos leave two distinct signatures in the ‘effective’ Dalitz plot.

v Signature of Majorana neutrinos:
©
∫

dr DM(r,θ ) =
∫

dr DM(r,−θ ), (Majorana neutrinos)

©
∫

dr DD(r,θ ) 6=
∫

dr DD(r,−θ ), (Dirac neutrinos)

where we have carried out integrations radially, i.e. we add all the
events inside the ‘effective’ Dalitz plot along the radial direction at
any chosen polar angle.

v This distinction between Dirac and Majorana neutrinos is always
present in our ‘effective’ Dalitz plot irrespective of neutrino mass.

v The distribution asymmetry inside ‘effective’ Dalitz plot can be
quantified by some asymmetries.
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‘Effective’ Daitz plot method
The signature of Majorana neutrinos can be quantified in terms of some easily observable asymmetries.

v Sextant asymmetry:

Y

ν ν

m̃2
νν

m̃2
Yν m̃2

Yν

II

IIIIV

V

VI I

−p3
p

30

−1

2

0

x

y

A =
�

�

�

�

NI −NVI

NI +NVI

�

�

�

�

+

�

�

�

�

NII −NV

NII +NV

�

�

�

�

+

�

�

�

�

NIII −NIV

NIII +NIV

�

�

�

�

,

where Ni denotes the number of events in the ith sextant.
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‘Effective’ Daitz plot method
The signature of Majorana neutrinos can be quantified in terms of some easily observable asymmetries.

v Binned asymmetry:

Y

ν ν

m̃2
νν

m̃2
Yν m̃2

Yν

−p3
p

30

−1

2

0

x

y

Left Right

2∆θ 2∆θθm −θm

A ′ =
∑

θm

�

�

�

�

N(θm)−N(−θm)
N(θm) +N(−θm)

�

�

�

�

,

where N(θm) is the number of events in an angular bin θm ±∆θ .
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‘Effective’ Daitz plot method
There exist a plethora of processes which can be looked at using our approach.

Following is a tentative list of processes that can be studied using our
approach for deciphering the Majorana nature of neutrinos.

X → intermediate → final state
resonances (Y)ν`ν`

B0 D−`+ν`
�

K0`+`−
�

ν`ν`
B+ D0`+ν` (K−`+`−)ν`ν`

B0, D0, K0 π±`∓
(–)

ν` (`+`−)ν`ν`
π+π− (`+`−)ν`ν`

B
0
, B0

s , D0 π+K− (`+`−)ν`ν`
B0

s K−`+ν` (`+`−)ν`ν`
K0

S π+π−γ (`+`−γ)ν`ν`
B0, D0,

π+π−π0 (`+`−π0)ν`ν`K0
L , J/ψ(1S)
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‘Effective’ Daitz plot method
There exist a plethora of processes which can be looked at using our approach.

X → intermediate → final state
resonances (Y)ν`ν`

D0

π+π−K0
S (`+`−K0

S)ν`ν`
π+K−π0 (`+`−π0)ν`ν`
K+K−K0

S (`+`−K0
S)ν`ν`

π+π−2π0 (`+`−2π0)ν`ν`
K−`+ν` (`+`−)ν`ν`

D+ K0`+ν` (π+`−`+)ν`ν`

J/ψ(1S)

π+π−ω (`+`−ω)ν`ν`
π+π−η (`+`−η)ν`ν`
π+π−φ (`+`−φ)ν`ν`
π+π−ωπ0 (`+`−ωπ0)ν`ν`

Υ (2S) π+π−Υ (1S) (`+`−Υ (1S))ν`ν`
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Results from numerical simulation

v To demonstrate the usefulness of our proposed method we have
carried out numerical simulations for the following processes,

© X
�

B0
�→ π− �→ µ−νµ

�

µ+νµ ≡ Y [µ+µ−]νµνµ,
© X

�

B0
s

�→ K−
�→ µ−νµ

�

µ+νµ ≡ Y [µ+µ−]νµνµ,
© X

�

B0
�→ π+ �→ µ+νµ

�

π−
�→ µ−νµ

�≡ Y [µ+µ−]νµνµ.

v For each process we have simulated 105 events while neglecting the
mass of neutrino in comparison with other masses in the processes,
and the resulting scatter plots for both angular distribution and
‘effective’ Dalitz plot are fitted with the functional dependencies
taken directly from theoretical results.
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Results from numerical simulation
For the decay B0→ π− �→ µ−νµ

�

µ+νµ ≡ µ+µ−νµνµ

Comparison of best fit normalized angular distribution
1
Γ

d2Γ

dφ d cosθGJ

Dirac case Majorana case

−1 −0.5 0 0.5 1

cos θGJ

−180
−150
−120
−90
−60
−30

0
30
60
90

120
150
180

φ

0

5 × 10−6
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−1 −0.5 0 0.5 1

cos θGJ

−180
−150
−120
−90
−60
−30

0
30
60
90

120
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180

φ
0
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1 × 10−5
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2.5 × 10−5
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Results from numerical simulation
For the decay B0→ π− �→ µ−νµ

�

µ+νµ ≡ µ+µ−νµνµ

Comparison of best fit distribution of events
inside the ‘effective’ Dalitz plot
for Dirac and Majorana cases

Dirac case

0

2 × 10−6

4 × 10−6

6 × 10−6

8 × 10−6

1 × 10−5

1.2 × 10−5

1.4 × 10−5

1.6 × 10−5

1.8 × 10−5

m̃2
νν

m̃2
Yν m̃2

Yν

√
30−√3

−1

0

1

2

x

y
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m̃2
νν

m̃2
Yν m̃2

Yν

√
30−√3

−1

0

1

2

x

y
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Results from numerical simulation
For the decay B0

s → K−
�→ µ−νµ

�

µ+νµ ≡ µ+µ−νµνµ

Comparison of best fit normalized angular distribution
1
Γ

d2Γ

dφ d cosθGJ

Dirac case Majorana case

−1 −0.5 0 0.5 1

cos θGJ

−180
−150
−120
−90
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−30

0
30
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90

120
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180

φ

0

5 × 10−6
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1.5 × 10−5
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3 × 10−5

3.5 × 10−5

4 × 10−5

4.5 × 10−5

5 × 10−5

−1 −0.5 0 0.5 1

cos θGJ

−180
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−120
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−60
−30

0
30
60
90

120
150
180

φ
0
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4 × 10−6

6 × 10−6

8 × 10−6

1 × 10−5

1.2 × 10−5

1.4 × 10−5

1.6 × 10−5

1.8 × 10−5

2 × 10−5
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Results from numerical simulation
For the decay B0

s → K−
�→ µ−νµ

�

µ+νµ ≡ µ+µ−νµνµ

Comparison of best fit distribution of events
inside the ‘effective’ Dalitz plot
for Dirac and Majorana cases

Dirac case

0

5 × 10−6

1 × 10−5

1.5 × 10−5
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Majorana case
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Results from numerical simulation
For the decay B0→ π+ �→ µ+νµ

�

π−
�→ µ−νµ

�≡ µ+µ−νµνµ

Comparison of best fit normalized angular distribution
1
Γ

d2Γ

dφ d cosθGJ

Dirac case Majorana case

−1 −0.5 0 0.5 1

cos θGJ
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The flat distribution for Dirac case here is accidental. Details are shown here
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Results from numerical simulation
For the decay B0→ π+ �→ µ+νµ

�

π−
�→ µ−νµ

�≡ µ+µ−νµνµ

Comparison of best fit distribution of events
inside the ‘effective’ Dalitz plot
for Dirac and Majorana cases

Dirac case
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Majorana case
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Conclusion
Salient features of our methodology

v Processes are not rare for our case, unlike 0νββ and other ∆L= 2
processes.

v Majorana and Dirac neutrinos have completely distinct signatures,
which survive even when one considers neutrinos to be almost
massless.

v The signatures are quantifiable by easily observable asymmetries
defined on ‘effective’ Dalitz plots. For mν→ 0, rate of ∆L= 2
processes→ 0, but our asymmetries 6→ 0.

v Since our kinematical tests directly probe the quantum statistical
nature of Majorana neutrino and anti-neutrino, they remain
unaffected by the practical Dirac-Majorana confusion theorem.
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Conclusion

By analysing the quantum statistical property of Majorana neutrino and
anti-neutrino via ‘effective’ Dalitz plots for suitably well choosen
processes we can look for the Majorana nature of active sub-eV neutrinos.

Thank You
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Back-up slides
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Angular distribution
For the decay B0→ π− �→ µ−νµ

�

µ+νµ ≡ µ+µ−νµνµ: Dirac case

The full angular distribution for Dirac case is

dΓ D

d4PS
∝ 8m2

µ

�

4m2
µRe

�

F1F∗2
�

�

4
�

EE′
�

E2 + EE′ + p2
�− pp′

�

E2 + p2
�

sinθGJ cosφ − p2p′2 sin2 θGJ cos2φ
�

+ 2 |~pB|p cosθGJ

�

E2 + p2 + 2pp′ sinθGJ cosφ
�− |~pB|2 p2 cos2 θGJ

�

+ |F1|2
�

2EE′ + |~pB|p cosθGJ − 2pp′ sinθGJ cosφ
�

�

8E3E′

+ 2pp′ sinθGJ cosφ
�

4E2 + 16EE′ + 4E′2 + 2m2
µ − |~pB|2 + 4p2 + 4p′2

�

+ |~pB|p cosθGJ

�

4E2 − 4E′2 + 2m2
µ + |~pB|2 + 4p2 − 4p′2

�

+ 8E2E′2 − 2E2 |~pB|2 + 8E2p′2 + 8EE′3 − 4EE′m2
µ − 2EE′ |~pB|2

+ 8EE′p2 + 8EE′p′2 + 8E′2p2 − 2 |~pB|2 p2 + 8p2p′2
�

+ 2 |F2|2 m2
µ

�

4
�

EE′ − pp′ sinθGJ cosφ
�2 − |~pB|2 p2 cos2 θGJ

�

�

,

where d4PS denotes the differential 4-body phase space, E and E′ are the
energies of νµ (or νµ) and muon (µ±) respectively, p is the magnitude of
the 3-momentum of νµ (or νµ), p′ is the magnitude of the projection of
3-momentum of µ± on the xy-plane. Simplified distribution for Dirac case is here
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Angular distribution
For the decay B0→ π− �→ µ−νµ

�

µ+νµ ≡ µ+µ−νµνµ: Majorana case

The full angular distribution for Majorana case is

dΓM

d4PS
∝ 32m2

µ

�

1
2
|F2|2 m2

µ

�

4E2E′2 + 4p2p′2 sin2 θGJ cos2φ − |~pB|2 p2 cos2 θGJ

�

+ |F1|2
�

1
4

p2
�

− 4p′2 sin2 θGJ cos2φ
�

4
�

E2 + 4EE′ + E′2
�

+ 2m2
µ − |~pB|2 + 4

�

p2 + p′2
�

�

+ |~pB|2 cos2 θGJ

�

4E2 − 4E′2 + 2m2
µ + |~pB|2 + 4p2 − 4p′2

�

+ 4 |~pB|p′ sinθGJ cosθGJ cosφ
�

4E′(2E+ E′)− |~pB|2 + 4p′2
�

�

+ EE′
�

4E3E′ + E2
�

4E′2 − |~pB|2 + 4p′2
�

+ EE′
�

4E′2 − 2m2
µ − |~pB|2 + 4

�

p2 + p′2
�

�

+ p2
�

4E′2 − |~pB|2 + 4p′2
�

�

�

+m2
µRe

�

F1F∗2
� �

4EE′
�

E(E+ E′) + p2
�− (|~pB|p cosθGJ − 2pp′ sinθGJ cosφ)2

�

�

.

Simplified distribution for Majorana case is here
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Angular distribution
For the decay B0

s → π−
�→ µ−νµ

�

π+
�→ µ+νµ

�≡ µ+µ−νµνµ

v Dirac case:

dΓ D

d4PS
∝ 64m4

µ

�

E2E′2 + p2p′2 cos2φ sin2 θGJ

− 1
4
|~pB|2 p2 cos2 θGJ − 2EE′pp′ cosφ sinθGJ

�

= 64m4
µ

�

m2
π −m2

µ

�2
/4.

v Majorana case:

dΓM

d4PS
∝ 64m4

µ

�

E2E′2 + p2p′2 cos2φ sin2 θGJ −
1
4
|~pB|2 p2 cos2 θGJ

�

.

NOTE: This case has accidental symmetry for the Dirac case under
ν↔ ν exchange. The Dirac case is fully flat. Nevertheless, by angular
distribution both Dirac and Majorana cases can be
distinguished. Angular distribution plots are shown here

53 / 53


