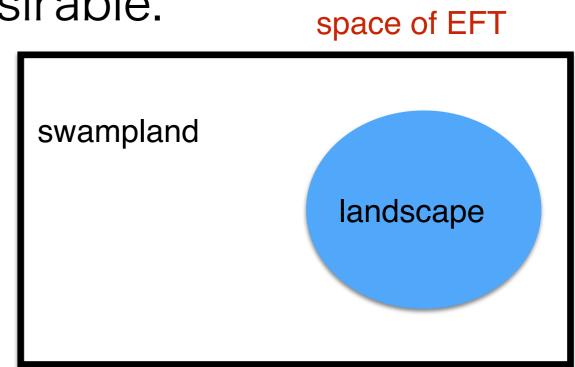
Weak gravity conjecture, Multiple point principle and SM landscape


Yuta Hamada (UW-Madison, KEK) w/ Gary Shiu arXiv:1707.06326, and in progress

String & low energy EFT

- · Due to sting landscape,
 - String theory seems to predict anything.

[Vafa '06]

- Universal Prediction of string theory (or quantum gravity) is desirable.
- · Swampland vs. landscape

Purpose of talk

 Utilizing the conjectures which are considered as universal, implication on SM and beyond is investigated.

· Messages

- Neutrino is Dirac, $m_{\nu,lightest} = O(1-10)meV$
- · If Higgs potential is bounded from below, SM with $M_t=173GeV$, $M_H=125GeV$ may not be consistent with QG.

Talk Plan

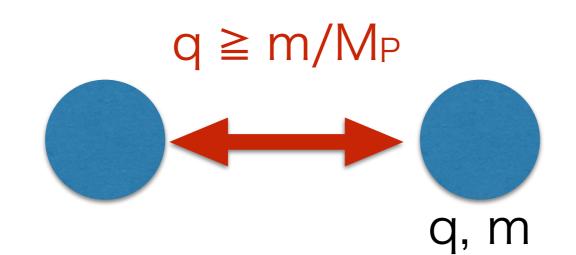
- 1. Conjectures
- 2. Standard Model in 4 dimension [YH, Shiu in progress]
- 3. Standard Model in 2 and 3 dimensions

[YH, Shiu 1707.06326]

Talk Plan

- 1. Conjectures
- 2. Standard Model in 4 dimension [YH, Shiu in progress]
- 3. Standard Model in 2 and 3 dimensions

[YH, Shiu 1707.06326]


[Arkani-Hamed, Motl, Nicolis, Vafa '06]

Weak gravity conjecture(WGC)

· Conjecture:

Gravity is weakest force.

- · q: gauge charge.
 - WGC requires
 - (gauge force) ≥ (gravity force)

Why WGC?

- Original argument comes from requirement that extremal BH can decay.
- · More convincing arguments might be

```
[Cheung, Remman '14]

• From analyticity, unitarity and causality

in IR QFT
\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}R + a_1(F_{\mu\nu}F^{\mu\nu})^2 + a_2(F_{\mu\nu}\tilde{F}^{\mu\nu})^2 + b_1F_{\mu\nu}F^{\mu\nu}R + b_2F_{\mu\rho}F_{\nu}{}^{\rho}R^{\mu\nu} + b_3F_{\mu\nu}F_{\rho\sigma}R^{\mu\nu\rho\sigma} + c_1R^2 + c_2R_{\mu\nu}R^{\mu\nu} + c_3R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma},
• From perturbative heterotic string w/
```

modular inv. [Montero, Shiu, Soler '16, Heidenreich, Reece, Rudelius '16]

magnetic WGC

 If we apply the WGC to magnetic dual, the cutoff scale is

$$m_{\rm mag} \lesssim g_{\rm mag} M_P \simeq \frac{1}{g} M_P \qquad m_{\rm mag} \simeq \frac{1}{g^2} \Lambda$$

 $\Lambda \lesssim g M_P$

 \cdot In the SM, $\Lambda_{SM} \lesssim 10^{17} {
m GeV}$

[Ooguri, Vafa '16]

Ooguri-Vafa conjectures

- Motivation: It is unnatural that non-BPS state saturates Conjecture1: WGC under quantum correction.
 - Except for BPS state, gravity is strictly weakest

force.

Implication of conjecture1.

All non-SUSY AdS vacua supported by flux are unstable.

• Conjecture2: All non-SUSY AdS vacua are unstable.

Motivation: (All known construction from M/string theory, AdS is supported by some flux.) + (Conjecture1)

[Froggatt, Nielsen '95][Bennett '96]

Multiple point principle(MPP)

- · Conjecture:
 - The parameters of the theory are tuned so that many vacua are degenerate in energy.
- Possible principle to extract predictions from vast landscape.

Motivation of MPP

QFT

Statical mechanics

micro-canonical
$$\Omega(E) = \sum_{n} \delta(H_n - E)$$

Equivalent in
thermodynamic limit
canonical $Z(\beta) = \sum_{n} e^{-\beta H_n}$ $Z(\{\lambda\}) = \int [d\varphi] e^{-S(\{\lambda\})[\varphi]}$

In statical mechanics, micro-canonical ensemble is fundamental. First, E(extensive variable) is given, and T(intensive variable) appears as a result.

Motivation of MPP

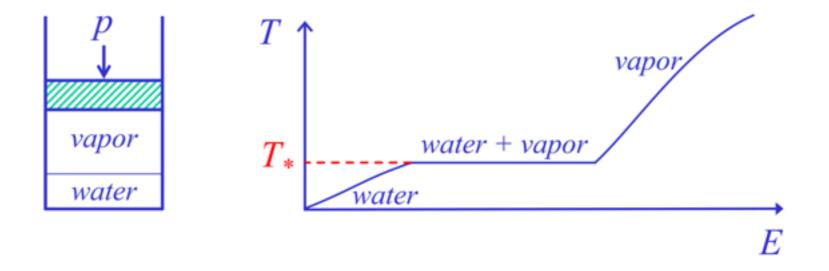
Statical mechanics

micro-canonical
$$\Omega(E) = \sum_{n} \delta(H_n - E)$$

Equivalent in
thermodynamic limit
Canonical $Z(\beta) = \sum_{n} e^{-\beta H_n}$

$$\int [d\varphi] e^{-S_{\text{extra}}} \delta \left(\int d^4 x \, \varphi^2 - I_2 \right)$$

Proposal in [Froggatt, Nielsen '95]


$$Z(\{\lambda\}) = \int [d\varphi] e^{-S(\{\lambda\})[\varphi]}$$

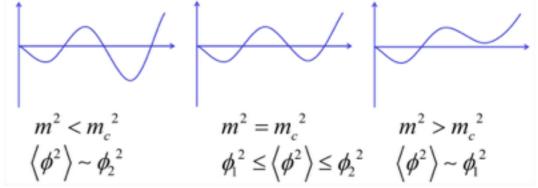
Correspondence: T \leftrightarrow coupling(intensive variable), E $\leftrightarrow \int \Phi^2$ (extensive variable).

n

Coexisting phase

- Add heat to water under constant pressure.
- Point: For wide range of E, the temperature T is tuned to be boiling point T_{*}.

QFT version


• Inspired by micro-canonical ensemble, we fix I_2

$$\int [d\varphi] e^{-S_{\text{extra}}} \delta \left(\int d^4 x \, \varphi^2 - I_2 \right)$$

• Taking natural value $I_2 = O(V_4 M_P^2)$, the constraint

is realized as an average between two vacuum.

• To maintain coexisting phase, vacua should be degenerate. $m^{2} < m_{c}^{2} \qquad m^{2} = m_{c}^{2} \qquad m^{2} > m_{c}^{2} \\ \langle \phi^{2} \rangle \sim \phi_{2}^{2} \qquad \phi_{1}^{2} \leq \langle \phi^{2} \rangle \leq \phi_{2}^{2} \qquad \langle \phi^{2} \rangle \sim \phi_{1}^{2}$

Talk Plan

1. Conjectures

- 2. Standard Model in 4 dimension [YH, Shiu in progress]
- 3. Standard Model in 2 and 3 dimensions

[YH, Shiu 1707.06326]

Conjectures

 In the following, we consider application of two conjectures to SM.

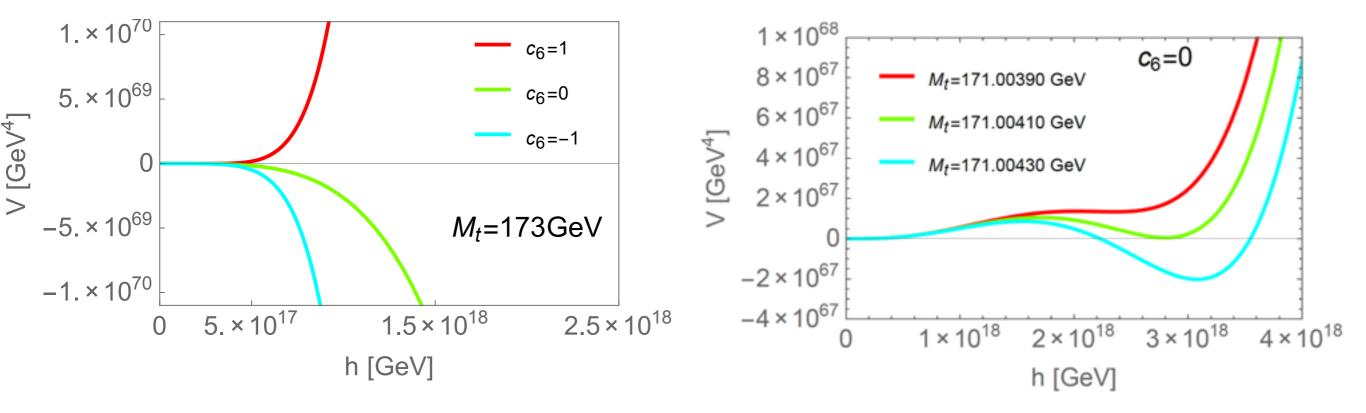
 Conjecture: All non-SUSY AdS vacua are unstable. (We refer this as WGC)

 Conjecture: Parameters of the theory are tuned so that many vacua are degenerate in energy. (We refer this as MPP)

Higgs potential

Higgs potential for h>>EEW

$$V_H = \lambda_{\text{eff}}(h) \frac{h^4}{4} + c_6 \frac{h^6}{8M_P^2} + c_8 \frac{h^8}{16M_P^2} + \dots$$


 $\cdot\,$ The running of self coupling $\lambda\,$

$$\frac{d\lambda}{dt} = \frac{1}{16\pi^2} \left(24\lambda^2 + \frac{3}{8}g_Y^4 + \frac{3}{4}g_Y^2g_2^2 + \frac{9}{8}g_2^4 - 6y_t^4 + \dots \right)$$

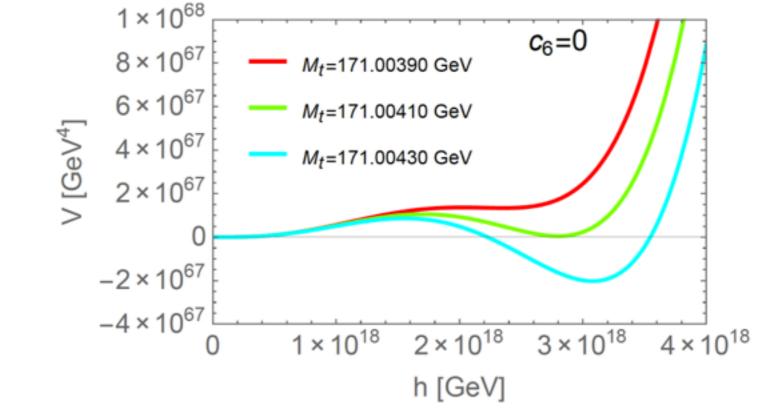
boson: positive contribution top: negative contribution

Higgs potentials

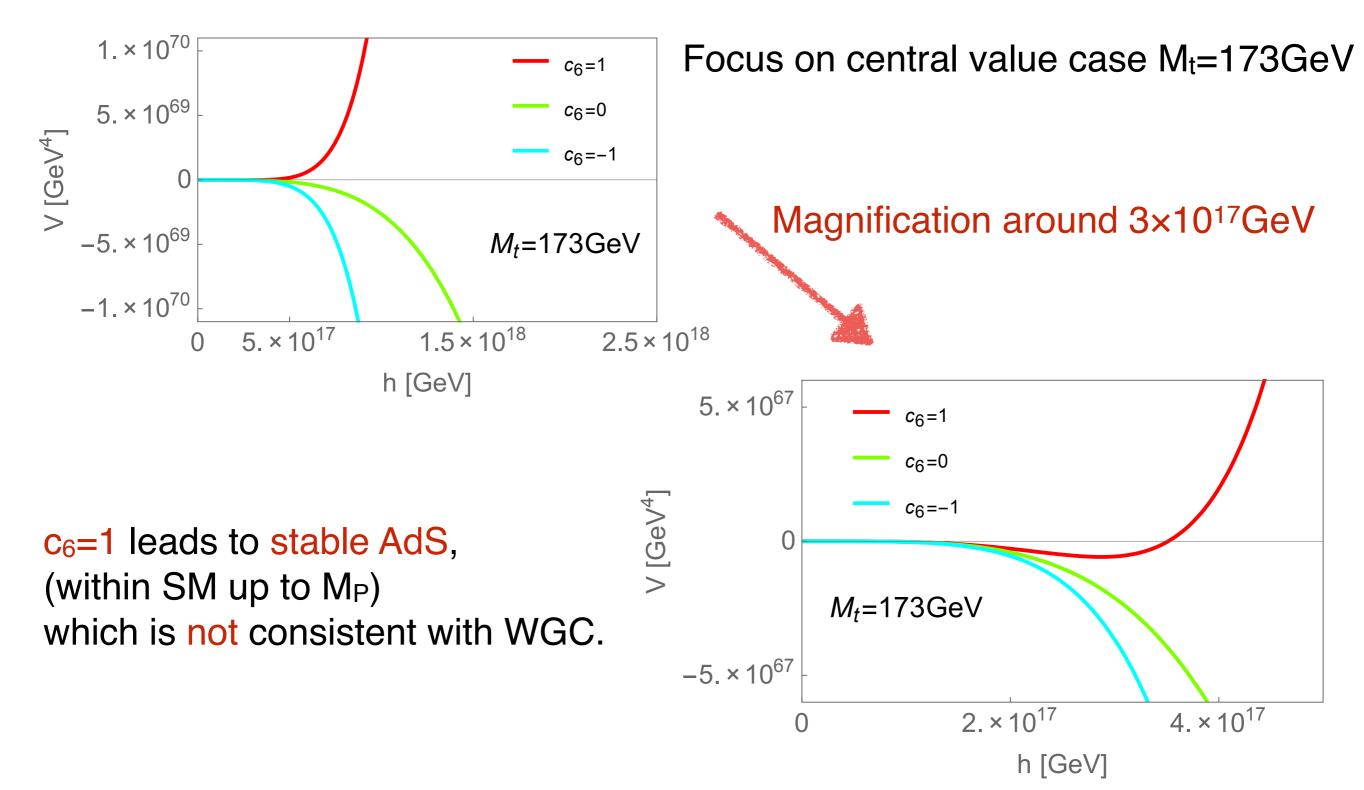
[Degrassi et. al. '12, and many references]

central value $M_t=173GeV \& c_6=0$, EW vacuum is metastable. smaller M_t ≤ 171GeV, EW vacuum is absolutely stable.

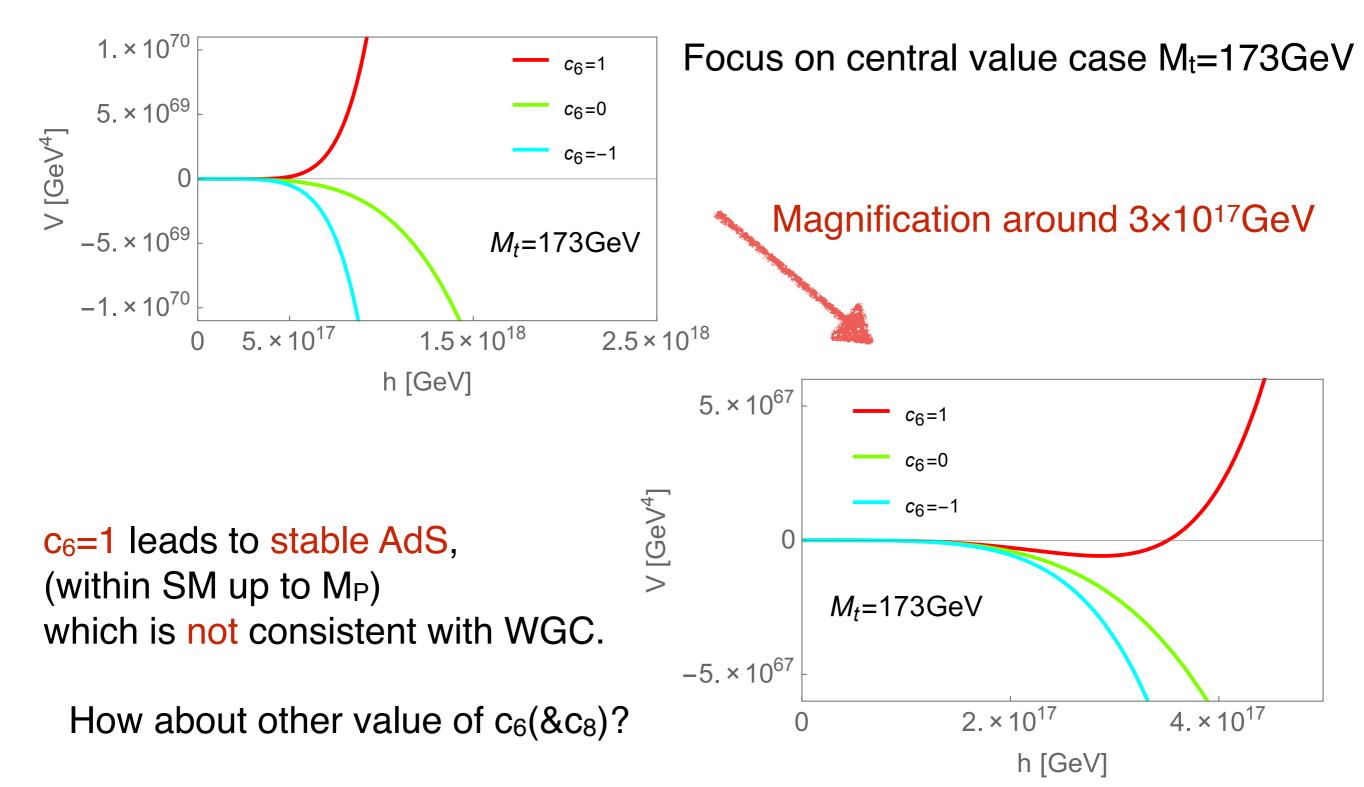
 $\lambda{<}0$ for $h>10^{10}GeV$.


[Froggatt, Nielsen '95]

Applying conjectures

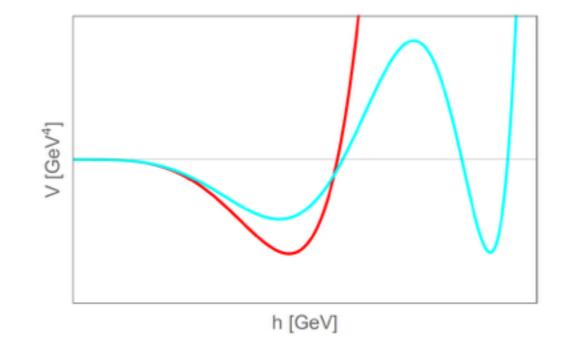

The two vacua at h=E_{EW} and h=M_P should be degenerate in energy. \rightarrow M_t=171GeV,

Мн=125GeV.


•

Applying WGC

Applying WGC

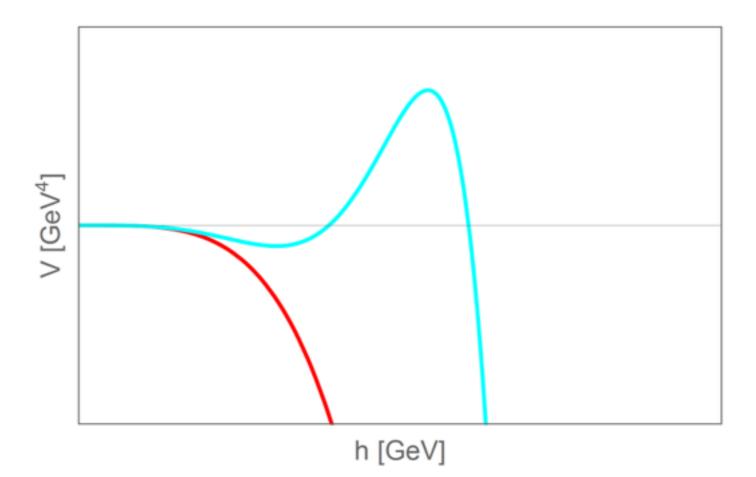


Possibilities above MP

· possibility1:

Higgs potential is bounded from below.

stable AdS→inconsistency with WGC



Possibilities above MP

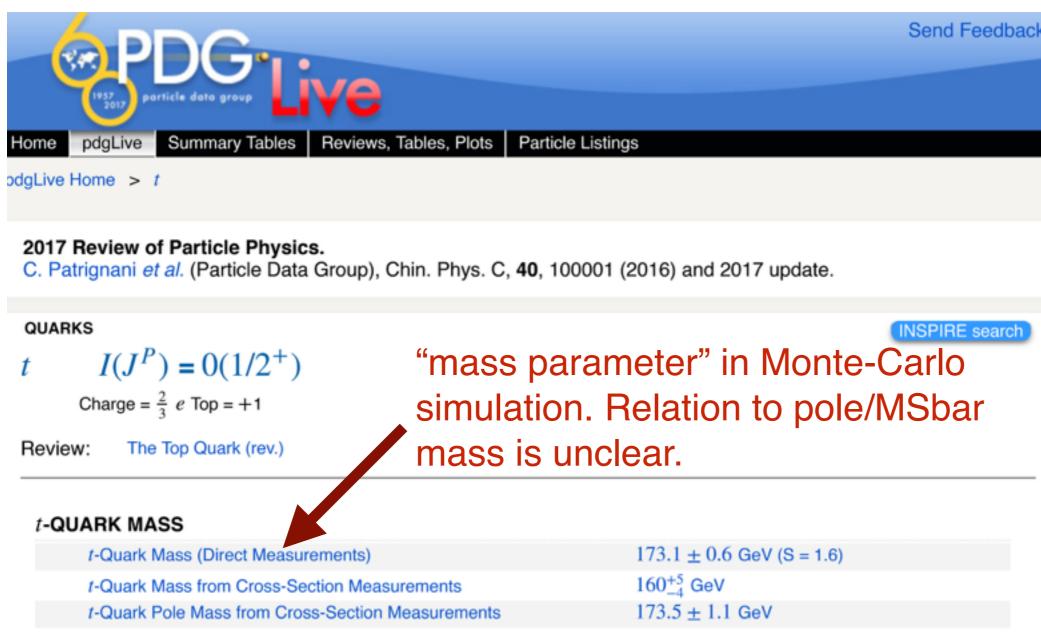
possibility2:

Higgs potential is not bounded from below.

consistency with WGC, but seems to be pathological?

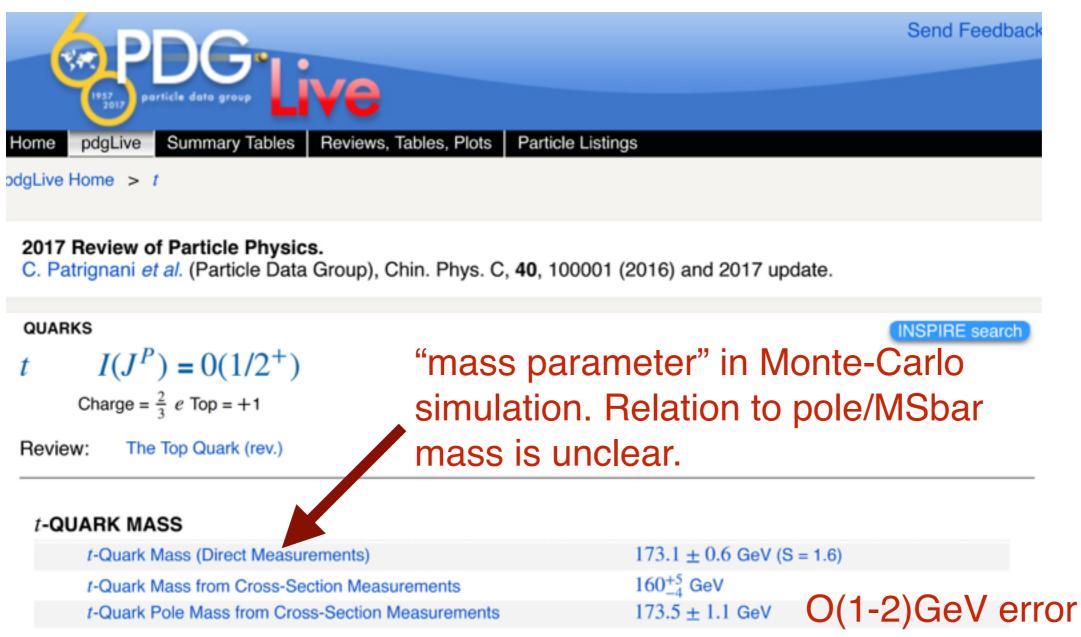
If Higgs potential is bounded from below, SM with $M_t=173$ GeV, $M_H=125$ GeV may not be consistent with quantum gravity.

Precision of Mt


Precise measurement of Mt is important.

PDG Live	Send Feedbac
Home pdgLive Summary Tables Reviews, Tables, Plots Particle Listings	
odgLive Home > t	
2017 Review of Particle Physics. C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update.	
QUARKS	INSPIRE search
$t \qquad I(J^P) = 0(1/2^+)$	INSPIRE Search
Charge = $\frac{2}{3}e$ Top = +1	
Review: The Top Quark (rev.)	
Review: The Top Quark (rev.)	

t-Quark Mass (Direct Measurements)	$173.1 \pm 0.6 \text{ GeV} (\text{S} = 1.6)$
t-Quark Mass from Cross-Section Measurements	160 ⁺⁵ ₋₄ GeV
t-Quark Pole Mass from Cross-Section Measurements	$173.5 \pm 1.1 \text{ GeV}$


Precision of Mt

Precise measurement of Mt is important.

Precision of Mt

Precise measurement of Mt is important.

Talk Plan

- 1. Conjectures
- 2. Standard Model in 4 dimension [YH, Shiu in progress]
- 3. Standard Model in 2 and 3 dimensions

[YH, Shiu 1707.06326]

SM landscape

- The conjectures are applicable to vacua in string landscape.
- SM itself has rich structure of landscape. [Arkani-Hamed et. al. '07]
 - \cdot S¹ and T² compactifications.
 - Originally investigated in the context of AdS/CFT, we revisit in different context.

S¹ compactification

4D action
$$S = \int d^4x \sqrt{-g} \left(\frac{1}{2} M_P^2 R - \Lambda_4 - V_{S^1}^{\text{all}} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \dots \right)$$

Dimensional reduction Casimir energy

$$S = \int_{x_{3d},E} (L_0) \left[\frac{1}{2} M_P^2 R^{E(3)} - M_P^2 \frac{g^{Eij} \partial_i L \partial_j L}{L^2} - \frac{1}{4} \left(\frac{L}{L_0} \right)^4 B_{ij} B^{ij} - \frac{\Lambda_4 L_0^2}{(2\pi L)^2} - \frac{V_{S^1}^{\text{all}} L_0^2}{(2\pi L)^2} \right]$$

potential for radius L.

Boundary condition

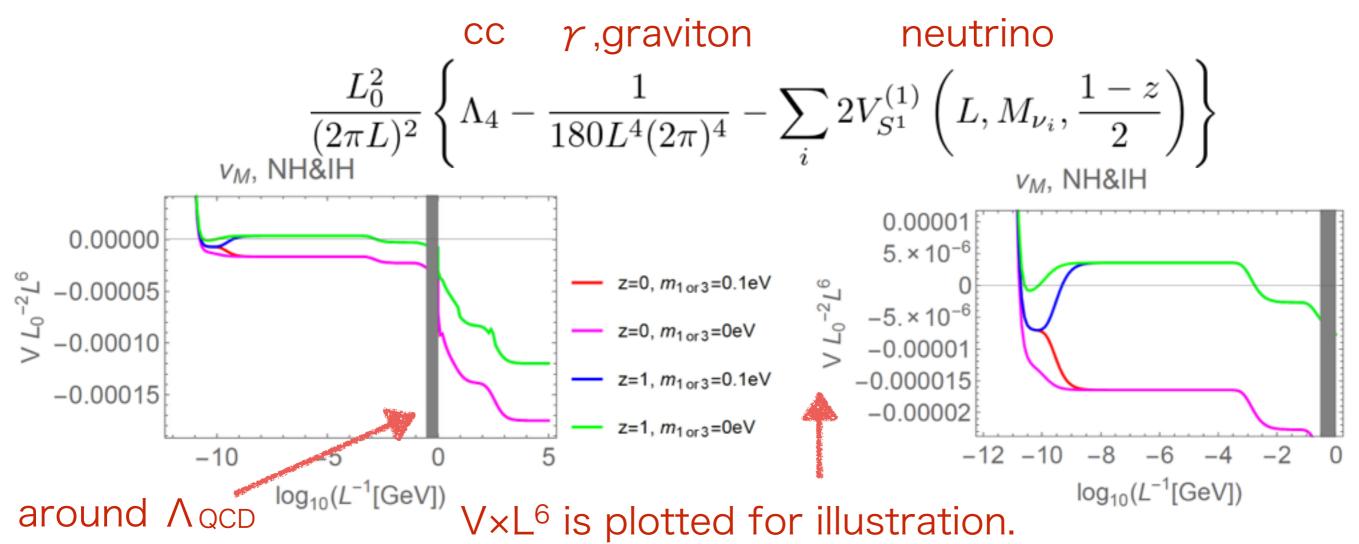
The single valuedness of action(or path integral?) is required.

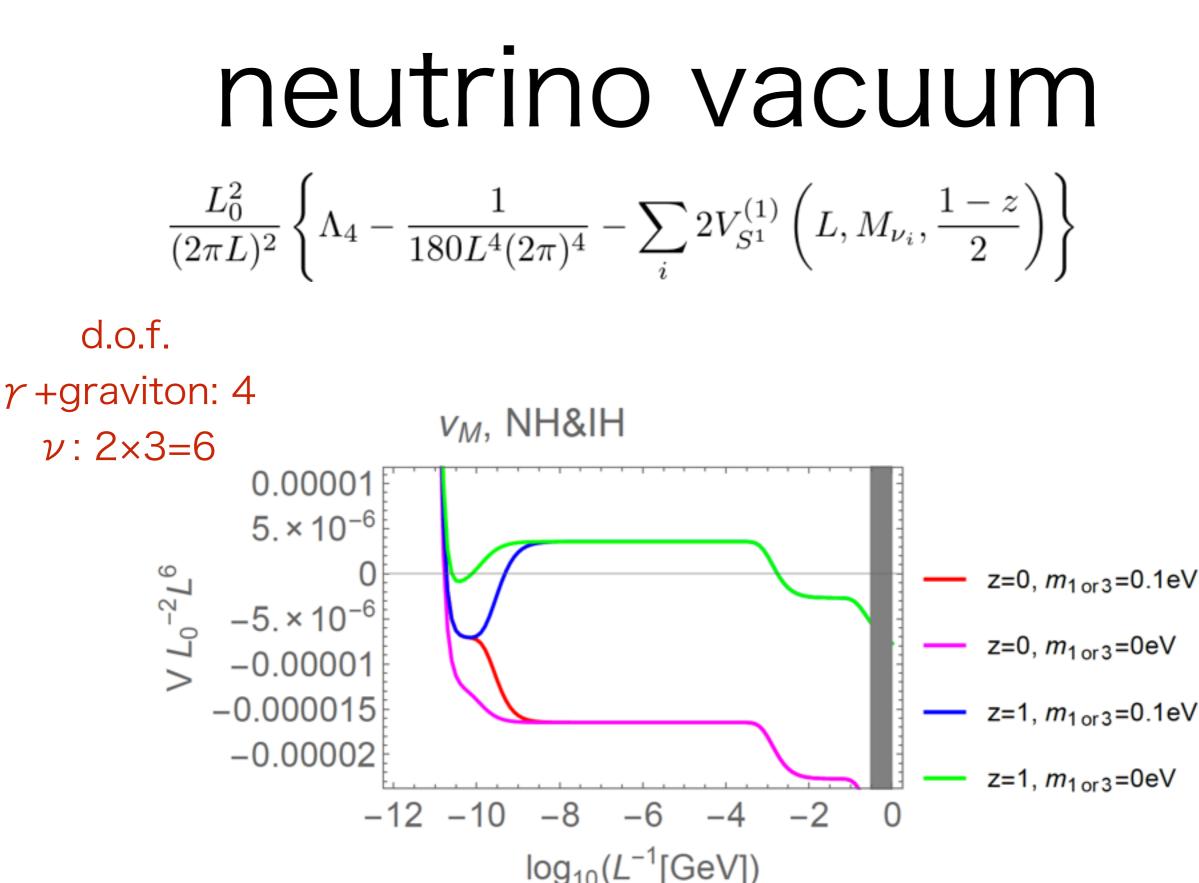
$$\psi_{\text{lepton}}(x_3 + 2\pi L) = \begin{cases} \pm \psi_{\text{lepton}}(x_3) & \text{for Majorana neutrino,} \\ \\ e^{iQ_L}\psi_{\text{lepton}}(x_3) & \text{for Dirac neutrino.} \end{cases} \quad U(1)_{\text{L}} \\ \psi_{\text{baryon}}(x_3 + 2\pi L) = e^{iQ_B}\psi_{\text{baryon}}(x_3). & U(1)_{\text{B}} \end{cases}$$

• $(z+1)\pi := Q_L = Q_B$ is taken in the following. z=0: anti-periodic, z=1: periodic.

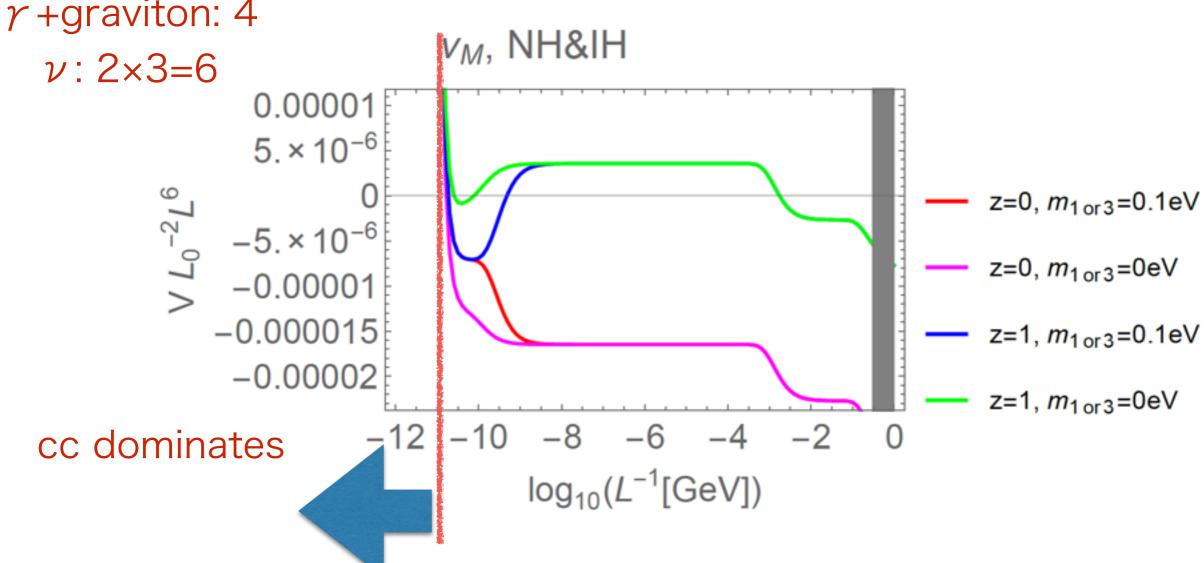
Casimir energy

· Casimir energy is calculated from 1-loop Det w/ ζ functional regularization.

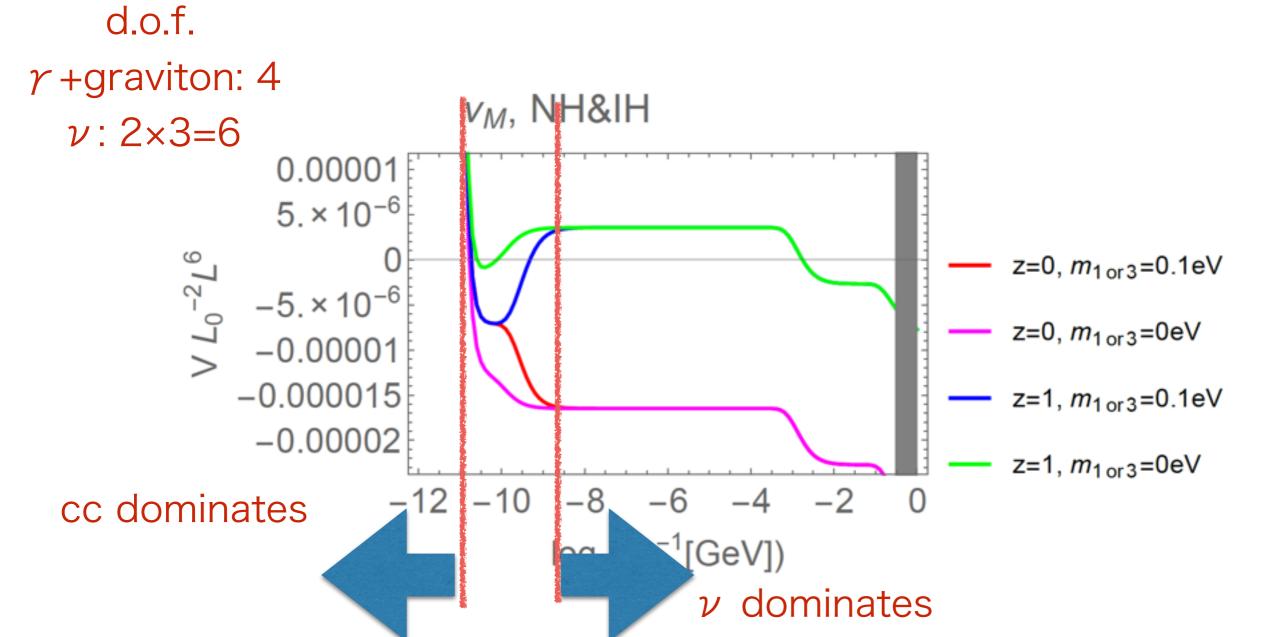

$$\frac{V_{S^1}^{\text{all}}}{(2\pi L)^2} = \sum_{\text{particle}} (-1)^{2s_p} n_p \frac{V_{S^1}^{(1)} \left(L, M_p, q_p A_\phi + \frac{1-z_p}{2}\right)}{(2\pi L)^2},$$
$$V_{S^1}^{(1)}(L, M, \theta) = -\frac{M^4}{2\pi^2} \sum_{n=1}^{\infty} \frac{\cos(2\pi n\theta)}{(2\pi L M n)^2} K_2(2\pi L M n),$$
$$V_{S^1}^{(1)}(L, 0, 0) = -\frac{1}{360L^4} \frac{1}{(2\pi)^2}, \quad V_{S^1}^{(1)}(L, 0, 1/2) = \frac{7}{2880L^4} \frac{1}{(2\pi)^2},$$

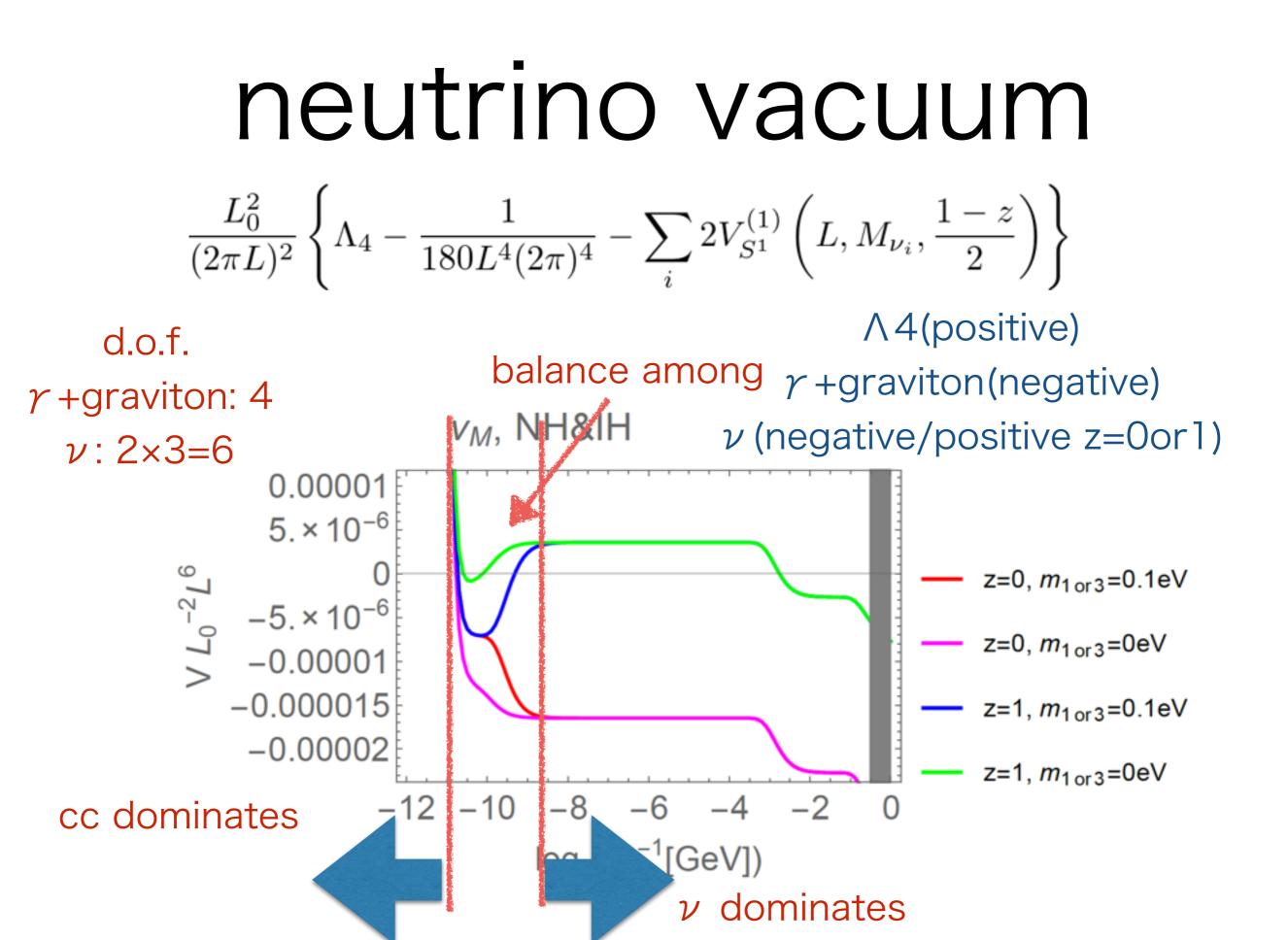

n_p: degrees of freedom, s_p: spin, M_p: mass, q_p: charge

Majorana neutrino


AdS vacuum around neutrino mass scale ~ meV.

· The balance among 3 contributions:





$$\frac{L_{0}^{2}}{(2\pi L)^{2}} \left\{ \Lambda_{4} - \frac{1}{180L^{4}(2\pi)^{4}} - \sum_{i} 2V_{S^{1}}^{(1)} \left(L, M_{\nu_{i}}, \frac{1-z}{2} \right) \right\}$$
d.o.f.

$$\frac{L_{0}^{2}}{(2\pi L)^{2}} \left\{ \Lambda_{4} - \frac{1}{180L^{4}(2\pi)^{4}} - \sum_{i} 2V_{S^{1}}^{(1)} \left(L, M_{\nu_{i}}, \frac{1-z}{2} \right) \right\}$$

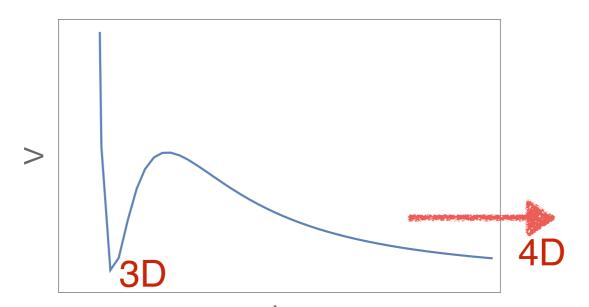
Dirac neutrino

 Neutrino vacuum with dS, flat or AdS, depending on lightest neutrino mass.

V L0⁻²L⁶

$$\frac{L_0^2}{(2\pi L)^2} \left\{ \Lambda_4 - \frac{1}{180L^4(2\pi)^4} - \sum_i 4V_{S^1}^{(1)} \left(L, M_{\nu_i}, \frac{1-z}{2} \right) \right\}$$

$$\frac{V_{D}, m_{10r3} = 8.4 \text{meV}, \text{NH&IH}}{0.00000}$$

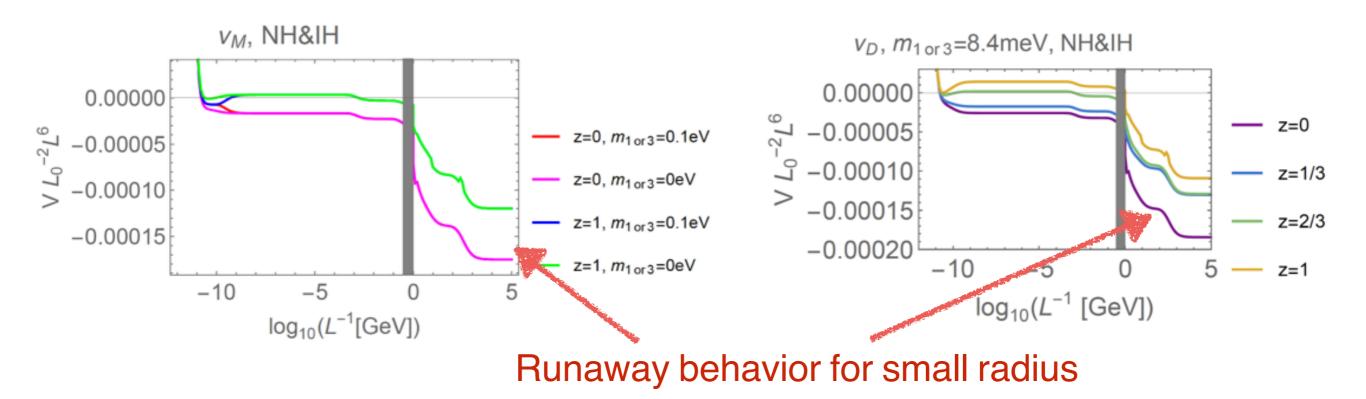

$$\frac{V_{D}, m_{10r3} = 8.4 \text{meV}, \text{NH&IH}}{0.00001}$$

$$\frac{V_{D}, m_{10r3} = 8.4 \text{meV}, \text{NH&IH}}{0.00001}$$

$$\frac{V_{D}, m_{10r3} = 8.4 \text{meV}, \text{NH&IH}}{0.00002}$$

Application of MPP

 We may consider the degeneracy between 3D and 4D vacua.


Predicted neutrino mass is

 $m_{\nu,lightest} = O(1-10) meV$, and neutrino is Dirac.

Application of WGC

 Neutrino vacuum can be AdS, but it is likely to decay non-perturbatively.

No prediction from WGC.

T² compactification

· The calculation is similar to S^1 ,

but technically complicated due to many moduli.

· Qualitatively same conclusion is obtained.

· existence of ν vacuum, runaway direction.

Detectability of m_{ν}

future CMB observation

e.g.

[1512.07299]

The POLARBEAR-2 and the Simons Array Experiments

A. Suzuki^{a,b}, P. Ade^d, Y. Akiba^{e,x}, C. Aleman^f, K. Arnold^y, C. Baccigalupi^g, B. Barch^a, D. Barron^a, A. Bender^h, D. Boettger^m, J. Borrillⁱ, S. Chapman^j, Y. Chinone^a, A. Cukierman^a, M. Dobbs^k, A. Ducout^l, R. Dunner^m, T. Elleflot^f, J. Errard¹, G. Fabbian^g, S. Feeney^l, C. Fengⁿ, T. Fujino^c, G. Fuller^f, A. Gilbert^k, N. Goeckner-Wald^a, J. Groh^a, T. De Haan^a, G. Hall^a, N. Halverson^o, T. Hamada^e, M. Hasegawa^e, K. Hattori^e, M. Hazumi^{c,e,x}, C. Hill^a, W. Holzapfel^a, Y. Hori^a, L. Howe^f, Y. Inoue^{e,2}, F. Irie^c, G. Jaehnig^o, A. Jaffe^l, O. Jeong^a, N. Katayama^c, J. Kaufman^f, K. Kazemzadeh^f, B. Keating ^f, Z. Kermish^p, R. Keskitaloⁱ, T. Kisnerⁱ, A. Kusaka^q, M. Le Jeune^r, A. Lee^a, D. Leon^f, E. Linder^q, L. Lowry^f, F. Matsuda^f, T. Matsumura^s, N. Miller^f, K. Mizukami^c, J. Montgomery^k, M. Navaroli^f, H. Nishino^e, J. Peloton^r, D. Poletti^r, G. Rebeiz^u, C. Raum^a, C. Reichardt^v, P. Richards^a, C. Ross^j, K. Rotermund^j, Y. Segawa^e, B. Sherwin^q, I. Shirley^a, P. Siritanasak^f, N. Stebor^f, R. Stompor^r, J. Suzuki^e, O. Tajima^e, S. Takada^w, S. Takakura^{e,z}, S. Takatori^e, A. Tikhomirov^j, T. Tomaru^e, B. Westbrook^a, N. Whitehorn^a, T. Yamashita^c, A. Zahn^f, O. Zahn^a

Our value: $\Sigma m_v \sim 60 \text{ meV}$ for NH, 100meV for IH.

Please let me know if you know good experiment.

Detectability of m_{ν}

future CMB observation

[1512.07299]

e.g.

The POLARBEAR-2 and the Simons Array Experiments

A. Suzuki^{a,b}, P. Ade^d, Y. Akiba^{e,x}, C. Aleman^f, K. Arnold^y, C. Baccigalupi^g, B. Barch^a, D. Barron^a, A. Bender^h, D. Boettger^m, J. Borrillⁱ, S. Chapman^j, Y. Chinone^a, A. Cukierman^a, M. Dobbe^k, A. Ducout^l, P. Dupper^m, T. Elleflot^f, I. Errord¹, G. Fabbian^g, S. Feoney^l, C. Fengⁿ, T.

channel frequency domain multiplexing. Refractive optical elements are made with high purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8 μ K_{CMB} \sqrt{s} in each frequency band. POLARBEAR-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three POLARBEAR-2 type receivers. The Simons Array will cover 95 GHz, 150 GHz and 220 GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to $\sigma(r) = 6 \times 10^{-3}$ at r = 0.1 and $\sum m_v(\sigma = 1)$ to 40 meV.

ⁱ, G. Hall^a, N. W. Holzapfel^a, Y. Katayama^c, J. nerⁱ, A. Kusaka^q, umura^s, N. Millerⁱ letti^r, G. Rebeiz^u, B. Sherwin^q, I. S. Takada^w, S. Whitehorn^a, T.

Yamashitac, A. Zahnf, O. Zahna

Our value: $\Sigma m_v \sim 60 \text{ meV}$ for NH, 100meV for IH.

· Please let me know if you know good experiment.

Summary

- Message of talk
 - Neutrino is Dirac,

 $m_{\nu,\text{lightest}} = O(1-10) \text{meV}$ (from MPP).

If Higgs potential is bounded from below,
 SM with Mt=173GeV, MH=125GeV may not
 be consistent with QG (from WGC).