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Introduction

Neutrinos have mass.

2
0‘0

In the SM, neutrinos are
4 massless (m, =0) and

4 only left-handed (v;). No right-handed neutrinos (v;) observed yet.

R
0‘0

Giving neutrinos mass in the SM is possible iff we introduce v,

Ly D —m, (v, + 7 vg), wh hy
SM —m VR VL VL VR N whnere m, = )
v v ﬁ
Y, = Higgs-neutrino Yukawa coupling constant,

v = Higgs VEV.

o

% neutrino oscillation = m,, # 0.
Nobel Prize in Physics 2015

0,
0‘0

“for the discovery of neutrino
oscillations, which shows that
neutrinos have mass”.




Introduction

How to give neutrinos mass?

There are various suggestions as to how neutrinos can get mass.
«» Dirac mass:

¢ Assumption: vy exists.
¢ Lagrangian:

D _ D (~— -
L ss =~ (VRv, + 7V vR).

¢ Disadvantage: No reason for mﬁ to be small.
4 Challenge: Finding vg.

+ Majorana mass:
¢ Assumption: neutrino = anti-neutrino.
¢ Lagrangian:
M _1_M(.C —=..C
XL ass = 31, (vL v+ vaL).

¢ Disadvantage: £™ __is not invariant under SU(2); x U(1), gauge group

mass

- %M isnot allowed by SM.

mass

4 Challenge: To ascertain the Majorana nature of light neutrino.




Introduction

How to give neutrinos mass?

+ Dirac-Majorana mass:
¢ Assumptions: vy exists, and neutrino = anti-neutrino.

¢ Lagrangian:

p+M _ 1 L (. C 1_RrR(.C D (—
gmass - imv(vL 1}L) + Emv(vRvR) _mv (vRvL)+H-C~

=3 (ml Wy +my§ vz) +H.c,,

where v, = vy + v, (k=1,2) are Majorana neutrinos and

my, =13 ((va +m$) + \/(va +m§)2 +4|m13|2).

¢ Disadvantages:
= No explanation for small mass of neutrinos, and
= one mass out of mg, mli, mf, is complex, in general.
¢ Challenges:
= To prove that both v; and v, are Majorana neutrinos.
= What is the physical meaning of complex mass?




Introduction

How to give neutrinos mass?

% See-saw mechanism: A simpler version of Dirac-Majorana mass,
with a nice twist.
¢ Assumptions: m" =0 and m® < m".
¢ Lagrangian:
D+M _ 1 _R(.C D (=
zmass =3m, (VR VR) —m, (VR 1}L) +H.c.

_1 C <
=3 (ml V]V +myv; v2) +H.c,

2
my) "
" and m, ~m.
m "
v As v, gets heavier,
v, become lighter.

where m; ~ —

¢ Advantage: m; < m, = v, is a light neutrino
¢ Challenges:

= To find the heavy v, experimentally.
= To prove that both the light v; and heavy v, are Majorana neutrinos.




Looking for Majorana neutrinos via AL = 2 processes

% Neutrinos: the only known elementary fermions that can have
Majorana nature (v = ).

% Majorana neutrino: very unique phenomenology (lepton number
non-conservation), they mediate AL = 2 processes.

% AL = 2 processes play crucial role to probe Majorana nature of v’s.
4 neutrinoless double-beta (0v3) decay
4 Rare meson decays with AL =2
4 Collider searches at LHC



Looking for Majorana neutrinos via AL = 2 processes

% Decay rate of any AL = 2 process with final leptons {;(;:

2

my
Tap=p < E UnUih 5 =
Al=2 - Lk"t p?—m +im T

where we have used the fact that (1—7°) p(1—7y>)=0.

4 Light »:

2
2

Tpp=p < = |m£1£2|

Z Uy, Ugyimyc
k

¢ Heavy v:

2

Z UriUryk
k My

Tpp—p OC

4 Resonant v:
T(N— )TN —f)

Tar=2
B myTy



Looking for Majorana neutrinos via AL = 2 processes
Neutrinoless double-beta (ovf ) decay

A comparison with beta decay and double-beta decay:

A
Z+2N

2vf B-decay

0vf B-decay
e = proton (p)

05 neutron (n)

2= electron (e7)

/ A o = electron-antineutrino (7,)
742N
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Looking for Majorana neutrinos via AL = 2 processes

Neutrinoless double-beta (ovf ) decay

Mechanism for 0vf 8 decay:

Neutron Proton

Nucleus

Neutron Proton

Black-box diagrams for

0vBp:

/p
n\ 0vBp  _—
n/ -~

N

[Nucleon level black—boxj

e

u

d—~—___ ~ _—c

o 0B

Quark level black-box

u

\e’
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Looking for Majorana neutrinos via AL = 2 processes
Neutrinoless double-beta (ovf ) decay

+« Double-beta (2vf ) decay has been observed in 10 isotopes,
48C3, 76Ge, BZSe’ 96Zr, IOOMO, 116Cd, 128Te, 130Te, 150Nd’ 238U,

with half-life T, ;, ~ 10'® —10** years.

Events

32 33 34 35 36
Z Energy Qss

Giovanni Benato (for the GERDA collaboration), arXiv:1509.07792

< 0vBp (forbidden in SM) is yet to be observed in any experiment.

79, [76Ge] > 2.1 x 10% years(90% C.L.).

M. Agostini et al. (GERDA Collaboration) Phys. Rev. Lett. 111, 122503 (2013)
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Looking for Majorana neutrinos via AL = 2 processes
Neutrinoless double-beta (ovf ) decay

% The half-life of a nucleus decaying via 0vff is,

(19,17 = Goy Moyl |mps|”

where

4 G,, is phase space factor,

¢ M,, is the nuclear matrix element, (large theoretical uncertainty)
3

¢ myg is effective Majorana mass. mgg = Z Uezkmk is complex, in
k=1
general, and can be zero due to possible cancellations arising from
phases in U,.



Looking for Majorana neutrinos via AL = 2 processes
Neutrinoless double-beta (ovf ) decay

10 NH: Normal hierarchy
IH: Inverted hierarchy
- e
3, '3
<107 '3
£ 1S
e
8
o
107 '3 . . .
V= S. M. Bilenky and C. Giunti
— 1o Mod. Phys. Lett. A 27, 1230015 (2012),
| — 2
30|| arXiv:1203.5250
107 ul

107 107 1072 107" 1
Myin  [€V]

% If mgg < 1072, only NH is viable and the T ?/VZ will be much larger

than the current experimental lower bound.



Looking for Majorana neutrinos via AL = 2 processes

Rare meson decays: M* — M'~¢7 ¢}

% Processes: M™ — M""(7(7,
where M =K,D,D,,B,B, and M’ = n,K,D, ...

G. Cvetic, C.S. Kim, arXiv:1606.04140 (PRD 94, 053001, 2016)
G. Cvetic, C. Dib, S. Kang, C. S. Kim, arXiv:1005.4282 (PRD 82, 053010, 2010)

/KT

pu o4
Q 9 - _
Q 9
M+ N M/—
M* M~
N
q o 92
\ q
&

q2

+ No nuclear matrix element unlike 0vf 3, but probes Majorana
nature of massive neutrino(s) N.



Looking for Majorana neutrinos via AL = 2 processes

Rare meson decays: Mt — M"Z{'Z;

1x107° 1x10°
sx107°F (=ex (@) {  sxi0°f (b)
1107 F B > (D) +20* 1x107°F 1
_ sx107 1 sxiwof 9
& [
1x107F 9 1x107f 9
5x107 F q 5x107% q
1x107 - 1x107 + . .
0 1 2 3 4 5 6 7 0 1 5 6 7
My(GeV)
0.001 \ T : " . — 0.001 : " : . : -
- 1B D, +20
B >x 4200 By = D7+ (@) (b)
s (=cpu
107 F 1 107
(B)' 2K~ +20"
e . =
o s | “ s 1= s | 1
& w0 LBy w20 & 10
107 1 10k ]
7 -7
10 10 2

My(GeV) My(GeV) 15/53



Looking for Majorana neutrinos via AL = 2 processes
Collider searches at LHC

% Processes: W —e"e"u™v,, W — u*u'e,. Involves heavy
neutrino N which can have Majorana nature as well.

C. Dib, C.S. Kim, arXiv:1509.05981 (PRD 92, 093009, 2015);
C. Dib, C.S. Kim, K. Wang, J. Zhang, arXiv:1605.01123 (PRD 94, 013005, 2016)
e+

W+

N W—*

(Lepton Number Violating)

Vu
% Decay widths:
¢ LNV: T (W* > etetp,) = |Uy|'T,
¢ INC: T (W* - e*etu™,) = |Uy Uy, °t,

. GM3
where I' = W

my m\? my
——— | 1-— [1- )
12 x 96+4/214 Ty M




Looking for Majorana neutrinos via AL = 2 processes
Collider searches at LHC

Discovering sterile neutrinos lighter than My, at the LHC

Claudio O. Dib'
CCTVal and Department of Physics, Universidad Técnica Federico Santa Maria, Valparaiso, Chile

C.S. Kim"

Department of Physics and IPAP, Yonsei University, Seoul 120-749, Korea
(Received 29 September 2015; published 18 November 2015)

We study the purely leptonic W decays W' — e"u~e*v, and WH — e’e*ﬂ’f/ﬂ (or their charge
conjugates) produced at the LHC, induced by sterile neutrinos with mass below M\, in the intermediate
state. While the first mode is induced by both Dirac or Majorana neutrinos, the second mode is induced
only by Majorana neutrinos, as it violates lepton number. We find that, even when the final (anti-)neutrino
goes undetected, one could distinguish between these two processes, thus distinguishing the Dirac or
Majorana character of the sterile neutrinos, by studying the muon spectrum in the decays.

DOI: 10.1103/PhysRevD.92.093009 PACS numbers: 14.60.St, 11.30.Fs
APS News (Nov 18, 2015) for
“Physics — Spotlighting Exceptional Research”
http://physics.aps.org/synopsis-for/10.1103/PhysRevD.92.093009

Particles & Fields
SYNOPSIS: LHC Data Might Reveal Nature of Neutrinos



Looking for Majorana neutrinos via AL = 2 processes
Collider searches at LHC

Synopsis: LHC Data Might Reveal Nature
of Neutrinos

November 18,2015

Along-standing question over whether the neutrino is its own antiparticle might be answered by looking at
decays of Wbosons.

As recognized by this year's Nobel Prize in physics, evidence now points to neutrinos having mass (see 7 October
2015 Focus story). But this opens up new questions about why the neutrino mass is so much smaller than other
particle masses. One solution is to assume that the neutrino is a different kind of particle—one that s its own
antiparticle. A new theoretical study shows that observations of W boson decays at the Large Hadron Collider (LHC)
in Geneva could potentially uncever the antiparticle nature of the neutrino.

Electrons, protons, and other fermions are Dirac particles, meaning they have a separate antiparticle with the same
mass, but opposite charge. Neutrinos could be Dirac particles, but because they have no electric charge, they could
also be Majorana particles, for which particle and antiparticle are the same thing. Such Majorana models are

attractive because they offer a fairly natural explanation for the extremely small neutrino mass.

Experiments looking at extremely rare nuclear decays are trying to detect a possible Majorana or Dirac signature of
the neutrino. To widen the search, Claudio Dib from Santa Maria University in Chile and Choong Sun Kim from
Yonsei Universityin Korea propose looking at W boson decays. They considered decays that result in specific
combinations of electrons, muons, and neutrinos. These decays have yet to be observed, but they are predicted in
theories involving hypothetical sterile neutrinos. Taking inte account current limits on the existence of sterile
neutrinos, the team predicts that the next runs atthe LHC could produce as many as a few thousand of the desired
Whboson decays. If this count s correct, then physicists should be able to discriminate Majorana from Dirac

neutrinos bythe shape of the energy spectrum of the outgoing muons.
This research is published in Physical Review D.

-Michael Schirber



The ‘practical Dirac-Majorana confusion theorem’

Hurdle in deciphering the Majorana nature of neutrinos

+ Practical Dirac-Majorana confusion theorem: By looking at the
total decay rate or any other kinematic test of a process allowed in
the SM, it is practically impossible to distinguish between the Dirac
and Majorana neutrinos in the limit neutrino mass goes to zero.

B. Kayser, Phys. Rev. D 26, 1662 (1982).

% Conceptual basis: Let m, = mass of neutrino ().
¢ When m, # 0, v is not a chirality eigenstate, but a helicity eigenstate.
4 In terms of helicity,

w a Dirac neutrino v? has four states 2, T/E, vi and 72, but
= a Majorana neutrino "/ always has two states v’f and WM.

¢ When m, — 0, its difficult to distinguish between (vf ﬁﬁ) ~ (v, Vg)
and (Y, v’f) ~ (v, Vg).
¢ When m,, # 0, v, can behave like a v; = all differences between »"

and " present in a kinematic test suppressed by (m,/E,)*, where E,, is
the energy of neutrino, and x is some power.



The ‘practical Dirac-Majorana confusion theorem’

How to overcome this hurdle in deciphering the Majorana nature of neutrinos?

Majorana condition:

— Processes with
V=V, Le{e,u, 7}

final state
Independent of m,, * containing v,, v,
Fermi-Dirac statistics: in addition to
quantum mechanical other particles
identicalness of v, and v,
amplitude must be
antisymmetrized under
v, <= v, exchange
\
To probe this exchange Need to find a way to
symmetry, we need to know == infer the 4-momenta
the 4-momenta of v, and v, of v, and v,

Any kinematical observable which includes integration
over 4-momenta of v, v, can’t be used for this study A current experimental
¥ facilities might not be fully

Kinematic observables under practical Dirac-Majorana confusion optimised for such study

theorem include integration over 4-momenta of v, and ,.
Difference between Dirac and Majorana cases in such observables
are suppressed by some power of (m,/E,).



Statistical Nature of Neutrinos

So far only the interaction properties of Majorana neutrinos have been exploited.

2
%

2
0‘0

Majorana neutrinos are a theorists favourite, because of their
simplicity and the resulting elegance in theory, with exception of the
nuclear matrix element in 0vf3 3.

All major searches for Majorana neutrinos, for both active and heavy
neutrino cases, have exploited only their mass dependent
interaction property, <, =m, V.

*.m, =0 = no 0vf decay or other AL = 2 processes.

We want a better alternative to 0vf 3 decay or other AL =2
processes. These alternative processes,
¢ should not be rare, and
4 must have a unique, experimentally observable signature for Majorana
neutrinos.

We shall explore the quantum statistical property of Majorana
neutrinos which is independent of neutrino mass.



Statistical Nature of Neutrinos

The quantum statistical property of Majorana neutrinos does not depend upon their masses.

2
£ <3

R
“0

2
0‘0

"’ quantum statistical property does not depend on mass, any
kinematic test designed to directly probe the exchange symmetry of
Majorana neutrino and anti-neutrino must not be dependent on
mass of neutrino.

To directly probe the v, <= v, exchange symmetry for Majorana
case, their 4-momenta must be deduced experimentally. This might
be possible if we could directly measure the 4-momentum of some
intermediate resonances.

Our choice of decay modes and our kinematic observables are
guided keeping the following requirements in mind,
4 4-momenta of v, and v, must be deducible,
4 observable must explicitly check v, <= ¥, exchange symmetry,
4 the difference between Dirac and Majorana cases should be very
distinct.




‘Effective’

Daitz plot method

We consider only such decay modes in which the 4-momentum of neutrino and anti-neutrino can be
experimentally inferred.

% Example decay mode: B — 7~ (—> ,u_Tzu) ut Yy

¢

4-momentum of B° is routinely measured by looking at 4-momentum
of the fully tagged B° arising in the process e*e™ — T(4S) — B°B°.

4-momentum of u* and u~ are also routinely observed experimentally.

Assuming that 4-momentum of charged pion can be deduced
independent of the subsequent muon decay, the 4-momenta of v, and
v, can be known by applying conservation of 4-momentum.

We analyse this 4-body final state as an ‘effective’ 3-body final state by
treating u*u~ as an ‘effective’ third particle.

We work in a frame of reference in which the exchange between v,
and v, is very easy to visualise.



¢ 9 8

Effective’ Daitz plot method
We consider only such decay modes in which the 4-momentum of neutrino and anti-neutrino can be
experimentally inferred.

+ Some more example decay modes:
¢ X[B]>n (- M_VM)MJ' v, =Y[uuT1v, v,
¢ X[B°] >k (- ,u’?u),uf v, =Y [utu1v,,,
¢ X[B] > nt (> put vu) (- ,u_T/“) =Y[utu ]y,

% Process: X — Y[{*{~ %] v, v, (an ‘effective’ three-body decay)

% Conditions:

1. X is some suitable resonance.

2. Y is an ‘effective’ particle, which must always include £*¢~, with some
additional (not necessary) particle(s) %.

3. The 4-momenta of X and all particles in Y as well as those of some
intermediate resonances must be experimentally measured such that
4-momenta of v, and v, are experimentally deducible.

+ A tentative list of many more decay modes that can be used in our
study, will be shown before the numerical results.



‘Effective’ Daitz plot method

We choose to work in a frame of reference in which exchange of v and 7 is more elegant.

Gottfried-Jackson frame: p, + py = 0.

v(p,) Invariant mass squares:
QGJ
é\/\ m?ﬁ =(p, +p7)2 = (px _pY)Z:
————— = e deee— o> 2 2
X(px) AN Y(py) z my,, = (py+p,)”=a—bcosb,,

mys = (py +p3)> =a+bcosH,,.
w(p5)
where
a= %(m§+m§+2mi—s),
1
b= (VA(mgm2,s) (1—4mz/s)),

with the Killén function A(x,y, ) defined as

A'(-xl:.y:z):xz +y2+22—2(xy+yz+zx)



‘Effective’ Daitz plot method

Our tool for investigating the Majorana neutrinos is the ‘effective’ Dalitz plot.

0,
0‘0

0,
0‘0

R
0.0

R
“0

2 2 2 _ 2 2 2 — ap2 : 2 :
mis+my, +m =my+my+ 2m;, = M~ (say). Since mj, varies from
event-to-event, M2 does so also.

Define new dimensionless ratios to take care of these event-to-event

L L2 2 2 — 2 2 ~2 — 2 2
var1at1<2)ns, mzv m /M, =my, /M?, my; = my;/M?, such
that mos+my, + mw =1.

We can always construct a ternary plot (which along with event
points we shall refer to as the ‘effective’ Dalitz plot) using

2
(mYV, mr, e, ) as Cartesian coordinates.

va, mr,m _ are Lorentz scalars, the ‘effective’ Dalitz plot can be

constructed in any frame of reference.



‘Effective’ Daitz plot method

Our tool for investigating the Majorana neutrinos is the ‘effective’ Dalitz plot.

Any point inside the ternary plot can be described by
either polar coordinates (r, 0) or rectangular coordinates (x,).

it
Y 1
=(1+ 0)=-(1+y),
) ,=3(1+r coso) ( %)
1
y V|11 — (1 +r cos(— + 9))
0 3
L 1
0+ g( 2+ /3x— y)
VI | I 1
-1 _ ﬁlff —(1+rcos(——9))
V' v\ 3
ﬁlzﬁ T T 1 rﬁlzlv 1 _
3 0 x V3 6(2 V3x y).

R v—va<—>mY__9GJ<—>7t+9GJEG<—>—9.

NOTE: 6, is an angle in the Gottfried-Jackson frame,
however 6 is the polar angle in the ‘effective’ Dalitz plot.



‘Effective’ Daitz plot method

We analyse the distribution of events in the ‘effective’ Dalitz plot to distinguish Dirac and Majorana

neutrinos.

K7
0.0

0,
0’0

2
0’0

2
0‘0

The pattern of distribution of events in the ‘effective’ Dalitz plot is a
consequence of dynamics.

The dynamics is encoded in the transition amplitude.

The amplitude for all the processes under our consideration, should
be anti-symmetrized for Majorana neutrinos, while for Dirac case
there is no such anti-symmetrization.

The distribution of events should be completely symmetric under
exchange of v and ¥ for Majorana neutrinos. For Dirac neutrinos the
distribution must have some asymmetry under the above exchange.

We shall mathematically show these assertions by considering one
example decay explicitly.



‘Effective’ Daitz plot method

Let us analyse an example process: X [BO] — T (—> ,U,_TJM) ut vy = Y[pﬂ',u‘] Vu V-

Dirac case:
« Feynman diagram

u(p-)
n(g-). Vu(p2)
B(py) -2
;V\N vp1)
w(ps)

< Amplitude
MP o< (p_+py), (Fl (p— +p2)p +Fo(py +P1)/3)
x [P, 07 (1=7°) %5 @2) | [0, @) 7P (1=7°) 9, (1)),
where F; and F, are form factors related to B — 7 transition, and

can be expressed in terms of the usual form factors f, and f;:

mf}—m2
Fi=f, 1:2:_—1T (fy —fo) -

(ps— Q—)2



‘Effective’ Daitz plot method

Let us analyse an example process: X [BO] — T (—> ,U,_TJM) ut vy = Y[pﬂ',u‘] Vu V-

Majorana case:
% Feynman diagram

w(po) w(p-)

Fom T @) Yi(p) Yi(p2)
B) -

;N Y1) Su(p1)

©H(py) w(ps)

+« Amplitude (antisymmetric under p; < p, exchange)

MM o< (P +D3)g (Fy (0— +D2)p +Fo (ps +p1)p)
x [P, @7 (1=7°) %5 @) | [, @0 7? (1= 7%) v, (1)
— (= +P1)a (F1 (- +p1)p +F> (01 +12)p)
x [P, @7 (1=7°) %5 @) ] [, @) 7P (1=7%) v, (0)]).
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‘Effective’ Daitz plot method
Let us analyse an example process: X [BO] — T (—> ,U,_Tlu) ut vy = Y[u+u_] Vu V-

Taking square of the amplitudes, then summing over the final spins and retaining only those
terms that are independent of m,, (for simplicity and also since m,, is very small) we get,

(|-#P|*) o< 64m2 (p_ - py) ( 112 (2 -+ s +P2) 0Py +p5P1) — (s -p1) (m2 +2p_ ;)
+|Fyl*m2 (py - p1) + 2Re (F1F3) (p— - p1 +p1 ~pz)mﬁ),
(Ja)) o 64m,i((p7 "p2) ( Iy (2(ps - p— + P -P2) (0= Py +P1-P2) = (o -p1) (2 + 2Py ) )
B G, p1)+ 2Re (FF) ((0-py + 212 )
+(p_ ~p])(IF1I2 (24 -p—+p+ P PP +p1P2) — (01 -py) (m2 +2p_py))
+IFo*m2 (b - po) + 2Re (FiFy) (o - ps + py - p2) ) ))
where m,, is the mass of muon.

To evaluate the dot products we choose a particular frame of reference.



‘Effective’ Daitz plot method

Let us analyse an example process: X [BO] - (—> ;1,_7”) ut VEY [u+ y._] Vu V-

Kinematics in the center-of-momentum frame of VuVu

32/53



‘Effective’ Daitz plot method

Let us analyse an example process: X [BO] — T (—> ,U,_TJM) ut vy = Y[pﬂ',u‘] Vu V-

The normalized angular distribution for the example decay mode has the
following form,
¢ for Dirac case,
1 drP
—————— =TP + TP cos 6, + TP cos® §
?dgpdcosf, ° ! o2 @
+ (U sin 6, + U2 sin26,,) cos ¢
+VPsin? 6, cos® ¢,
where T5, T?, TD, UP, U and V? are the angular coefficients, terms
in red are odd under v <= v = 0, <> 7 + 6, exchange, and

% for Majorana case,

1 d*rM

— = TM 4y T™™¢os? 9, + UMsin 26, cos
™dpdcosd, 0 2 o2 ) COS P

+ VM sin? 6, cos® ¢,

where TY, T, U and VM are the angular coefficients.



‘Effective’ Daitz plot method

Let us analyse an example process: X [BO] — T (—> ,U,_TJM) ut vy = Y[pﬂ',u,_] Vu V-

% By looking at angular distribution in the cos 6,,-¢ plane, we can
distinguish the Dirac and Majorana cases.

% Since v<—>75ﬁ112,v<—>ﬁ12ﬁ5 O, n+6,=0«—0,an

asymmetry under 6, «— 7 + 0, will also give rise to an asymmetry

under 6 <> —0.

% Signature of Majorana neutrinos:

YES
D1str1but1(?n Symmetric \>
of events in
‘effective’ under
=2 =2
) ms <> mi? ;
Dalitz plot vy i

NO



‘Effective’ Daitz plot method

The distribution of events in the ‘effective’ Dalitz plot can be described by a Fourier decomposition.

% Let 2(r, 6) denote the distribution of events inside the ‘effective’
Dalitz plot. Then,

(o]

¢ 9,(r,0)= Z (Sf(r) sin(n6) + C°(r) cos(n@)) (Dirac neutrinos)
n=0

¢ 9,(r,0)= Z CHM (r) cos(nB) (Majorana neutrinos)
n=0

where SP(r) and C?M(r) are the Fourier coefficients which are some
functions of masses and energies of the particles involved.



‘Effective’ Daitz plot method

The Dirac and Majorana neutrinos leave two distinct signatures in the ‘effective’ Dalitz plot.

+ Signature of Majorana neutrinos:
¢ fdr 9(r,0) = fdr Py,(r,—0), (Majorana neutrinos)

¢ fdr Dp(r,0) # f dr 9p(r,—9), (Dirac neutrinos)

where we have carried out integrations radially, i.e. we add all the
events inside the ‘effective’ Dalitz plot along the radial direction at
any chosen polar angle.

% This distinction between Dirac and Majorana neutrinos is always
present in our ‘effective’ Dalitz plot irrespective of neutrino mass.

% The distribution asymmetry inside ‘effective’ Dalitz plot can be
quantified by some asymmetries.



‘Effective’ Daitz plot method

The signature of Majorana neutrinos can be quantified in terms of some easily observable asymmetries.

% Sextant asymmetry:

9
mvﬁ*
Y
2 —_
Y
vV | III
O -
VI I
—1- -
4+ "5
mW r T 1 va
-3 0 x V3
o = Ny —Ny| | [Npg—Ny NIII_NIV‘
N; +Ny; Ny +Ny Ny +Npy |’

where N; denotes the number of events in the ith sextant.




‘Effective’ Daitz plot method

The signature of Majorana neutrinos can be quantified in terms of some easily observable asymmetries.

% Binned asymmetry:

N(6,,) —N(=6,)
N(6,,) +N(=6,)

)

=y

Om

where N(6,,) is the number of events in an angular bin 6,, = A6.



‘Effective’ Daitz plot method

There exist a plethora of processes which can be looked at using our approach.

Following is a tentative list of processes that can be studied using our

approach for deciphering the Majorana nature of neutrinos.

X intermediate final state
resonances )y, v,
BO D_€+'V£ (KOEJ’@_) V[?(
Bt 50€+ Vy (K7€+€7) VgT/e
g T —
0 10 0 =Ty, L) vy,
B.DK T (GIEET
B',B°,D° K- ) v,
Bg K_E+V[ (£+e_)Vg$e
Ky ntny LT y)vy,
BO’Doﬁ +,— -0 £+€— 0 Y
KO,J/4(18) T ( )V,




‘Effective’ Daitz plot method

There exist a plethora of processes which can be looked at using our approach.

intermediate final state
X _
resonances M)y,
7T+7T_Kg (€+£_Kg)1)g?)g
Km0 (£+£_7TU)V[TQ
D° KKKy (TT KD v vy
nr 210 T 2n%) vy,
K_€+ Vy (€+£_) Vg;l
D* Ky, (e L) v,
T w L~ w)v v,
TN v,
J/"t/)(ls) TC+7T_¢ (€+£_¢)VET)€
T wn’ L wn®) vy,
T(2S) nta T (1S) LrerQS)v, v
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Results from numerical simulation

+ To demonstrate the usefulness of our proposed method we have
carried out numerical simulations for the following processes,
¢ X[BO] - (—> u‘?u);ﬁ v, =Y [uu v,
¢ X[B?] —K (- M_7M).M+ v, =Y [uuT1v, v,
¢ X[B] >t (—pty)n () =Y [ptu ]y,

2

% For each process we have simulated 10° events while neglecting the
mass of neutrino in comparison with other masses in the processes,
and the resulting scatter plots for both angular distribution and
‘effective’ Dalitz plot are fitted with the functional dependencies
taken directly from theoretical results.



Results from numerical simulation

For the decay B —» = (— u‘?u) pty, =utu v,

d’T
Comparison of best fit normalized angular distribution — ————
I'd¢ dcos 0,

Dirac case Majorana case
180 5x107° 180 25x%107°
150+ - 45% 107 150
120 4 4% 107 120 2x107°
90 - 90
60 4 3.5% 107 0
30 J 3x107° 30 1.5x107°
s 0 4 - 2.5%x 107 0
=30 2x107 -30 1x107
-60 1 1.5x 107 -60
-90 - -90
Z120 4 1x107 _120 5x10°°
~150 ‘ 5x107 ~150
-180 0 -180 0
-1 -0.5 0 05 1 -1 -0.5 0 0.5
cos gy cos gy



Results from numerical simulation

For the decay B —» = (— u‘?u) pty, =utu v,

Comparison of best fit distribution of events
inside the ‘effective’ Dalitz plot
for Dirac and Majorana cases

Dirac case Majorana case
i,
2 1.8x107 24 4x107°
1.6% 107 35% 10
-5
1.4 x 10 3% 105
1 12x107 1
25%107
1x1073
y y 2x107°
8§x10°°
1.5x107°
0 6x 1070 0
-5
4x1070 1x10
2%10°6 5% 10°°
-1k 0 -1 0
A0 0 43 0 P
i i, i i,



Results from numerical simulation

For the decay B —» K~ (— [J,_Tiu) who, =utu v,

Comparison of best fit normalized angular distribution =

120

-120

-180

Dirac case

cos gy

0.5

5% 107
45% 107
4% 107
3.5% 107
3x 107
25%x 107
2% 107
15%x 107
1x 1073
5% 107°
0

180
150
120
90
60
30

=30
—60
=90
=120
-150
—-180

-0.5

Majorana case

0

cos gy

d’T
I'd¢ dcos 0,

0.5

2x 107
1.8x 107
1.6x 107
1.4x107°
12x107°
1x107°
8x 1076
6% 107
4% 1070
2x107°
0
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Results from numerical simulation

For the decay Bg — K- (—> /.FT)M) ut Wy = utu~ VuVu

Comparison of best fit distribution of events
inside the ‘effective’ Dalitz plot
for Dirac and Majorana cases

Dirac case Majorana case
i,
2 25x% 107 24 35%107°
3% 107
2x 1073
25%107°
1 1
-5
1510 2% 105
y ¥y
-5
1x107 1.5% 10
0 0
1x10°%
5% 10°°
5%x107°
my
s 0
2 2



Results from numerical simulation

For the decay B® — n* (— pt v, ) n~ (- uw,) = utu v,

d’r
Comparison of best fit normalized angular distribution - ———
I'd¢ dcosb,,

Dirac case Majorana case
180 2% 107 180 2x 107
150 150 1.8x 107
120 120 16x 1075
90 1.5x107° 90
60 60 1.4x 107
30 30 12x107°
s 0 1x107° s 0 1x107%
-30 -30 8 106
—60 —60 6x 1070
-90 5% 107 -90 .
-120 -120 4x10
-150 -150 2x107°
—-180 0 —-180 0
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
cos gy cos by

The flat distribution for Dirac case here is accidental EEHEITED
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Results from numerical simulation

For the decay B® — n* (— pt v, ) n~ (- uw,) = utu v,

Comparison of best fit distribution of events
inside the ‘effective’ Dalitz plot
for Dirac and Majorana cases

Dirac case Majorana case

2 2% 107 2x107
1.5% 107 15x107
1x1073 1x107°
5% 1070 5x107

0
VN
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Conclusion

Salient features of our methodology

2
%

0,
0‘0

0,
0‘0

0,
0’0

Processes are not rare for our case, unlike Ovf3 8 and other AL = 2
processes.

Majorana and Dirac neutrinos have completely distinct signatures,
which survive even when one considers neutrinos to be almost
massless.

The signatures are quantifiable by easily observable asymmetries
defined on ‘effective’ Dalitz plots. For m, — 0, rate of AL = 2
processes — 0, but our asymmetries # O.

Since our kinematical tests directly probe the quantum statistical
nature of Majorana neutrino and anti-neutrino, they remain
unaffected by the practical Dirac-Majorana confusion theorem.



Conclusion

By analysing the quantum statistical property of Majorana neutrino and
anti-neutrino via ‘effective’ Dalitz plots for suitably well choosen
processes we can look for the Majorana nature of active sub-eV neutrinos.




Back-up slides



Angular distribution
For the decay B —» = (— u‘?u) wtv, =utu v, ,: Dirac case
The full angular distribution for Dirac case is

D
;I;DS oc 8m?, (4miRe (7)) (4 (EE' (E* + EE' + p*) —pp’ (E® + p?) sin 6, cos ¢ —p*p"* sin® 6, cos® )
4

+ 2 |Bp|pcos O, (E* + p* + 2pp’ sin 6, cos ¢ ) — |Bs|* p? cos? GGJ)
+ |Fy|* (2EE’ + |By| p cos 6, — 2pp’ sin O, cos ¢ ) (8E3E/
+ 2pp’ sin 6, cos ¢ (4E2 +16FE' + 4E” + 2m’, — [Bsl* +4p? + 4p/2)
+ gl p cos B, (4E2 —4E? +2m’ + [Byl* + 4p* — 4p’2)
+8E’E” — 2F” B |* + 8E°p" + 8EE™ — 4EE'm’, — 2EF' |

+8EE'p? + 8FE'p” + 8E”p* — 2 [p,|* p? + 8p*p? )
+2|F,)? m, (4 (EE'—pp’sin 6, cos 4))2 — |Bg|*p? cos? OGJ) ),

where d,PS denotes the differential 4-body phase space, E and E’ are the
energies of v, (or v,) and muon (u®) respectively, p is the magnitude of
the 3-momentum of v, (or ¥,), p’ is the magnitude of the projection of
3-momentum of u* on the xy-plane.



Angular distribution
For the decay B® — (—> u‘?u) ut Yy = uwru— v, Vy: Majorana case

The full angular distribution for Majorana case is
drt o 1in 2 2 (g p2p2 272 2 2 522 2
—— o< 32m £|F2| mﬂ(4E E" +4p°p”* sin” 6, cos® ¢ — |pp|”p* cos QGJ)

+|F? (%pz( — 4p" sin® 0, cos® ¢ (4 (B> + 4EE' + E”) + 2m’, — |pI* + 4 (p? +p/2))
+ |Bg|? cos? 6, (4E2 —4E? +2m’ + [Byl* + 4p*— 4p'2)

+ 4| p’ sin 6, cos 6, cos ¢ (4E’(2E +E)—Bsl* + 4p’2) )

+EE/(4E°E' + B2 (4E™ — Bl + 4p”)

+EE' (487 — 2m2 — [Bgl* + 4 (p? + %)) +p* (4E” — |Bs* + 4p2) ))

+m’Re (F1F;) (4EE' (E(E +E') + p*) — (Bs| p cos 6, — 2pp’ sin 6, cos $)*) )




Angular distribution
For the decay Bg - (—> u‘?u) mt (—> ut vu) =utuT v,
« Dirac case:

dr?
d,PS

o< 64m* (EZE’2 +p?p™ cos? ¢ sin® 6,

1
~ |Bg|? p? cos? 6, — 2EE'pp’ cos ¢ sin QGJ)
2
= 64m* (m —m ) /4.
+ Majorana case:

M

o 64m* (EZE'2 +p?p’® cos? ¢ sin® O, — 1 Bs|? p? cos? GGJ).
d,PS 4

NOTE: This case has accidental symmetry for the Dirac case under

v «— v exchange. The Dirac case is fully flat. Nevertheless, by angular
distribution both Dirac and Majorana cases can be

distinguished.



