Flavor gauge models below the Fermi scale

1705.01822

Pedro A. N. Machado Fermilab

in collaboration with Kaladi Babu, Alex Friedland and Irina Mocioiu

Can there be flavor mediators at a low scale???

Flavor physics is definitely heavy

With minimal flavor violation: above TeV scale

Without minimal flavor violation: above 1000 TeV scale see e.g. D'Ambrosio, Giudice, Isidori, Strumia 2002

ls it?

Studies for $(B+)L_{\mu}-L_{\tau}$ at low energies

Heeck Rodejohann 2011, Altmannshofer et al 2014, Altmannshofer et al 2015, Farzan 2015, Farzan Shoemaker 2015, Heeck 2016, Altmannshofer et al 2016, Forero Huang 2016, ...

Motivation:

(g-2)_{μ}, proton radius, large neutrino matter effects (NSI), h to $\tau \mu$

Non Standard Interactions:

$$2\sqrt{2}G_F\varepsilon^f_{\alpha\alpha} \left(\bar{\nu}_{\alpha L}\gamma_{\mu}\nu_{\alpha L}\right) \left(\bar{f}\gamma^{\mu}f\right)$$

No SU(2) invariance Usual lore: restoring SU(2) mostly rule out NSIs observable at neutrino experiments

Studies for $(B+)L_{\mu}-L_{\tau}$ at low energies

Heeck Rodejohann 2011, Altmannshofer et al 2014, Altmannshofer et al 2015, Farzan 2015, Farzan Shoemaker 2015, Heeck 2016, Altmannshofer et al 2016, Forero Huang 2016, ...

Motivation:

(g-2)_{μ}, proton radius, large neutrino matter effects (NSI), h to $\tau \mu$

Non Standard Interactions:

 $(\bar{L}\gamma_{\mu}L)(\bar{Q}_{L}\gamma^{\mu}Q_{L}) = (\bar{\nu}_{L}\gamma_{\mu}\nu_{L})(\bar{Q}_{L}\gamma^{\mu}Q_{L}) + (\bar{\ell}_{L}\gamma_{\mu}\ell_{L})(\bar{Q}_{L}\gamma^{\mu}Q_{L})$

Charged leptons will generically provide a much stronger bound

#	Dim. eight operator	\mathcal{C}_{LLH}^{111}	\mathcal{C}^{331}_{LLH}	\mathcal{C}_{LLH}^{133}	\mathcal{C}^{313}_{LLH}	\mathcal{C}^{333}_{LLH}	$\mathcal{O}_{\rm NSI}$?	Mediators
Co	mbination $(\bar{L}^{\beta}L_{\alpha})(\bar{L}^{\delta}L_{\gamma})(H^{\dagger}H)$)						
31	$(\bar{L}\gamma^{\rho}L)(\bar{L}\gamma_{\rho}L)(H^{\dagger}H)$	1						1_{0}^{v}
32	$(\bar{L}\gamma^{ ho}\vec{\tau}L)(\bar{L}\gamma_{ ho}\vec{\tau}L)(H^{\dagger}H)$		1					3_{0}^{v}
33	$(\bar{L}\gamma^{\rho}L)(\bar{L}\gamma_{\rho}\vec{\tau}L)(H^{\dagger}\vec{\tau}H)$			1				$1_{0}^{v}+3_{0}^{v}$
34	$(\bar{L}\gamma^{\rho}\vec{\tau}L)(\bar{L}\gamma_{\rho}L)(H^{\dagger}\vec{\tau}H)$				1			$1_{0}^{v}+3_{0}^{v}$
35	$(-i\epsilon^{abc})(\bar{L}\gamma^{\rho}\tau^{a}L)\times$					1	\checkmark	3_0^v
	$(\bar{L}\gamma_{\rho}\tau^{b}L)(H^{\dagger}\tau^{c}H)$							-
Co	mbination $(\bar{L}^{\beta}L_{\alpha})(\bar{L}^{\delta}H)(H^{\dagger}L_{\gamma})$)						
36	$(\bar{L}\gamma^{\rho}L)(\bar{L}H)(\gamma_{\rho})(H^{\dagger}L)$	1/2		1/2			\checkmark	$1_{0}^{v}+1_{0}^{\scriptscriptstyle R}$
37	$(\bar{L}\gamma^{\rho}L)(\bar{L}\vec{\tau}H)(\gamma_{\rho})(H^{\dagger}\vec{\tau}L)$	3/2		-1/2				$1_0^v + 3_0^{L/R}$
38	$(\bar{L}\gamma^{\rho}\vec{\tau}L)(\bar{L}\vec{\tau}H)(\gamma_{\rho})(H^{\dagger}L)$		1/2		1/2	1/2	\checkmark	$1_{0}^{v} + 1_{0}^{R} + 3_{0}^{L/R}$
39	$(\bar{L}\gamma^{\rho}\vec{\tau}L)(\bar{L}H)(\gamma_{\rho})(H^{\dagger}\vec{\tau}L)$		1/2		1/2	-1/2	\checkmark	$1_{0}^{v}+1_{0}^{\scriptscriptstyle R}+3_{0}^{\scriptscriptstyle L/R}$
40	$(-i\epsilon^{abc})(\bar{L}\gamma^{\rho}\tau^{a}L)\times$		1		-1			$3_{0}^{v} + 1_{0}^{R} + 3_{0}^{L/R}$
	$(\bar{L}\tau^b H)(\gamma_{\rho})(H^{\dagger}\tau^c L)$							
Co	mbination $(\bar{L}^{\beta}L_{\alpha})(\bar{L}^{\delta}H^{\dagger})(L_{\gamma}H)$)						
41	$(\bar{L}\gamma^{\rho}L)(\bar{L}i\tau^{2}H^{*})(\gamma_{\rho})(H^{T}i\tau^{2}L)$	-1/2		1/2				$1_{0}^{v}+1_{-1}^{{\scriptscriptstyle{L/R}}}$
42	$(\bar{L}\gamma^{\rho}L)(\bar{L}\vec{\tau}i\tau^{2}H^{*})(\gamma_{\rho})(H^{T}i\tau^{2}\vec{\tau}L)$	-3/2		-1/2				$1_{0}^{v}+3_{-1}^{L/R}$
43	$(\bar{L}\gamma^{\rho}\vec{\tau}L)(\bar{L}\vec{\tau}i\tau^{2}H^{*})(\gamma_{\rho})(H^{T}i\tau^{2}L)$,	-1/2	,	1/2	1/2		$3_{0}^{v} + 1_{-1}^{L/R} + 3_{-1}^{L/R}$
44	$(\bar{L}\gamma^{\rho}\vec{\tau}L)(\bar{L}i\tau^{2}H^{*})(\gamma_{\rho})(H^{T}i\tau^{2}\vec{\tau}L)$		-1/2		1/2	-1/2		$3_{0}^{v} + 1_{-1}^{L/R} + 3_{-1}^{L/R}$
45	$(-i\epsilon^{abc})(\bar{L}\gamma^{\rho}\tau^{a}L)\times$		-1		-1	2	\checkmark	$3_{0}^{v} + 3_{-1}^{L/R}$
	$(\bar{L}\tau^b \mathrm{i}\tau^2 H^*)(\gamma_\rho)(H^T \mathrm{i}\tau^2 \tau^c L)$							0 1
Co	mbination $(\overline{L}^{\beta}(L^c)^{\delta})((\overline{L^c})_{\alpha}L_{\gamma})($	$H^{\dagger}H)$						
46	$(\bar{L}i\tau^2 L^c)(\overline{L^c}i\tau^2 L)(H^{\dagger}H)$	1/4	-1/4				\checkmark	1_{-1}^{s}
47	$(\bar{L}\vec{\tau}i\tau^2L^c)(\overline{L^c}i\tau^2\vec{\tau}L)(H^{\dagger}H)$	-3/4	-1/4					${f 3}^{s}_{-1}$
48	$(\bar{L}i\tau^2 L^c)(\overline{L^c}i\tau^2\vec{\tau}L)(H^{\dagger}\vec{\tau}H)$			1/4	-1/4	-1/4	\checkmark	${f 1}_{-1}^s+{f 3}_{-1}^s$
49	$(\bar{L}\vec{\tau}i\tau^2L^c)(\overline{L^c}i\tau^2L)(H^{\dagger}\vec{\tau}H)$			-1/4	1/4	-1/4	\checkmark	${f 1}^s_{-1}+{f 3}^s_{-1}$
50	$(-i\epsilon^{abc})(\bar{L}\tau^a i\tau^2 L^c) \times$			-1/2	-1/2			3_{-1}^{s}
	$(\overline{L^c}\mathrm{i}\tau^2\tau^bL)(H^\dagger\tau^cH)$							
Co	mbination $(\bar{L}^{\beta}H^{\dagger})((L^{c})^{\delta}H)((\overline{L^{c}})^{\delta}H$	$(\tilde{c})_{\alpha}L_{\gamma})$						
51	$(\overline{L}i\tau^2 H^*)(H^T L^c)(\overline{L^c}i\tau^2 L)$	1/8	-1/8	1/8	-1/8	1/8	\checkmark	$1_{-1}^s + 1_0^{\scriptscriptstyle L} + 1_{-1}^{\scriptscriptstyle L/R}$
52	$(\bar{L}\vec{\tau}i\tau^2H^*)(H^TL^c\vec{\tau})(\overline{L^c}i\tau^2L)$	-3/8	3/8	1/8	-1/8	1/8	\checkmark	$1_{-1}^s + 3_0^{{\scriptscriptstyle L/R}} + 1_{-1}^{{\scriptscriptstyle L/R}}$
53	$(\bar{L}\vec{ au}\mathrm{i} au^{2}H^{*})(H^{T}L^{c})(\overline{L^{c}}\mathrm{i} au^{2}\vec{ au}L)$	-3/8	-1/8	-3/8	-1/8	1/8	\checkmark	$3_{-1}^s + 1_0^{\scriptscriptstyle L} + 3_{-1}^{\scriptscriptstyle L/R}$
54	$(\bar{L}i\tau^2 H^*)(H^T\vec{\tau}L^c)(\overline{L^c}i\tau^2\vec{\tau}L)$	3/8	1/8	-1/8	-3/8	-1/8		$3_{-1}^s + 3_0^{{\scriptscriptstyle L}/{\scriptscriptstyle R}} + 1_{-1}^{{\scriptscriptstyle L}/{\scriptscriptstyle R}}$
55	$(-i\epsilon^{abc})(\bar{L}\tau^a i\tau^2 H^*) \times$	3/4	1/4	-1/4	1/4	1/4		$3_{-1}^s + 3_0^{{}^{L/R}} + 1_{-1}^{{}^{L/R}}$
	$(H^T \tau^b L^c) (\overline{L^c} \mathrm{i} \tau^2 \tau^c L)$							
Co	mbination $(\overline{L}^{\beta}(L^c)^{\delta})(H^{\dagger}(\overline{L^c})_{\alpha})(L^{\delta}(L^c))$	$(L_{\gamma}H)$						
56	$(\overline{L}i\tau^2 L^c)(\overline{L^c}H^*)(H^Ti\tau^2 L)$	1/8	-1/8	-1/8	1/8	1/8	\checkmark	$1_{-1}^s + 1_0^{\scriptscriptstyle L} + 1_{-1}^{\scriptscriptstyle L/R}$
57	$(\bar{L}\vec{\tau}\mathrm{i}\tau^{2}L^{c})(\overline{L^{c}}\vec{\tau}H^{*})(H^{T}\mathrm{i}\tau^{2}L)$	3/8	1/8	-3/8	-1/8	-1/8		$3_{-1}^s + 3_0^{{\scriptscriptstyle L}/{\scriptscriptstyle R}} + 1_{-1}^{\bar{\scriptscriptstyle L}/{\scriptscriptstyle R}}$
58	$(\bar{L}i\tau^2 L^c)(\overline{L^c}\vec{\tau}H^*)(H^Ti\tau^2\vec{\tau}L)$	-3/8	3/8	-1/8	1/8	1/8	\checkmark	$1_{-1}^s + 3_0^{{\scriptscriptstyle L}/{\scriptscriptstyle R}} + 3_{-1}^{{\scriptscriptstyle L}/{\scriptscriptstyle R}}$
59	$(\bar{L}\vec{\tau}\mathrm{i}\tau^{2}L^{c})(\overline{L^{c}}H^{*})(H^{T}\mathrm{i}\tau^{2}\vec{\tau}L)$	-3/8	-1/8	-1/8	-3/8	1/8	\checkmark	$3_{-1}^s + 1_0^{\scriptscriptstyle L} + 3_{-1}^{\scriptscriptstyle L/R}$
60	$(-i\epsilon^{abc})(\bar{L}\tau^a i\tau^2 L^c) \times$	3/4	1/4	1/4	-1/4	1/4		$3_{-1}^s + 3_0^{\scriptscriptstyle L/R} + 3_{-1}^{\scriptscriptstyle L/R}$
	$(\overline{L^c}\tau^bH^*)(H^T\mathrm{i} au^2 au^cL)$							

Gavela et al 2008

Mar/2018 Pedro A. N. Machado I Flavor gauge models below the Fermi scale [arXiv:1705.01822]

pmachado@fnal.gov

‡ Fermilab

	#	Dim. eight operator	\mathcal{C}_{LLH}^{111}	\mathcal{C}^{331}_{LLH}	$\mathcal{C}_{LLH}^{oldsymbol{133}}$	\mathcal{C}^{313}_{LLH}	\mathcal{C}^{333}_{LLH}	$\mathcal{O}_{\rm NSI}$?	Mediators	
	Com	bination $(\bar{L}^{\beta}L_{lpha})(\bar{L}^{\delta}L_{\gamma})(H^{\dagger}H)$	<i>I</i>)							
:	31	$(\bar{L}\gamma^{\rho}L)(\bar{L}\gamma_{\rho}L)(H^{\dagger}H)$	1						1_0^v	
:	32	$(\bar{L}\gamma^{ ho}\vec{\tau}L)(\bar{L}\gamma_{ ho}\vec{\tau}L)(H^{\dagger}H)$		1					3_0^v	
:	33	$(\bar{L}\gamma^{\rho}L)(\bar{L}\gamma_{\rho}\vec{\tau}L)(H^{\dagger}\vec{\tau}H)$			1				$1_{0}^{v}+3_{0}^{v}$	
:	34	$(\bar{L}\gamma^{ ho}\vec{\tau}L)(\bar{L}\gamma_{ ho}L)(H^{\dagger}\vec{\tau}H)$				1			$1_{0}^{v}+3_{0}^{v}$	
:	35	$(-i\epsilon^{abc})(\bar{L}\gamma^{\rho}\tau^{a}L)\times$					1	\checkmark	3_0^v	
_		$(\bar{L}\gamma_{\rho}\tau^{b}L)(H^{\dagger}\tau^{c}H)$								
	Com	bination $(ar{L}^eta L_lpha)(ar{L}^\delta H)(H^\dagger L_\gamma)$	γ)							
:	36	$(\bar{L}\gamma^{\rho}L)(\bar{L}H)(\gamma_{\rho})(H^{\dagger}L)$	1/2		1/2			\checkmark	$1_{0}^{v}+1_{0}^{\scriptscriptstyle R}$	
	37	$(L\gamma^{\rho}L)(L\vec{\tau}H)(\gamma_{\rho})(H^{\dagger}\vec{\tau}L)$	3/2		-1/2				$1_0^v + 3_0^{L/R}$	
	38	$(L\gamma^{\rho}\vec{\tau}L)(L\vec{\tau}H)(\gamma_{\rho})(H^{\dagger}L)$		1/2		1/2	1/2	\checkmark	$1_{0}^{v} + 1_{0}^{R} + 3_{0}^{L/R}$	
the neutrino sector	r. (Since any model	of no	ew n	hvsi	cs h	as to) reco	over the Sta	ndard Model at
low energies, we have	ave	required gauge i	Invar	lanc	e un	der i	the S	SM g	auge group	and studied the
poggible offective t	la			4 0.10		_ 1 1	ant a			an an anatana in
possible effective t	neo	ories. The focus	is se	t on	pure	ery i	epto	nic r	NSI, that is,	on operators in
a a standard at the standard standard and a standard state at the standard state of the state of the state of t								n de la billion de la comp	۲۰۰۰ میروند. ۲۰۰۰ میروند اور وارد اور	antina anna an ann an an an ann ann an ann an a
	45	$(-i\epsilon^{abc})(\bar{L}\gamma^{\rho}\tau^{a}L)\times$		-1		-1		\checkmark	$3_{0}^{v}+3_{-1}^{{\scriptscriptstyle L}/{\scriptscriptstyle R}}$	an an ann an
		$(\bar{L}\tau^b \mathrm{i}\tau^2 H^*)(\gamma_{\rho})(H^T \mathrm{i}\tau^2 \tau^c L)$							0 1	
	Com	bination $(\bar{L}^{\beta}(L^c)^{\delta})((\bar{L}^c)_{\alpha}L_{\gamma})$	$(H^{\dagger}H)$							
4	46	$(\overline{L}i\tau^2 L^c)(\overline{L^c}i\tau^2 L)(H^{\dagger}H)$	1/4	-1/4				\checkmark	1^{s}_{-1}	
	47	$(\bar{L}\vec{\tau}\mathbf{i}\tau^2 L^c)(\overline{L^c}\mathbf{i}\tau^2\vec{\tau}L)(H^{\dagger}H)$	-3/4	1/4			and the state of the state of the		3 ^s	
- 1 .	1	1	1 . 1		•				1	
In conclusion, we	e h	ave demonstrate	ed th	iat t	he n	ninir	num	con	plexity of a	a realistic model
	TOT		1 4			Sentimin dinte				
leading to large N	N2T	and no charged	lept	on π	avor	· V10.	latio	n reo	quires at lea	st two new fields
inducing $d = 8 \text{ N}^{\circ}$	CT	coupling Woh		lotor	min	nd th	\mathbf{n}	haaih	lo SM choro	og of thoga modi
moduling $a = 6$ N	SI (couplings. we have	avec	leter	1111116	ea u	te po)221D	le sin charg	es of those mean-
Antonic and an a state of the second s	59	$(\overline{I} \neq -2 II *) (IIT I c) (\overline{Ic} = -2 \neq I)$	9 /0	1 /0	n /0	1 /0	1 /0		9 s + 1 L + 9 L/R	
	03 E 4	$(L\tau I\tau^{-}H^{+})(H^{+}L^{-})(L^{-}I\tau^{-}\tau L)$ $(\overline{I}:-2H^{*})(H^{-}\tau L)(\overline{I}:-2\vec{I})$	-3/8	-1/8	-3/8	-1/8	1/8	\checkmark	$3_{-1}^{s} + 1_{0}^{L} + 3_{-1}^{L}$ $3_{-1}^{s} + 3_{-1}^{L/R} + 1_{-1}^{L/R}$	
	54 FF	$(L1\tau^{-}H^{+})(H^{-}\tau L^{\circ})(L^{\circ}1\tau^{-}\tau L)$ $(\vdots -abc)(\bar{\tau} -a; -2II*) \times (I^{\circ})$	$\frac{3}{8}$	1/8	-1/8	-3/8	-1/8		$3_{-1}^{\circ} + 3_{0}^{\prime} + 1_{-1}^{\prime}$ $2_{-1}^{s} + 2_{-1}^{L/R} + 1_{-1}^{L/R}$	
	99	$(-1\epsilon^{-1})(L\tau^{-1}\tau^{-1}H^{-1}) \times$ $(HT^{-b}Lc)(\overline{Lc};-2-cL)$	3/4	1/4	-1/4	1/4	1/4		$3_{-1}^{*} + 3_{0}^{*} + 1_{-1}^{*}$	
	Com	$\frac{(\Pi^{-1}L^{-1})(L^{-1}I^{-1}L)}{\frac{1}{\beta}(I^{c})\delta(H^{\dagger}(\overline{I^{c}}))}$	(T II)							
	56	$\frac{(\bar{L}; \pi^2 L^c)}{(\bar{L}; \pi^2 L^c)} (H^{-1}(L^{-1})_{\alpha})$	$(L_{\gamma}\Pi)$	1 / 9	1 /0	1 / 9	1 / 9	(1 <i>S</i> $+$ 1 <i>L</i> $+$ 1 <i>L</i> / <i>R</i>	
	57	$(\overline{L}I' L)(L^{-}II)(II I' L)$ $(\overline{L}\vec{z};\tau^{2}L^{c})(\overline{L}\vec{z};T^{*})(H^{T};\tau^{2}L)$	1/0	-1/0	-1/0	1/0	1/0	v	$1_{-1} + 1_0 + 1_{-1}$ $9^s + 9^{L/R} + 1^{L/R}$	
	58	$(\overline{L};\tau^{2}L^{c})(\overline{L};\tau^{2}H^{*})(H^{T};\tau^{2};\tau^{2})$	-3/0 _3/0	1/0 2/2	-3/0 -1/8	-1/0 1/2	-1/0 1/2	./	$\mathbf{J}_{-1} + \mathbf{J}_{0} + \mathbf{I}_{-1}$ $\mathbf{I}^{s} + 2^{L/R} \perp 2^{L/R}$	
	50 50	$(\overline{L}\tau \mathbf{i}\tau^2 L^c)(\overline{Lc}H^*)(H^T \mathbf{i}\tau^2 \tau L)$	-3/3 -3/8	_1/8	-1/0 -1/8	-3/8	1/8	v	$\mathbf{r}_{-1} \pm \mathbf{v}_0 \pm \mathbf{v}_{-1}$ $3^s \pm 1^L \pm 3^{L/R}$	
	60	$(-i\epsilon^{abc})(\bar{L}\tau^a i\tau^2 L^c) \times$	3/4	1/4	1/4	-1/4	1/4	v	$3^{s} + 3^{L/R} + 3^{L/R}$	
· · · · · · · · · · · · · · · · · · ·	00	$(\overline{L^c}\tau^bH^*)(H^T\mathrm{i}\tau^2\tau^c L)$	0/ I	т/т	т/т	1/1	т/т		$v_{-1} + v_0 + v_{-1}$	Gavela et al 2008
=										
										Fermilab

In the SM each family provides a complete independent consistent realization of the model (Anomalies cancel within each family)

Why such small mixing to third family quarks?

Maybe the third family is indeed special and has its own gauge symmetry?

We will gauge B – L of the third family

$$U(1)^{(3)}_{B-L}$$
 (let us refer to it as X)

Babu, Friedland, Machado, Mocioiu 1705.01822

u, d, c, s
 0

 b, t
 +
$$|/3|$$

 e, μ , V_e , V_μ
 0

 T, V_T
 - $|$

u, d, c, s
 0

 b, t
 +
$$|/3|$$

 e, μ , V_e , V_μ
 0

 T, V_T
 - $|$

 u, d, c, s
 0

 b, t
 + |/3|

 e, μ , V_e , V_μ 0

 T, V_T - |
 Τ, V_Τ

CKM → extra doublet. The flavor symmetry is broken by a Higgs doublet: Its "natural" scale is EW

	ϕ_1	ϕ_2	S
$SU(2)_L$	2	2	1
$U(1)_Y$	+1	+1	0
$U(1)_{B-L}^{(3)}$	+1/3	0	+1/3

generating CKM $\overline{\mathbf{Q}}_{L} \begin{pmatrix} y_{11}^{u} \widetilde{\phi}_{2} & y_{12}^{u} \widetilde{\phi}_{2} & y_{13}^{u} \widetilde{\phi}_{1} \\ y_{21}^{u} \widetilde{\phi}_{2} & y_{22}^{u} \widetilde{\phi}_{2} & y_{23}^{u} \widetilde{\phi}_{1} \\ 0 & 0 & y_{33}^{u} \widetilde{\phi}_{2} \end{pmatrix} \mathbf{u}_{R}$

 $CKM \rightarrow extra doublet.$ The flavor symmetry is broken by a Higgs doublet: Its "natural" scale is EW

	ϕ_1	ϕ_2	S
$SU(2)_L$	2	2	1
$U(1)_Y$	+1	+1	0
$U(1)_{B-L}^{(3)}$	+1/3	0	+1/3

generating CKM										
$\overline{\mathbf{Q}}_L$		$\begin{array}{c} y_{11}^u \widetilde{\phi}_2 \\ y_{21}^u \widetilde{\phi}_2 \\ 0 \end{array}$	$\begin{array}{c} y_{12}^u \widetilde{\phi}_2 \\ y_{22}^u \widetilde{\phi}_2 \\ 0 \end{array}$	$y_{13}^u \widetilde{\phi}_1 \ y_{23}^u \widetilde{\phi}_1 \ y_{33}^u \widetilde{\phi}_2$		\mathbf{u}_R				

 $\begin{pmatrix} m_u^0 & 0 & V_{ub}^0 m_t^0 \\ 0 & m_c^0 & V_{cb}^0 m_t^0 \\ 0 & 0 & m_t^0 \end{pmatrix} \begin{pmatrix} m_d^0 & 0 & 0 \\ 0 & m_s^0 & 0 \\ am_b^0 & bm_b^0 & m_b^0 \end{pmatrix}$ Generates flavor changing interactions in the quark sector.

in the quark sector

 $CKM \rightarrow extra doublet.$ The flavor symmetry is broken by a Higgs doublet: Its "natural" scale is EW

	ϕ_1	ϕ_2	S
$SU(2)_L$	2	2	1
$U(1)_Y$	+1	+1	0
$U(1)_{B-L}^{(3)}$	+1/3	0	+1/3

$$\overline{\mathbf{Q}}_{L} \begin{pmatrix} y_{11}^{u} \widetilde{\phi}_{2} & y_{12}^{u} \widetilde{\phi}_{2} & y_{13}^{u} \widetilde{\phi}_{1} \\ y_{21}^{u} \widetilde{\phi}_{2} & y_{22}^{u} \widetilde{\phi}_{2} & y_{23}^{u} \widetilde{\phi}_{1} \\ 0 & 0 & y_{33}^{u} \widetilde{\phi}_{2} \end{pmatrix} \mathbf{u}_{R}$$

 $\begin{pmatrix} m_u^0 & 0 & V_{ub}^0 m_t^0 \\ 0 & m_c^0 & V_{cb}^0 m_t^0 \\ 0 & 0 & m_t^0 \end{pmatrix} \begin{pmatrix} m_d^0 & 0 & 0 \\ 0 & m_s^0 & 0 \\ am_b^0 & bm_b^0 & m_b^0 \end{pmatrix}$ Generates flavor changing interactions in the quark sector

in the quark sector

$$\begin{array}{ccc} u, d, c, s & 0 \\ b, t & + 1/3 \\ e, \mu, V_e, V_\mu & 0 \\ \tau, V_\tau & -1 \end{array}$$

 $CKM \rightarrow extra doublet.$ The flavor symmetry is broken by a Higgs doublet: Its "natural" scale is EW

	ϕ_1	ϕ_2	S	generating CKM						
$SU(2)_L$	2	2	1		$\left(\begin{array}{c} y_{11}^u \widetilde{\phi}_2 \end{array} \right)$	$y_{12}^u \widetilde{\phi}_2$	$y_{13}^u \widetilde{\phi}_1$ \			
$U(1)_Y$	+1	+1	0	$\overline{\mathbf{Q}}_L$	$y^u_{21}\widetilde{\phi}_2$	$y_{22}^u \widetilde{\phi}_2$	$y_{23}^u \widetilde{\phi}_1$			
$U(1)_{B-L}^{(3)}$	+1/3	0	+1/3		0	0	$y^u_{33}\widetilde{\phi}_2$,			

 Φ_{I} induces mass mixing between X and Z gauge bosons

$$Z_{\mu} \simeq -s_{w}B_{\mu} + c_{w}W_{\mu}^{3} - s_{X}X_{\mu}^{0}, \qquad M_{X}^{2} = \frac{1}{9}g_{X}^{2}\left(\frac{v_{1}^{2}v_{2}^{2}}{v^{2}} + v_{s}^{2}\right)$$
$$X_{\mu} \simeq s_{X}(-s_{w}B_{\mu} + c_{w}W_{\mu}^{3}) + X_{\mu}^{0}, \qquad s_{X} \equiv \frac{2}{3}\frac{g_{X}}{\sqrt{g^{2} + g^{\prime 2}}}\frac{v_{1}^{2}}{v^{2}}$$

 \mathbf{u}_R

$$\begin{array}{cccc} u, d, c, s & 0 \\ b, t & + 1/3 \\ e, \mu, V_e, V_\mu & 0 \\ \tau, V_\tau & -1 \end{array}$$

CKM → extra doublet. The flavor symmetry is broken by a Higgs doublet: Its "natural" scale is EW

	ϕ_1	ϕ_2	S	
$SU(2)_L$	2	2	1	
$U(1)_Y$	+1	+1	0	Ī
$U(1)_{B-L}^{(3)}$	+1/3	0	+1/3	

 $\begin{array}{l} \overline{\mathbf{Q}}_{L} \left(\begin{array}{ccc} y_{11}^{u} \widetilde{\phi}_{2} & y_{12}^{u} \widetilde{\phi}_{2} & y_{13}^{u} \widetilde{\phi}_{1} \\ y_{21}^{u} \widetilde{\phi}_{2} & y_{22}^{u} \widetilde{\phi}_{2} & y_{23}^{u} \widetilde{\phi}_{1} \\ 0 & 0 & y_{33}^{u} \widetilde{\phi}_{2} \end{array} \right) \mathbf{u}_{R} \\
 \end{array}$

 Φ_{I} induces mass mixing between X and Z gauge bosons

$$Z_{\mu} \simeq -s_{w}B_{\mu} + c_{w}W_{\mu}^{3} - s_{X}X_{\mu}^{0}, \qquad M_{X}^{2} = \frac{1}{9}g_{X}^{2}\left(\frac{v_{1}^{2}v_{2}^{2}}{v^{2}} + v_{s}^{2}\right)$$
$$X_{\mu} \simeq s_{X}(-s_{w}B_{\mu} + c_{w}W_{\mu}^{3}) + X_{\mu}^{0}, \qquad s_{X} \equiv \frac{2}{3}\frac{g_{X}}{\sqrt{g^{2} + g'^{2}}}\frac{v_{1}^{2}}{v^{2}}$$

EWPT suggests small mixing, and thus small masses...

 $\mathcal{L}_{yuk}^{\ell} = y_{ij}^{\ell} \overline{L}_i \phi_2 \ell_{Rj}$

No flavor changing interactions in the lepton sector

 $\mathcal{L}_{yuk}^{\ell} = y_{ij}^{\ell} \overline{L}_i \phi_2 \ell_{Rj}$

No flavor changing interactions in the lepton sector

Neutrino masses via effective operators

$$\frac{1}{\Lambda} \left(\bar{L}_{1,2} \tilde{\phi}_2 \right) \left(\phi_2^{\dagger} \tilde{L}_{1,2} \right), \qquad \frac{1}{\Lambda^2} \left(\bar{L}_3 \tilde{\phi}_1 \right) \left(\phi_1^{\dagger} \tilde{L}_{1,2} \right) s^*$$
U(1): 0 0 0 0 -1 +1/3 +1/3 0 +1/3

 $\mathcal{L}_{yuk}^{\ell} = y_{ij}^{\ell} \overline{L}_i \phi_2 \ell_{Rj}$

No flavor changing interactions in the lepton sector

Neutrino masses via effective operators

$$\frac{1}{\Lambda} \left(\bar{L}_{1,2} \tilde{\phi}_2 \right) \left(\phi_2^{\dagger} \tilde{L}_{1,2} \right), \qquad \frac{1}{\Lambda^2} \left(\bar{L}_3 \tilde{\phi}_1 \right) \left(\phi_1^{\dagger} \tilde{L}_{1,2} \right) s^*$$

 θ_{12} : D=5 θ_{13} and θ_{23} : D=6 No flavor changing interactions in the lepton sector!

 Λ not far from electroweak scale!

Usual comments at this point:

This is ruled out

It is ok if one makes the gauge coupling tiny (cheating...)

Usual comments at this point:

It is ok if one makes the gauge coupling tiny (cheating...)

Babu Friedland Machado Mocioiu 2017

Babu Friedland Machado Mocioiu 2017

 $\tan\beta = v_2/v_1 = 10$

At high energies, external longitudinal modes can be replaced by the Goldstone boson associated with the breaking of the symmetry (Equivalence theorem)

$$G_X = \frac{1}{3} \frac{g_X}{M_X v^2} \left[-v_1 v_2^2 \operatorname{Im}(\phi_1^0) + v_1^2 v_2 \operatorname{Im}(\phi_2^0) - v^2 v_s \operatorname{Im}(s^0) \right]$$

$$\mathcal{L}_{G_X} = iG_X \frac{g_X}{3} \frac{m_t}{M_X} \left[-\frac{v_1^2}{v^2} \bar{t} \gamma_5 t + V_{cb} (\bar{c}_L t_R - \bar{t}_R c_L) + V_{ub} V_{cb} (\bar{c}_L u_R - \bar{u}_R c_L) \right] - iG_X \frac{g_X}{3} \frac{m_\tau}{M_X} \frac{v_1^2}{v^2} \bar{\tau} \gamma_5 \tau + \dots$$

$$\mathcal{L}_{hXX} = \frac{g_X^2}{9} \frac{v_1^2 v_2^2}{v^3} \operatorname{Re}(H^0) X_\mu X^\mu$$

Babu Friedland Machado Mocioiu 2017

Babu Friedland Machado Mocioiu 2017

Babu Friedland Machado Mocioiu 2017

Fermilab

Babu Friedland Machado Mocioiu 2017

 V_{T}

 ν_{τ}

 ν_{τ}

Vτ

$\epsilon_{\tau\tau}$ from atmospheric neutrinos: DUNE?

 $\epsilon_{\tau\tau}$ from atmospheric neutrinos: DUNE?

Top decays longitudinal enhancement X at the LHC Non-standard Z' search Meson oscillation **Probing FCNCs BES-III** e^+e^- to T^+T^- (g-2)_µ Does not decouple, but weak Beam dump exps X decays invisibly W to T V X longitudinal + transverse

LEP direct searches Coupling to e⁻

Upsilon decays X-Z mixing / third family coupling

Top decays longitudinal enhancement X at the LHC Non-standard Z' search Meson oscillation **Probing FCNCs BES-III** e^+e^- to T^+T^- (g-2)_µ Does not decouple, but weak Beam dump exps X decays invisibly W to T V X longitudinal + transverse

LEP direct searches Coupling to e⁻

Upsilon decays X-Z mixing / third family coupling

Conclusions

Low scale flavor models

There could be flavor dependent physics below the electroweak scale

Synergy between vastly different physics: neutrino oscillations, higgs decays, b-physics, APV, meson oscillation and decays...

Neutrinos experiments can be sensitive to physics beyond the reach of collider experiments

Do B anomalies point to a flavor dependent new interaction?

Best constraint on $\mathcal{E}_{\tau\tau}$ comes from atmospheric neutrinos Will the current bound be improved by DUNE?

🛟 Fermilab

pmachado@fnal.gov

Best constraint on $\mathcal{E}_{\tau\tau}$ comes from atmospheric neutrinos Will the current bound be improved by DUNE?

Electroweak T parameter

 $\Delta M_Z^2 \simeq \frac{g_X^2}{9} \frac{v_1^4}{v^2}$

$$T \simeq \frac{1}{\alpha} \frac{\Delta M_Z^2}{M_Z^2} = 0.01 \pm 0.12$$

Y to TT Only third family couplings

$$R_{\tau\mu} \equiv \frac{\Gamma(\Upsilon(1S) \to \tau^+ \tau^-)}{\Gamma(\Upsilon(1S) \to \mu^+ \mu^-)}$$

 $1.005 \pm 0.013(stat.) \pm 0.022(syst.)$

Fermilab

Scalar sector

$$V = m_{11}^2 (\phi_1^{\dagger} \phi_1) + m_{22}^2 (\phi_2^{\dagger} \phi_2) + m_s^2 s^* s + \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) \qquad (24)$$
$$+ \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) + \frac{\lambda_s}{2} (s^* s)^2 + \lambda_{1s} (\phi_1^{\dagger} \phi_1) (s^* s) + \lambda_{2s} (\phi_2^{\dagger} \phi_2) (s^* s) - \left[\mu (\phi_2^{\dagger} \phi_1) s + \text{h.c.} \right].$$

$$m_A^2 = \mu \frac{v_1^2 v_2^2 + v_1^2 v_s^2 + v_2^2 v_s^2}{\sqrt{2} v_1 v_2 v_s} \qquad \qquad m_{H^{\pm}}^2 = \frac{1}{2} \lambda_4 v^2 + \mu \frac{v_s v^2}{\sqrt{2} v_1 v_2} v_s$$

$$y_{ij}^{\prime u} \frac{H^{\dagger}H}{\Lambda^2} \bar{Q}_{iL} \tilde{H} u_{jR} + y_{ij}^{\prime d} \frac{H^{\dagger}H}{\Lambda^2} \bar{Q}_{iL} H d_{jR},$$

$$y'^{u,d} = y_t \begin{pmatrix} c_{\beta} m_u / m_t & 0 & -s_{\beta} V_{ub} \\ 0 & c_{\beta} m_c / m_t & -s_{\beta} V_{cb} \\ 0 & 0 & c_{\beta} \end{pmatrix}$$

Z to f f X

Light X (longitudinal enhancement):

$$\Gamma(Z \to f\bar{f}X) = \frac{N_c}{192\pi^3} M_Z |y_f^{G_X}|^2 \left[g_V^{f\,2} \left(1 + \log\frac{M_Z^2}{M_X^2} \right) + g_A^{f\,2} \left(-\frac{14}{3} + \log\frac{M_Z^2}{M_X^2} \right) \right]$$

Heavy X (transverse modes):

$$\frac{d\Gamma(Z \to ffX)}{dx} = \frac{M_Z}{6\pi^3} \left[(g_V^f c_V^f + g_A^f c_A^f)^2 (h_1(x) + h_3(x)) \right]$$

$$c_V^f \equiv (c_{fR} + c_{fL}), \quad c_A^f \equiv (c_{fR} - c_{fL})$$
$$g_V^\tau = \frac{g}{4c_w} (4s_w^2 - 1), \quad g_A^\tau = \frac{g}{4c_w}, \quad g_V^b = \frac{g}{4c_w} \left(\frac{4s_w^2}{3} - 1\right), \quad g_A^b = \frac{g}{4c_w}$$
Fermilab

Meson oscillation

$$(\Delta m_S)_X = \frac{\sqrt{2}}{6} G_F f_S^2 m_S B_S \eta_S \frac{M_Z^2}{m_S^2 - M_X^2} \left| \frac{2g_X^2 U_{ij}^X / 3}{g/c_w} \right|^2$$

$$K - \bar{K}: \quad \left(\frac{100 \,\text{GeV}}{m_{\varphi}}\right) \operatorname{Re}\left(\frac{h_{21}^d}{\sqrt{2}m_s/v}\right) \lesssim 1.4 \times 10^{-2}$$
$$B_d - \bar{B}_d: \quad \left(\frac{100 \,\text{GeV}}{m_{\varphi}}\right) \operatorname{Re}\left(\frac{h_{31}^d}{\sqrt{2}m_b/v}\right) \lesssim 3.1 \times 10^{-3}$$
$$B_s - \bar{B}_s: \quad \left(\frac{100 \,\text{GeV}}{m_{\varphi}}\right) \operatorname{Re}\left(\frac{h_{32}^d}{\sqrt{2}m_b/v}\right) \lesssim 1.3 \times 10^{-2}$$
$$D - \bar{D}: \quad \left(\frac{100 \,\text{GeV}}{m_{\varphi}}\right) \operatorname{Re}\left(\frac{h_{12}^u}{\sqrt{2}m_c/v}\right) \lesssim 3.4 \times 10^{-3}$$

Babu Meng 2009 Babu Nandi 2000 Nir Silverman 1990 Buras Jamin Weisz 1990 Lenz 2012

Phenomenology

$$\tan\beta = v_2/v_1 = 0.5$$

$$\tan\beta = v_2/v_1 = 2$$

$$\tan\beta = v_2/v_1 = 10$$

$$\tan\beta = v_2/v_1 = 25$$

