A New Dark Matter (in)Direct Search Strategy

Doojin Kim University of Wisconsin, WI November 14th, 2017

Based on DK, J.-C. Park, S. Shin, PRL119, 161801 (2017) G. Giudice, DK, J.-C. Park, S. Shin, 1711. xxxxx

A New Dark Matter (in)Direct Search Strategy at WIMP Detectors

Doojin Kim University of Wisconsin, WI November 14th, 2017

Based on DK, J.-C. Park, S. Shin, PRL119, 161801 (2017) G. Giudice, DK, J.-C. Park, S. Shin, 1711. xxxxx

Outline

I. Introduction/Motivation

Direct detection experiment current status, boosted dark matter search, ...

II. Model

Benchmark models, expected signatures, ...

III. Signal Detection

Benchmark detectors, detection technology, expected signal features, ...

IV. Phenomenology

Detection prospects, model-independent reach, ...

V. Conclusions

□ (Mostly) focusing on weakly interacting massive particles (WIMPs) search

□ (Mostly) focusing on weakly interacting massive particles (WIMPs) search

□ (Mostly) focusing on weakly interacting massive particles (WIMPs) search

 $\checkmark E_{\rm recoil} \sim 1 - 100$

✓ Detectors
 designed to be
 sensitive to this
 energy scale

Doojin Kim, CERN

□ (Mostly) focusing on weakly interacting massive particles (WIMPs) search

✓ E_{recoil}~1 – 100 keV
 ✓ Detectors designed to be sensitive to this

energy scale

- $\checkmark\,$ Null observation of WIMP signals
- ✓ A wide range of parameter space already excluded
- ✓ Close to the neutrino "floor"
- ✓ Need new ideas!

Doojin Kim, CERN

□ (Mostly) focusing on weakly interacting massive particles (WIMPs) search

- ✓ Null observation of WIMP signals
- ✓ A wide range of parameter space already excluded
- ✓ Close to the neutrino "floor"
- ✓ Need new ideas!

Doojin Kim, CERN

"Relativistic" Dark Matter Search

□ A way to have "relativistic" DM (at the cosmic frontier) boosted dark matter scenarios [Agashe, Cui, Necib, Thaler (2014)]

"Relativistic" Dark Matter Search

□ A way to have "relativistic" DM (at the cosmic frontier) boosted dark matter scenarios [Agashe, Cui, Necib, Thaler (2014)]

- Overall relic determined by <u>"Assisted" Freeze-out</u> mechanism [Belanger, Park (2011)]
- ✤ Heavier DM χ_0 : dominant relic, non-relativistic, not directly communicating with SM (hard to detect them due to tiny coupling to SM)
- Lighter DM χ_1 : directly communicating with SM, subdominant relic (hard to detect them due to small amount)

"Relativistic" Dark Matter Search

□ A way to have "relativistic" DM (at the cosmic frontier) boosted dark matter scenarios [Agashe, Cui, Necib, Thaler (2014)]

- Overall relic determined by <u>"Assisted" Freeze-out</u> mechanism [Belanger, Park (2011)]
- ✤ Heavier DM χ_0 : dominant relic, non-relativistic, not directly communicating with SM (hard to detect them due to tiny coupling to SM)
- Lighter DM χ_1 : directly communicating with SM, subdominant relic (hard to detect them due to small amount)

 $\Box \chi_1$ can be relativistic at the current universe (non-relativistic as a relic): relativistic DM search

Light Boosted DM Detection

 \Box Flux of boosted χ_1 near the earth

$$\mathcal{F}_{\chi_1} \sim \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$$
 from DM number density

Light Boosted DM Detection

 \Box Flux of boosted χ_1 near the earth

$$\mathcal{F}_{\chi_1} \sim \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$$
 from DM number density

□ Setting $\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}$ to be ~10⁻²⁶ cm³s⁻¹ and assuming NFW DM halo profile, one finds $\mathcal{F}_{\chi_1} \sim 10^{-7} \text{cm}^{-2} \text{s}^{-1}$ for WIMP mass-range χ_0

Light Boosted DM Detection

 \Box Flux of boosted χ_1 near the earth

 $\mathcal{F}_{\chi_1} \sim \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2} \quad \text{from DM number density}$

□ Setting $\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}$ to be ~10⁻²⁶ cm³s⁻¹ and assuming NFW DM halo profile, one finds $\mathcal{F}_{\chi_1} \sim 10^{-7} \text{cm}^{-2} \text{s}^{-1}$ for WIMP mass-range χ_0

 No sensitivity in conventional dark matter direct detection experiments ⇒ largevolume (neutrino) detectors are motivated, e.g., Super-K/Hyper-K, DUNE

- Elastic scattering [Agashe et al (2014); Berger et al (2014); Kong et al. (2014); Alhazmi et al. (2016)]
- ✓ Inelastic scattering [DK, Park, Shin (2016)]

Pumping up Light DM Flux

 \Box Flux of boosted χ_1

reduced by 2 – 3 orders of magnitude \Rightarrow flux increased by 4 – 6 orders of magnitude!

Pumping up Light DM Flux

 \Box Flux of boosted χ_1

$$\mathcal{F}_{\chi_1} \sim \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2} \qquad \text{reduced by } 2 - 3 \text{ orders of magnitude} \\ \Rightarrow \text{ flux increased by } 4 - 6 \text{ orders of magnitude!}$$

Now with GeV/sub-GeV $m_0 \Rightarrow$ MeV-range m_1 motivated

Conventional DM direct detection experiments may have MeV-range (boosted) DM signal!

Doojin Kim, CERN

Pumping up Light DM Flux

 \Box Flux of boosted χ_1

$$\mathcal{F}_{\chi_1} \sim \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2} \qquad \text{reduced by } 2 - 3 \text{ orders of magnitude} \\ \Rightarrow \text{ flux increased by } 4 - 6 \text{ orders of magnitude!}$$

Now with GeV/sub-GeV $m_0 \Rightarrow$ MeV-range m_1 motivated

Conventional DM direct detection experiments may have MeV-range (boosted) DM signal!

Elastic nucleon scattering in the context of gauged baryon number/higgs portal models [Cherry, Frandsen, Shoemaker (2015)]

Doojin Kim, CERN

Why NOT Electron Scattering!

In conventional DM direct detection experiments, electron recoils (ER) are usually rejected (mostly keV – sub-MeV range) because they aim at DM-nucleon interactions

Why NOT Electron Scattering!

In conventional DM direct detection experiments, electron recoils (ER) are usually rejected (mostly keV – sub-MeV range) because they aim at DM-nucleon interactions

□ For boosted MeV-range DM,

- ✓ Expected ER energetic \Rightarrow MeV sub-GeV range
- ✓ May leave an appreciable track (will be discussed later)
- ✓ *e*-scattering cross section may be bigger than *p*/N-scattering (depending on parameter choice)

Why NOT Electron Scattering!

In conventional DM direct detection experiments, electron recoils (ER) are usually rejected (mostly keV – sub-MeV range) because they aim at DM-nucleon interactions

□ For boosted MeV-range DM,

- ✓ Expected ER energetic ⇒ MeV sub-GeV range
- ✓ May leave an appreciable track (will be discussed later)
- ✓ *e*-scattering cross section may be bigger than *p*/N-scattering (depending on parameter choice)

e-scattering will be excellent in search for MeV-range (boosted) dark matter particles!

I. Introduction/Motivation

Direct detection experiment current status, boosted dark matter search, ...

II. Model

Benchmark models, expected signatures, ...

III. Signal Detection

Benchmark detectors, detection technology, expected signal features, ...

IV. Phenomenology

Detection prospects, model-independent reach, ...

V. Conclusions

Doojin Kim, CERN

Doojin Kim, CERN

Doojin Kim, CERN

Benchmark Model

 $-\frac{\epsilon}{2}F_{\mu\nu}X^{\mu\nu}+g_{11}\bar{\chi}_{1}\gamma^{\mu}\chi_{1}X_{\mu}+g_{12}\bar{\chi}_{2}\gamma^{\mu}\chi_{1}X_{\mu}+h.\,c.\,+(others)$ $\mathcal{L}_{int} \exists$

- Vector portal (e.g., dark gauge boson scenario) [Holdom (1986)]
- □ Fermionic DM
 - * χ_2 : a heavier (unstable) dark-sector state
 - ◆ Flavor-conserving neutral current ⇒ elastic scattering
 - ◆ Flavor-changing neutral current ⇒ inelastic
 scattering [Tucker-Smith, Weiner (2001); Kim, Seo, Shin (2012)]

 \mathbb{E} γ \mathcal{E} \mathcal{E} \mathcal{E}

University of Wisconsin

Hidden

I. Introduction/Motivation

Direct detection experiment current status, boosted dark matter search, ...

II. Model

Benchmark models, expected signatures, ...

III. Signal Detection

Benchmark detectors, detection technology, expected signal features, ...

IV. Phenomenology

Detection prospects, model-independent reach, ...

V. Conclusions

Benchmark Detectors

Experiment	Geometry	(r, h) or r [cm]	$Mass \ [t]$	Target
XENON1T	Cylinder	(38, 76)	1.0	LXe
DEAP-3600	Sphere	72	2.2	LAr
LZ	Cylinder	(69, 130)	5.6	LXe

[Numbers are for fiducial volumes.]

Doojin Kim, CERN

Dual phase detection technology

Top PMTs
Gas Xe
Liquid Xe
Bottom PMTs

Doojin Kim, CERN

Dual phase detection technology

□ For a given scattering point,

Doojin Kim, CERN

Dual phase detection technology

□ For a given scattering point,

 Some Xe excited → de-excited, emitting a characteristic scintillation photon (178 nm) detected by PMTs immediately, S1 (scintillation),

Doojin Kim, CERN

Dual phase detection technology

- □ For a given scattering point,
 - Some Xe excited → de-excited, emitting a characteristic scintillation photon (178 nm) detected by PMTs immediately, S1 (scintillation),
 More Xe ionized, releasing free electrons moving upward by the Drift Field and hitting gaseous Xe,

Doojin Kim, CERN

Dual phase detection technology

- □ For a given scattering point,
 - Some Xe excited → de-excited, emitting a characteristic scintillation photon (178 nm) detected by PMTs immediately, S1 (scintillation),
 More Xe ionized, releasing free electrons moving upward by the Drift Field and hitting gaseous Xe,
 Gaseous Xe excited → de-excited, emitting a

photon detected by PMTs, **S2** (ionization).

Dual phase detection technology

- □ For a given scattering point,
 - Some Xe excited → de-excited, emitting a characteristic scintillation photon (178 nm)

detected by PMTs immediately, **S1** (scintillation),

- 2) More Xe ionized, releasing free electrons moving
 - upward by the **Drift Field** and hitting gaseous Xe,
- 3) Gaseous Xe excited \rightarrow de-excited, emitting a

photon detected by PMTs, **S2** (ionization).

□ Time difference between S1 and S2 giving the depth of the scattering point (~0.1mm resolution)

Dual phase detection technology

□ For a given scattering point,

1) Some Xe excited \rightarrow de-excited, emitting a characteristic scintillation photon (178 nm)

detected by PMTs immediately, **S1** (scintillation),

- 2) More Xe ionized, releasing free electrons moving
 - upward by the Drift Field and hitting gaseous Xe,
- 3) Gaseous Xe excited \rightarrow de-excited, emitting a

photon detected by PMTs, **S2** (ionization).

□ Time difference between S1 and S2 giving the depth of the scattering point (~0.1mm resolution)

Doojin Kim, CERN

Detection Technology: XY Plane

□ LOW energy source (²⁴¹AmBe)

Detection Technology: XY Plane

□ LOW energy source (²⁴¹AmBe)

□ Likelihood analysis allowing position resolution in XY plane as good as < 2 cm (may be better

with high energy source [LUX collaboration (2017)])

Doojin Kim, CERN

□No dedicated detector studies with highenergetic recoil signals

Doing our best to make as reasonable estimate and expectation as possible

High-energetic DM Signal Detection

□ Point-like scattering position?

Doojin Kim, CERN

High-energetic DM Signal Detection

□ Point-like scattering position? → Expect a **sizable track**!

[Material property available at NIST (https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html)]

High-energetic DM Signal Detection

□ Point-like scattering position? → Expect a **sizable track**!

[Material property available at NIST (https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html)]

□ Expect tracks of 2 – 10 cm (with LXe) for energy regime of interest

Doojin Kim, CERN

Expected Pattern: Vertical Track

A given vertical track

	 I	
_		
Drift field	ł	

Doojin Kim, CERN

Expected Pattern: Vertical Track

A given vertical track

- 1) can be considered as an array of scattering points,
- 2) Free electrons released at each point: more (less) electrons at the starting (ending) point,
- 3) Expect a series of flickerings of a few PMTs by an interval of ~10 ns (1 cycle of charge discharge)

Expected Pattern: Vertical Track

A given vertical track

- 1) can be considered as an array of scattering points,
- 2) Free electrons released at each point: more (less) electrons at the starting (ending) point,
- 3) Expect a series of flickerings of a few PMTs by an interval of ~10 ns (1 cycle of charge discharge)
- Expect (relatively) easy identification of a lengthy track plus more precise track/energy reconstruction (than the horizontal track in the next slide)

□ For a given horizontal track

Drift fie	eld		

Doojin Kim, CERN

□ For a given horizontal track

 Expect (almost) simultaneous charging of several PMTs, some of which may saturate

Doojin Kim, CERN

□ For a given horizontal track

 Expect (almost) simultaneous charging of several PMTs, some of which may saturate

Expect identification of a lengthy track is doable/ achievable Track/energy recon. may require likelihood analysis with unsaturated PMTs

Doojin Kim, CERN

□ For a given horizontal track

Doojin Kim, CERN

Positron Signature: Bragg Peak

□ A given positron track

Doojin Kim, CERN

Positron Signature: Bragg Peak

A given positron track

- 1) stops and gets annihilated with a (nearby) electron,
 creating a characteristic signature of Bragg
 Peak!!!
 - ⇒ Additional handle to identify positrons (or positron tracks)
 - ⇒ Cf.) DEAP having better acceptance for the
 Bragg peak due to its spherical geometry

Doojin Kim, CERN

Expected DM Signals: XY Plane-view

□ Tracks **POP UP** inside the fiducial volume, **NOT** from outside!

Doojin Kim, CERN

Expected DM Signals: XY Plane-view

□ Multiple tracks/displaced vertex necessary only for post-discovery (e.g., elastic vs. inelastic)

Cf.) DEAP3600: displaced vertex \geq 6.5 cm identifiable with S1 only by likelihood methods

Doojin Kim, CERN

Potential Backgrounds

□ Any SM backgrounds creating an electron recoil track appearing inside the fiducial volume?

Potential Backgrounds

Any SM backgrounds creating an electron recoil track appearing inside the fiducial volume?

 \Rightarrow Yes, solar neutrinos, in particular, induced by ⁸B.

TABLE II. ⁸B neutrino scattering cross sections. The scattering cross sections for ⁸B solar neutrinos incident on electrons are given for different values of the minimum accepted kinetic energy T_{\min} . The neutrinos are assumed to be pure electron neutrinos (v_e) or muon neutrinos (v_μ) when they reach the Earth. The cross sections were calculated for $\sin^2\theta_W = 0.23$. The quantities F_{e,v_μ} and F_{e,v_μ} are the fractional changes in the cross section for a change in $\sin^2\theta_W$ equal to 0.01 [see Eq. (22)].

T_{\min} (MeV)	(10^{-46} cm^2)	F _{e-ve}	$\sigma_{e-\nu_{\mu}}$ (10 ⁻⁴⁶ cm ²)	$F_{e-v_{\mu}}$
0.0	6.08×10^{2}	0.029	1.04×10 ²	-0.040
1.0	5.09×10^{2}	0.029	8.39×10^{1}	-0.046
2.0	4.15×10^{2}	0.028	6.63×10 ¹	-0.052
3.0	3.27×10^{2}	0.028	5.10×10^{1}	-0.056
4.0	2.48×10^{2}	0.028	3.79×10^{1}	-0.060
5.0	1.80×10^{2}	0.028	2.71×10^{1}	-0.063
6.0	1.23×10^{2}	0.027	1.83×10^{1}	-0.065
7.0	7.90×10^{1}	0.027	1.16×10^{1}	-0.067
8.0	4.64×10^{1}	0.027	6.76×10^{0}	-0.068
9.0	2.44×10^{1}	0.027	3.53×10^{0}	-0.069
10.0	1.10×10^{1}	0.027	1.58×10^{0}	-0.070
11.0	3.93×10^{0}	0.027	5.64×10^{-1}	-0.070
12.0	9.88×10^{-1}	0.027	1.41×10^{-1}	-0.071
13.0	1.36×10^{-1}	0.027	1.94×10^{-2}	-0.071
13.5	3.60×10^{-2}	0.027	5.13×10^{-3}	-0.071
14.0	7.4×10^{-3}	0.027	1.0×10^{-3}	-0.071

[Rev. Mod. Phys., Vol. 59, No. 2, April 1987]

Potential Backgrounds

Any SM backgrounds creating an electron recoil track appearing inside the fiducial volume?

 \Rightarrow Yes, solar neutrinos, in particular, induced by ⁸B.

TABLE II. ⁸B neutrino scattering cross sections. The scattering cross sections for ⁸B solar neutrinos incident on electrons are given for different values of the minimum accepted kinetic energy T_{min} . The neutrinos are assumed to be pure electron neutrinos (v_e) or muon neutrinos (v_μ) when they reach the Earth. The cross sections were calculated for $\sin^2\theta_W = 0.23$. The quantities $F_{e\cdot v_\mu}$ and $F_{e\cdot v_\mu}$ are the fractional changes in the cross section for a change in $\sin^2\theta_W$ equal to 0.01 [see Eq. (22)].

T_{\min}	σ_{e-v_e}		$\sigma_{e-v_{e-1}}$	
(MeV)	(10^{-46} cm^2)	F _{e-ve}	(10^{-46} cm^2)	$F_{e-v_{\mu}}$
0.0	6.08×10 ²	0.029	1.04×10^{2}	-0.040
1.0	5.09×10^{2}	0.029	8.39×10^{1}	-0.046
2.0	4.15×10^{2}	0.028	6.63×10 ¹	-0.052
3.0	3.27×10^{2}	0.028	5.10×10^{1}	-0.056
4.0	2.48×10^{2}	0.028	3.79×10^{1}	-0.060
5.0	1.80×10^{2}	0.028	2.71×10^{1}	-0.063
6.0	1.23×10^{2}	0.027	1.83×10^{1}	-0.065
7.0	7.90×10^{1}	0.027	1.16×10^{1}	-0.067
8.0	4.64×10^{1}	0.027	$6.76 \times 10^{\circ}$	-0.068
9.0	2.44×10^{1}	0.027	$3.53 \times 10^{\circ}$	-0.069
10.0	1.10×10^{1}	0.027	1.58×10^{0}	-0.070
11.0	$3.93 \times 10^{\circ}$	0.027	5.64×10^{-1}	-0.070
12.0	9.88×10^{-1}	0.027	1.41×10^{-1}	-0.071
13.0	1.36×10^{-1}	0.027	1.94×10^{-2}	-0.071
13.5	3.60×10^{-2}	0.027	5.13×10^{-3}	-0.071
14.0	7.4×10^{-3}	0.027	1.0×10^{-3}	-0.071

[Rev. Mod. Phys., Vol. 59, No. 2, April 1987]

□ Estimate only ~0.1 events even at LZ-5yr with an energy cut of \geq 10 MeV (Energy resolution

at $E_{\text{recoil}} = 10 \text{ MeV}$ is expected to be $\mathcal{O}(10\%)$ [private communications with experimentalists].)

Doojin Kim, CERN

I. Introduction/Motivation

• Direct detection experiment current status, boosted dark matter search, ...

II. Model

Benchmark models, expected signatures, ...

III. Signal Detection

Benchmark detectors, detection technology, expected signal features, ...

IV. Phenomenology

Detection prospects, model-independent reach, ...

V. Conclusions

Doojin Kim, CERN

Benchmark Studies

FIG. 2: Expected energy spectra of the primary (upper-left panel) and secondary (upper-right panel) e^- and/or e^+ for four reference points whose details are tabulated in the lower panel. g_{12} is set to be unity and all mass quantities are in MeV.

 $\chi_2 \text{ long-lived}$ $\ell_{2,\text{lab}} = \frac{c\gamma_2}{\Gamma_2} \sim 16.2 \text{ cm} \times \left(\frac{10^{-3}}{\epsilon}\right)^2 \times \left(\frac{1}{g_{12}}\right)^2$ $\times \left(\frac{m_X}{30 \text{ MeV}}\right)^4 \times \left(\frac{10 \text{ MeV}}{\delta m}\right)^5 \times \frac{\gamma_2}{10}$

Fixed Two-body decay of χ_2 (no displaced vertex)

Doojin Kim, CERN

Benchmark Studies

FIG. 2: Expected energy spectra of the primary (upper-left panel) and secondary (upper-right panel) e^- and/or e^+ for four reference points whose details are tabulated in the lower panel. g_{12} is set to be unity and all mass quantities are in MeV.

Quite <mark>energetic</mark> ER and secondary signals as expected

$$\begin{array}{l} \succ \ \chi_2 \ \text{long-lived} \\ \ell_{2,\text{lab}} = \frac{c\gamma_2}{\Gamma_2} \ \sim \ 16.2 \ \text{cm} \times \left(\frac{10^{-3}}{\epsilon}\right)^2 \times \left(\frac{1}{g_{12}}\right)^2 \\ & \times \ \left(\frac{m_X}{30 \ \text{MeV}}\right)^4 \times \left(\frac{10 \ \text{MeV}}{\delta m}\right)^5 \times \frac{\gamma_2}{10} \end{array}$$

Fixed body decay of χ_2 (no displaced vertex)

Doojin Kim, CERN

Benchmark Studies: Detection Prospects

0.	eliminary		ref	L	rei	f2	ref	3	ref	4
K 1	Expecte	d flux	610)	43	3	0.9)8	0.2	4
	Experiments	Run time	multi	single	multi	single	multi	single	multi	single
	VENON1T	1yr	2000	160	220	7.5	0.37	0.37	0.27	0.27
	ALMONTI	$5 \mathrm{yr}$	390	32	43	1.5	0.075	0.075	0.054	0.054
	DEAP-3600	$1 { m yr}$	450	63	55	3.1	—	0.16	_	0.11
		$5 \mathrm{yr}$	91	13	11	0.61	—	0.031	—	0.022
	LZ	$1 { m yr}$	180	27	25	1.3	0.067	0.067	0.048	0.048
		$5 \mathrm{yr}$	36	5.4	5.0	0.26	0.013	0.013	0.0096	0.0096

TABLE II: Required fluxes of χ_1 in unit of 10^{-3} cm⁻²s⁻¹ with which our reference points get sensitive to the benchmark experiments. For comparison expected fluxes are shown under the assumptions of $\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1} = 5 \times 10^{-26}$ cm³s⁻¹ and the NFW DM halo profile.

□ Selection criteria: "multi" channel – multiple tracks, "single" channel - > 1 track or a single

track with $E_{\text{recoil}} \ge 10$ MeV.

□ 3 signal events under the zero background assumption.

DEAP3600 having no sensitivity to ref3 and ref4 in the "multi" channel: no displaced vertices

in ref3 and ref4, it is challenging to identify 3 final state particles with S1 only.

Doojin Kim, CERN

Model-independent Reach

Non-trivial to find appropriate parameterizations for providing model-independent reaches due to many parameters involved in the model

 \Box Number of signal events N_{sig} is

$$N_{\rm sig} = \sigma \cdot \mathcal{F} \cdot A \cdot t_{\rm exp} \cdot N_e$$

- σ : scattering cross section between χ_1 and (target) electron
- \mathcal{F} : flux of incoming (boosted) χ_1
- A: acceptance
- *t*_{exp}: exposure time
- *N_e*: total number of target electrons

Controllable!

Model-independent Reach: Displaced Vertex

□ Acceptance determined by the distance between the primary (ER) and the secondary vertices
 ⇒ (relatively) conservative limit to require two correlated vertices in the fiducial volumes
 (also to be distinguished from elastic scattering)

Evaluated under the assumption of cumulatively isotropic χ_1 flux

Model-independent Reach: Displaced Vertex

□ Acceptance determined by the distance between the primary (ER) and the secondary vertices
 ⇒ (relatively) conservative limit to require two correlated vertices in the fiducial volumes
 (also to be distinguished from elastic scattering)

Doojin Kim, CERN

Model-independent Reach: Displaced Vertex

□ Acceptance determined by the distance between the primary (ER) and the secondary vertices
 ⇒ (relatively) conservative limit to require two correlated vertices in the fiducial volumes
 (also to be distinguished from elastic scattering)

10⁴ Xe1T-34d 90% C.L. with *Xe*1T–1yr *Xe*1T–5yr zero background **10³** DEAP-4d $\times 10^{-37} [s^{-1}]$ DEAP-1yr $\sigma \cdot \mathcal{F} \ge \frac{2.5}{A(\ell_{\text{lab}}) \cdot t_{\exp} \cdot N_e}$ DEAP-5vr 10^{2} LZ-1vr LZ = 5vrCalculable given **10**¹ a detector Ţ 10^{0} Evaluated under the assumption \mathcal{F} for ref1 and ref2 evaluated with of cumulatively isotropic χ_1 flux $\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}$ being 5 × 10⁻²⁶ cm³s⁻¹ 10^{-1} 10 100 1000 ℓ_{lab} different event-by-event, so taking ℓ_{lab}^{max} for $\ell_{\text{lab}}^{\text{max}}$ [cm] more conservative limit

Doojin Kim, CERN

Model-independent Reach: "Prompt" Decay

□ No measurable/appreciable displaced vertex \Rightarrow *A* \approx 1, limit relevant to signals with overlaid vertices or elastic scattering signals

$$\sigma \geq \frac{2.3}{\mathcal{F} \cdot A \cdot t_{\exp} \cdot N_e} \text{ with}$$
$$\mathcal{F} \sim \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2}$$
set to be 5 × 10⁻²⁶ cm³s⁻¹

Model-independent Reach: "Prompt" Decay

□ No measurable/appreciable displaced vertex \Rightarrow *A* \approx 1, limit relevant to signals with overlaid vertices or elastic scattering signals

Doojin Kim, CERN

Dark Photon Parameter Space: Invisible X Decay

 \Box Case study 1: mass spectra for which dark photon decays into DM pairs, i.e., $m_X > 2m_1$

□ Same selection criteria imposed

Preliminary $m_1 = 2$ MeV, $\gamma_1 = 20$, $m_X > 2m_1$ $m_1 = 2$ MeV, $\gamma_1 = 20, m_X > 2m$ ϵ ϵ 10⁻³ 10⁻³ 10^{-4} 10^{-4} 10⁻⁵ 10⁻⁵ Xenon1T 1y, $\delta m = 0$ $\delta m = 0$ Xenon1T 1y, $\delta m = 4$ MeV Xenon1T 1y Xenon1T 5y DEAP3600 1y, $\delta m = 0$ 10-6 10⁻⁶ DEAP3600 1y DEAP3600 1y, $\delta m = 2$ MeV DEAP3600 5y DEAP3600 1y, single signal LZ 5y Elastic scattering only Elastic vs. inelastic $\delta m = 2 \text{ MeV}$ 10-7 10-7 10⁻³ 10-2 10⁻² 10^{-3} 10^{-1} 10^{-1} m_X [GeV] m_X [GeV]

Caused by the position resolution of 6.5 cm at DEAP

Doojin Kim, CERN

Dark Photon Parameter Space: Visible X decay

 \Box Case study 2: mass spectra for which dark photon decays into lepton pairs, i.e., $m_X < 2m_1$

□ Same selection criteria imposed

Preliminary $m_1 = 20 \text{ MeV}, \gamma_1 = 100, m_X < 2m_1$ $m_1 = 20 \text{ MeV}, \gamma_1 = 100, m_X < 2m_1$ ϵ ϵ 10^{-3} 10⁻³ 10⁻⁴ 10^{-4} Xenon1T 1y, $\delta m = 0$ $\delta m = 0$ Xenon1T 1y, $\delta m = 20$ MeV Xenon1T 1y Xenon1T 5y DEAP3600 1y, $\delta m = 0$ DEAP3600 1y DEAP3600 1y, $\delta m = 20$ MeV DEAP3600 5y DEAP3600 1y, single signal 10⁻⁵ LZ 5y **Elastic vs. inelastic** $\delta m = 20 \text{ MeV}$ attering only 10⁻⁵ 10⁻² 10^{-3} 10^{-2} 10^{-3} 10^{-1} 10^{-1} m_X [GeV] m_X [GeV]

Doojin Kim, CERN

Conclusions

- Boosted light dark matter searches are **promising**.
- Conventional dark matter direct detection experiments possess sensitivities to MeV-range (heaviest light?) DM.
- They can provide an alternative avenue to probe dark photon parameter space.

Boosted DM from the Sky: Semi-annihilation

In DM models where relevant DM is stabilized by e.g., Z₃ symmetry, one may have a process like

□ Under the circumstance in which the mass of SM here is lighter (i.e., $m_A > m_{SM}$), the outgoing χ_A can be boosted and its boost factor is given by

$$\gamma_A = \frac{5m_A^2 - m_{\rm SM}^2}{4m_A^2}$$

Boosted DM Signal Detection

[LUX Collaboration (2017)]

Doojin Kim, CERN

Backgrounds for Xenon1T

Table 2 Summary of the sources contributing to the background of XENON1T in a fiducial target of 1.0 t and a NR energy region from 4 to 50 keV (corresponding to 1 to 12 keV ER equivalent). The expected rates are taken from the Monte Carlo simulation-based study [18] and assume no ER rejection. CNNS stands for "coherent neutrino nucleus scattering".

Background Source	Туре	Rate $[(t \times y)^{-1}]$	Mitigation Approach
$222 \operatorname{Rn} \left(10 \mu \mathrm{Bq/kg}\right)$	ER	620	material selected for low Rn-emanation; ER rejection
solar pp- and ⁷ Be-neutrinos	ER	36	ER rejection
85 Kr (0.2 ppt of ^{nat} Kr)	ER	31	cryogenic distillation; ER rejection
$2\nu\beta\beta$ of ¹³⁶ Xe	ER	9	ER rejection
Material radioactivity	ER	30	material selection; ER and multiple scatter rejection; fiducialization
Radiogenic neutrons	NR	0.55	material selection; multiple scatter rejection; fiducialization
CNNS (mainly solar ⁸ B-neutrinos)	NR	0.6	_
Muon-induced neutrons	NR	< 0.01	active Cherenkov veto [43]; multiple scatter rejection; fiducialization

[Xenon Collaboration (2017)]

All are smaller than ~100 keV, hence irrelevant to our signals