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Can there be flavor mediators at a low scale???

Flavor physics is definitely heavy

With minimal flavor violation: above TeV scale

Without minimal flavor violation: above 1000 TeV scale

Is it?

see e.g. D’Ambrosio, Giudice, Isidori, Strumia 2002

Flavor Physics
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Studies for (B+)Lμ-Lτ at low energies

Motivation:
(g-2)μ, proton radius, large neutrino matter effects (NSI), h to τ μ

Phenomenology:
Collider, meson decays (e.g. π to μ+μ-γ), τ decays, BBN, supernova, 

neutrino scattering, …

Non Standard Interactions:

No SU(2) invariance
Usual lore: restoring SU(2) mostly rule out 
NSIs observable at neutrino experiments

where we have neglected M2

X/M
2

K terms.
The two best experimental measurements of K+ ! ⇡+⌫⌫̄ have di↵erent cuts for the pion

momentum. In Ref. [28], the pion momentum is required to be between 211 and 229 MeV,
and the measurement yielded BR(K+ ! ⇡+⌫⌫̄) = (1.47+1.30

�0.89)⇥ 10�10, while in Ref. [29] the
pion momentum is required to be between 140 and 199 MeV and the measurement reads
BR(K+ ! ⇡+⌫⌫̄) = (1.73+1.15

�1.05) ⇥ 10�10. These cuts in momemtum translate into the two
intervals MX < 114 MeV and 151 < MX < 260 MeV, where the constraint should be valid.
The standard model value for this branching ratio is (0.80± 0.11)⇥ 10�10. The constraint
is shown in Figs. 2 and 3, where we required the sum of the standard and new contributions
not to exceed the 2� experimental value. The gap in the excluded region is the result of the
two intervals for MX .

3.7 Neutrino oscillations

One of the most stringent bounds comes, perhaps surprisingly, from neutrino oscillation
experiments. The new interaction will change the neutrino matter potential which modifies
the neutrino oscillation pattern. It is useful to express the new interaction in terms of the
usual non-standard interaction (NSI) operators which normalize the strength of the new
matter potential to that induced by weak interactions. We define the NSI parameter by the
operator

2
p
2GF "
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and therefore we obtain
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c↵cf
g2

4M2

W

M2

X

. (54)

Due to the lack of flavor universality of the new gauge group we expect a non-standard
matter potential (we remind the reader that a universal diagonal matter potential has no
impact on neutrino oscillations)

VX / diag (0, 0, "⌧⌧ ) . (55)

It is important to mention that, as normal matter is neutral, the kinetic mixing parameter
" does not play any role in neutrino oscillations. If we assume the number density of
protons, neutrons and electrons all to be the same, and use Eq. (54), we can translate the
non-universal matter e↵ects into the usual non-standard interaction parameter:

"⌧⌧ ⌘ "p⌧⌧ + "n⌧⌧ + "e⌧⌧

=
4M2

W

g2M2

X

(�gX) [ceR + ceL + 3(cuR + cuL + cdR + cdL)] = 3
v2
1

v2

v2
1

v2
2

+ v2sv
2

. (56)

Atmospheric neutrinos play a major role in constraining the ⌧⌧ NSI, leading to [35]

|"⌧⌧ | < 0.09. (57)
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Studies for (B+)Lμ-Lτ at low energies

Phenomenology:
Collider, meson decays (e.g. π to μ+μ-γ), τ decays, BBN, supernova, 

neutrino scattering, …

Non Standard Interactions:

Charged leptons will generically provide a much stronger bound

(L̄�µL)(Q̄L�
µQL) = (⌫̄L�µ⌫L)(Q̄L�

µQL) + (¯̀L�µ`L)(Q̄L�
µQL)

Motivation:
(g-2)μ, proton radius, large neutrino matter effects (NSI), h to τ μ

Heeck Rodejohann 2011, Altmannshofer et al 2014, Altmannshofer et al 2015, Farzan 2015,
Farzan Shoemaker 2015, Heeck 2016, Altmannshofer et al 2016, Forero Huang 2016, …
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# Dim. eight operator C111
LLH C331

LLH C133
LLH C313

LLH C333
LLH ONSI? Mediators

Combination (L̄βLα)(L̄δLγ)(H†H)
31 (L̄γρL)(L̄γρL)(H†H) 1 1v

0

32 (L̄γρτ⃗L)(L̄γρτ⃗L)(H†H) 1 3v
0

33 (L̄γρL)(L̄γρτ⃗L)(H†τ⃗H) 1 1v
0 + 3v

0

34 (L̄γρτ⃗L)(L̄γρL)(H†τ⃗H) 1 1v
0 + 3v

0

35 (−iϵabc)(L̄γρτaL)× 1 ! 3v
0

(L̄γρτbL)(H†τcH)

Combination (L̄βLα)(L̄δH)(H†Lγ)
36 (L̄γρL)(L̄H)(γρ)(H†L) 1/2 1/2 ! 1v

0 + 1R
0

37 (L̄γρL)(L̄τ⃗H)(γρ)(H†τ⃗L) 3/2 −1/2 1v
0 + 3L/R

0

38 (L̄γρτ⃗L)(L̄τ⃗H)(γρ)(H†L) 1/2 1/2 1/2 ! 1v
0 + 1R

0 + 3L/R

0

39 (L̄γρτ⃗L)(L̄H)(γρ)(H†τ⃗L) 1/2 1/2 −1/2 ! 1v
0 + 1R

0 + 3L/R

0

40 (−iϵabc)(L̄γρτaL)× 1 −1 3v
0 + 1R

0 + 3L/R

0

(L̄τbH)(γρ)(H†τcL)

Combination (L̄βLα)(L̄δH†)(LγH)
41 (L̄γρL)(L̄iτ2H∗)(γρ)(HT iτ2L) −1/2 1/2 1v

0 + 1L/R

−1

42 (L̄γρL)(L̄τ⃗ iτ2H∗)(γρ)(HT iτ2τ⃗L) −3/2 −1/2 1v
0 + 3L/R

−1

43 (L̄γρτ⃗L)(L̄τ⃗ iτ2H∗)(γρ)(HT iτ2L) −1/2 1/2 1/2 3v
0 + 1L/R

−1 + 3L/R

−1

44 (L̄γρτ⃗L)(L̄iτ2H∗)(γρ)(HT iτ2τ⃗L) −1/2 1/2 −1/2 3v
0 + 1L/R

−1 + 3L/R

−1

45 (−iϵabc)(L̄γρτaL)× −1 −1 ! 3v
0 + 3L/R

−1

(L̄τbiτ2H∗)(γρ)(HT iτ2τcL)

Combination (L̄β(Lc)δ)((Lc)αLγ)(H†H)
46 (L̄iτ2Lc)(Lciτ2L)(H†H) 1/4 −1/4 ! 1s

−1

47 (L̄τ⃗ iτ2Lc)(Lciτ2τ⃗L)(H†H) −3/4 −1/4 3s
−1

48 (L̄iτ2Lc)(Lciτ2τ⃗L)(H†τ⃗H) 1/4 −1/4 −1/4 ! 1s
−1 + 3s

−1

49 (L̄τ⃗ iτ2Lc)(Lciτ2L)(H†τ⃗H) −1/4 1/4 −1/4 ! 1s
−1 + 3s

−1

50 (−iϵabc)(L̄τaiτ2Lc)× −1/2 −1/2 3s
−1

(Lciτ2τbL)(H†τcH)

Combination (L̄βH†)((Lc)δH)((Lc)αLγ)
51 (L̄iτ2H∗)(HT Lc)(Lciτ2L) 1/8 −1/8 1/8 −1/8 1/8 ! 1s

−1 + 1L
0 + 1L/R

−1

52 (L̄τ⃗ iτ2H∗)(HT Lcτ⃗ )(Lciτ2L) −3/8 3/8 1/8 −1/8 1/8 ! 1s
−1 + 3L/R

0
+ 1L/R

−1

53 (L̄τ⃗ iτ2H∗)(HT Lc)(Lciτ2τ⃗L) −3/8 −1/8 −3/8 −1/8 1/8 ! 3s
−1 + 1L

0 + 3L/R

−1

54 (L̄iτ2H∗)(HT τ⃗Lc)(Lciτ2τ⃗L) 3/8 1/8 −1/8 −3/8 −1/8 3s
−1 + 3L/R

0 + 1L/R

−1

55 (−iϵabc)(L̄τaiτ2H∗)× 3/4 1/4 −1/4 1/4 1/4 3s
−1 + 3L/R

0 + 1L/R

−1

(HT τbLc)(Lciτ2τcL)

Combination (L̄β(Lc)δ)(H†(Lc)α)(LγH)
56 (L̄iτ2Lc)(LcH∗)(HT iτ2L) 1/8 −1/8 −1/8 1/8 1/8 ! 1s

−1 + 1L
0 + 1L/R

−1

57 (L̄τ⃗ iτ2Lc)(Lcτ⃗H∗)(HT iτ2L) 3/8 1/8 −3/8 −1/8 −1/8 3s
−1 + 3L/R

0 + 1L/R

−1

58 (L̄iτ2Lc)(Lcτ⃗H∗)(HT iτ2τ⃗L) −3/8 3/8 −1/8 1/8 1/8 ! 1s
−1 + 3L/R

0 + 3L/R

−1

59 (L̄τ⃗ iτ2Lc)(LcH∗)(HT iτ2τ⃗L) −3/8 −1/8 −1/8 −3/8 1/8 ! 3s
−1 + 1L

0 + 3L/R

−1

60 (−iϵabc)(L̄τaiτ2Lc)× 3/4 1/4 1/4 −1/4 1/4 3s
−1 + 3L/R

0 + 3L/R

−1

(LcτbH∗)(HT iτ2τcL)

Table 4: Same as Table 3, but for the L̄LL̄L-type operators. Note that in this case the relationship

between flavor structure and symbol is not unique. We show the flavor structure for each group separately.
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# Dim. eight operator C111
LLH C331

LLH C133
LLH C313

LLH C333
LLH ONSI? Mediators
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between flavor structure and symbol is not unique. We show the flavor structure for each group separately.

21

Gavela et al  2008

taken into account in any model which aims to be realistic.

Similar considerations apply to the scenarios in which exotic couplings to both one SM field
and SM bilinears are simultaneously allowed. In order to induce then large d = 8 NSI
and no d = 6 couplings among four leptons, a minimum of two exotic mediators is once
again needed. Some simple candidate models may not even require (strong) cancellation
conditions and deserve further exploration. This is the case, for instance, when a singlet
scalar and a fermionic doublet are added to the SM content.

As far as the connection between source and matter NSI is concerned, we have demonstrated
that it depends on the operators used. For example, several of the d = 8 operators in Table 3,
or combinations of them, will only induce matter NSI, while those requiring singlet or triplet
fermionic mediators may induce correlations (through non-unitary corrections to the PMNS
matrix). On the other hand, all d = 8 operators in Table 4 will, in principle, allow for a
connection between source and matter NSI independent of the mediators used. Therefore,
it might be very well possible to detect matter NSI without source or detector effects, in
the absence of fermions as exotic particles, such as illustrated by our toy model. Note as
well that the models based on Table 4 require at least three new fields, which means that
a source and matter NSI connection might be more easily achieved through non-unitary
corrections to the PMNS matrix.

In conclusion, we have demonstrated that the minimum complexity of a realistic model
leading to large NSI and no charged lepton flavor violation requires at least two new fields
inducing d = 8 NSI couplings. We have determined the possible SM charges of those medi-
ators and the cancellation conditions for the dimension six interactions among four leptons
that they simultaneously induce in most cases. These cancellation conditions translate into
precise relations among model parameters. One exception might be ϵm

ττ , which might be
created at the dimension six level. Our results imply a number of constraints such that the
observational prospects do not seem bright, specially as we did not identify some symme-
try which would account for them. On the other side, we showed that large NSI are not
excluded, and we found out which conditions are necessary to satisfy for any model to be
viable. We agree that those conditions should be justified by symmetries or other arguments
for the model to be credible. Until such justification is maybe found in some model, we
leave it up to the reader to decide on the perspective for large NSI.
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do not necessarily have to lead by themselves to ONSI structures: for them, cancellations
similar to those in our toy model could be considered. However, it remains to be explored
how difficult is to circumvent the constraints which electroweak precision tests impose on
exotic leptons, and whether the necessary cancellations are feasible without running into
extreme fine-tunings, for instance enlarging the scalar sector of the theory.

During the completion of this work, Ref. [23] appeared. It explores (but is not limited
to) the possible exchange of exotic fields which in our notation have quantum numbers
of a scalar 1s

−1 (to obtain d = 6 NSI) and of a fermion 1R
0 (to obtain d = 8 NSI). The

latter induces also d = 6 interactions, which lead to non-unitary contributions to the PMNS
matrix, as it is well known and is further explored in that reference. Ref. [23] performs
a systematic topological scan of the d = 8 operators, based on Feynman diagrams, trying
to obtain the interaction ONSI directly from just one Feynman diagram while avoiding any
harmful d = 6 and d = 8 contribution. Our tables correspond to the topologies 2 and 3
in this reference, whereas the previous paragraph in this subsection would correspond to
their topology 1. Since all possibilities in our tables contain at least one mediator leading
to harmful d = 6 effects if one does not allow for cancellations, Ref. [23] effectively exclude
topologies 2 and 3 in their scan (apart from our #46, which does not induce harmful d = 6
four charged lepton interactions, but the mediator 1s

−1 is constrained otherwise, as we and
Ref. [23] discussed before). Therefore, our work is complementary to that reference. Note
that they find that the NSI in matter and the NSI at source or detector are correlated in all
of their examples by the non-unitary effects of the heavy fermions, whereas it is easy to see
that uncorrelated scenarios are achievable when one allows to combine different operators
from our Table 3 (such as #7, #8, #13 and #14). As the most important difference, we
relate the operators obtained from mediator exchanges to a complete basis of independent
operators, which allows us to deduce the general cancellation conditions.

5 Summary and conclusion

In this study, we have discussed the possibility of large non-standard interactions (NSI) in
the neutrino sector. Since any model of new physics has to recover the Standard Model at
low energies, we have required gauge invariance under the SM gauge group and studied the
possible effective theories. The focus is set on purely leptonic NSI, that is, on operators in
which the only fermion fields appearing are leptons. Our analysis has been based on the
full (analytical) decomposition of all possible dimension six and eight effective operators,
which can be induced at tree-level by any hypothetical beyond the SM theory. Special
focus has been set in the scenario in which the exotic mediators couple to SM bilinear field
combinations.

The aim is to gauge the theoretical price of achieving phenomenologically viable large neu-
trino NSI, and to establish the minimal constraints that models have to respect for this
purpose. Our main requirements were:

• Interactions with four charged leptons have to be absent or highly suppressed, since
these would lead to charged lepton flavor violation or corrections to GF .
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Flavor Physics

In the SM each family provides a 
complete independent consistent  realization of the model

(Anomalies cancel within each family)

Why such small mixing to third family quarks?

Maybe the third family is indeed special 
and has its own gauge symmetry?

We will gauge B – L of the third family

similar processes can be understood in terms of the Goldstone boson equivalence theorem,
where the decay is primarily into the longitudinal mode of X, which is independent of
the small gauge coupling gX . Other processes such as Møller scattering, neutrino-nucleus
scattering, and neutrino-matter interaction relevant for oscillations are genuinely mediated
by the gauge force, and are sensitive to the e↵ective U(1) symmetry breaking scale g2X/M

2

X .

We systematically analyze a large number of low energy constraints on the U(1)(3)B�L model
including (i) ⌥ decays, (ii) meson-antimeson mixing, (iii) non standard neutrino oscillation,
(iv) atomic parity violation, (v) electroweak T parameter, (vi) t ! cX decay, (vii) neutrino
scattering, and (viii) Z ! ⌧⌧X decay. All constraints are shown to be satisfied for the range
of model parameters noted above. The symmetry breaking sector contains a second SU(2)L
Higgs doublet needed for inducing quark mixing, and a singlet field for consistent B � L
symmetry breaking. FCNC mediated by the new scalars are also under control, provided
that the masses of the neutral scalars are of order hundred GeV or above.

One consequence of the model presented here is that it provides an explicit example
wherein large nonstandard neutrino-matter interactions (NSI) are induced without causing
any flavor violation in the charged lepton sector. (For an analysis similar in spirit see
Ref. WHERE DO WE PUT [5, 6]? ) Achieving large NSI has proven to be di�cult without
causing large flavor violation in charged leptons, if the source of new physics is above the
Fermi scale which can be described by an e↵ective Lagrangian [7]. In fact, we show that
one of the best limits on models of this type arises from atmospheric neutrino oscillation
data as a priori the matter e↵ects caused by the light mediator can exceed the SM matter
e↵ect. FCNC e↵ects are necessarily present in the quark sector at some level, which arise
in the process of inducing CKM mixing angles. Thus the model provides an interesting link
between neutrino oscillations and quark flavor physics.

We have focussed on the new gauge symmetry being U(1)(3)B�L, but our results are quali-
tatively more general. We could have chosen the U(1) to be B �L associated with any one
of the three families. It could even be a flavor symmetry that addresses the fermion mass
hierarchy via, for example, the Froggatt-Nielsen mechanism [8]. Our choice of U(1)(3)B�L is,
as explained above, associated with the observed di↵erent mass and flavor characteristics of
the third family, as well as the weaker experimental constraints.

The rest of the paper is organized as follows. In Sec. 2 we present and analyze the
U(1)(3)B�L model. Sec. 3 provides a summary of the main experimental constraints on the
model. Sec. 4 discusses other low energy constraints on the model. In Sec. 5 we conclude.

2 The U(1)(3)B�L model

The model we study is based on the Standard Model symmetry extended by a U(1)(3)B�L

gauge symmetry. B�L symmetry is anomaly free for each generation of fermions, provided
that a right-handed neutrino is introduced. Thus the U(1)(3)B�L charges of fermions in our
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U(1)(3)B�L charge and �
1

carrying U1) charge of 1/3, as well as a SM singlet field s. The

U(1)(3)B�L charges of the scalars are listed in Table 1. �
2

is the Higgs doublet that generates
diagonal mass terms for the quarks and leptons, while �

1

induces o↵-diagonal quark mixing
terms involving the third family. The field s is needed for consistent symmetry breaking as
well as for inducing neutrino mixings. The U(1)(3)B�L charge of s field is uniquely fixed to
be 1/3 or 1/6, other choices would lead to an enhanced global U(1) symmetry in the Higgs
potential, resulting in an unwanted pseudo-Goldstone boson. We shall focus on s charge
being 1/3, which leads to a slightly simpler neutrino mass generation scheme.

Since the Higgs doublet �
1

carries both U(1)Y and U(1)(3)B�L charges, when its neutral
component acquires a vacuum expectation value (VEV) it will induce mixing between the
Z and the new gauge boson X. As the new symmetry is an Abelian U(1), the model also
admits the possibility of kinetic mixing between the hypercharge gauge boson and the X
boson.

�
1

�
2

s
SU(2)L 2 2 1
U(1)Y +1 +1 0

U(1)(3)B�L +1/3 0 +1/3

Table 1: Scalar fields and their charges under the Standard Model gauge group and the
U(1)(3)B�L gauge symmetry. In our notation, the U(1)(3)B�L charge of the third family quarks is
+1/3, while that for the third family leptons is �1. The first two families of fermions have

zero U(1)(3)B�L charges.

The Yukawa sector

Since the third family quarks carry a nonzero U(1)(3)B�L charge while the first two families do
not, the Yukawa couplings that would induce three family quark mixing should involve both
doublets �
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and �
2

. The �
1

field is introduced for the purpose of inducing quark mixing
with the third family. The Yukawa Lagrangian for the quarks is given by
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and �
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in the Yukawa couplings

5Another possibility would be to assign U(1)
(3)
B�L charge of �1/3 to �1. In this case, the form of the

up-quark and down-quark mass matrices would be interchanged. We do not pursue this scenario here which
is more constrained by FCNC processes.
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i with ⌧
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being
the second Pauli matrix.5 The simultaneous presence of �

1

and �
2

in the Yukawa couplings
of the up-quarks (and similarly for the down-quarks) would imply that there are Higgs-
mediated flavor changing neutral current (FCNC) processes in the model. We shall see that
these processes are within acceptable limits, provided that the neutral Higgs bosons have
masses of order hundred GeV.

As only the third family carries the new U(1)(3)B�L charge, the Cabibbo angle can be
generated without inducing any FCNC mediated by neutral scalar bosons or the X gauge
boson. We thus make 1-2 rotations in both the up- and down- quark sectors, thereby
inducing a nonzero (1, 2) entry in the CKM matrix. The other CKM matrix elements Vub

and Vcb can be generated from the rotated mass matrices which can be written in the form
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where Rij parametrizes an i � j rotation in terms of a mixing angle and a phase. While
these forms are quite general, we shall approximate m0

i in Eq. (2) to be nearly equal to the
physical eigenvalue mi and V 0

ij to be nearly equal to the actual CKM mixing element Vij.
The down quark mass matrix given in Eq. (2) is diagonalized by right-handed rotations

alone, with the left-handed mixing matrix being very close to an identity matrix. Thus Vcb

and Vub should arise primarily from the up-quark sector. The FCNC constraints arising
from the down-quark sector are more severe compared to those arising from the up-quark
sector. Assuming that m0

b ' mb, Bd � B̄d mixing mediated by the neutral scalar bosons
sets a limit a . 3 ⇥ 10�3/ tan � for scalar masses of order 100 GeV, while Bs � B̄s mixing
constrains b . 10�2/ tan � on the parameters a and b appearing in the down quark mass
matrix in Eq. (2) (see Sec. 4 for details). Here we have defined tan � ⌘ v

2

/v
1

. Similar

5Another possibility would be to assign U(1)
(3)
B�L charge of �1/3 to �1. In this case, the form of the

up-quark and down-quark mass matrices would be interchanged. We do not pursue this scenario here, as it
is more constrained by FCNC processes.
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generating CKM
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mediated flavor changing neutral current (FCNC) processes in the model. We shall see that
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masses of order hundred GeV.
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generated without inducing any FCNC mediated by neutral scalar bosons or the X gauge
boson. We thus make 1-2 rotations in both the up- and down- quark sectors, thereby
inducing a nonzero (1, 2) entry in the CKM matrix. The other CKM matrix elements Vub

and Vcb can be generated from the rotated mass matrices which can be written in the form

RuL
12

.Mu.R
uR†
12

=

0

@
m0

u 0 V 0

ubm
0

t

0 m0

c V 0

cbm
0

t

0 0 m0

t

1

A and RdL
12

.Md.R
dR†
12

=

0

@
m0

d 0 0
0 m0

s 0
am0

b bm0

b m0

b

1

A (2)

where Rij parametrizes an i � j rotation in terms of a mixing angle and a phase. While
these forms are quite general, we shall approximate m0

i in Eq. (2) to be nearly equal to the
physical eigenvalue mi and V 0

ij to be nearly equal to the actual CKM mixing element Vij.
The down quark mass matrix given in Eq. (2) is diagonalized by right-handed rotations

alone, with the left-handed mixing matrix being very close to an identity matrix. Thus Vcb

and Vub should arise primarily from the up-quark sector. The FCNC constraints arising
from the down-quark sector are more severe compared to those arising from the up-quark
sector. Assuming that m0

b ' mb, Bd � B̄d mixing mediated by the neutral scalar bosons
sets a limit a . 3 ⇥ 10�3/ tan � for scalar masses of order 100 GeV, while Bs � B̄s mixing
constrains b . 10�2/ tan � on the parameters a and b appearing in the down quark mass
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5Another possibility would be to assign U(1)
(3)
B�L charge of �1/3 to �1. In this case, the form of the

up-quark and down-quark mass matrices would be interchanged. We do not pursue this scenario here, as it
is more constrained by FCNC processes.
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Generates flavor 
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induces o↵-diagonal quark mixing
terms involving the third family. The field s is needed for consistent symmetry breaking as
well as for inducing neutrino mixings. The U(1)(3)B�L charge of s field is uniquely fixed to
be 1/3 or 1/6, other choices would lead to an enhanced global U(1) symmetry in the Higgs
potential, resulting in an unwanted pseudo-Goldstone boson. We shall focus on s charge
being 1/3, which leads to a slightly simpler neutrino mass generation scheme.
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carries both U(1)Y and U(1)(3)B�L charges, when its neutral
component acquires a vacuum expectation value (VEV) it will induce mixing between the
Z and the new gauge boson X. As the new symmetry is an Abelian U(1), the model also
admits the possibility of kinetic mixing between the hypercharge gauge boson and the X
boson.
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of the up-quarks (and similarly for the down-quarks) would imply that there are Higgs-
mediated flavor changing neutral current (FCNC) processes in the model. We shall see that
these processes are within acceptable limits, provided that the neutral Higgs bosons have
masses of order hundred GeV.

As only the third family carries the new U(1)(3)B�L charge, the Cabibbo angle can be
generated without inducing any FCNC mediated by neutral scalar bosons or the X gauge
boson. We thus make 1-2 rotations in both the up- and down- quark sectors, thereby
inducing a nonzero (1, 2) entry in the CKM matrix. The other CKM matrix elements Vub

and Vcb can be generated from the rotated mass matrices which can be written in the form

RuL
12

.Mu.R
uR†
12

=

0

@
m0

u 0 V 0

ubm
0

t

0 m0

c V 0

cbm
0

t

0 0 m0

t

1

A and RdL
12

.Md.R
dR†
12

=

0

@
m0

d 0 0
0 m0

s 0
am0

b bm0

b m0

b

1

A (2)

where Rij parametrizes an i � j rotation in terms of a mixing angle and a phase. While
these forms are quite general, we shall approximate m0

i in Eq. (2) to be nearly equal to the
physical eigenvalue mi and V 0

ij to be nearly equal to the actual CKM mixing element Vij.
The down quark mass matrix given in Eq. (2) is diagonalized by right-handed rotations

alone, with the left-handed mixing matrix being very close to an identity matrix. Thus Vcb

and Vub should arise primarily from the up-quark sector. The FCNC constraints arising
from the down-quark sector are more severe compared to those arising from the up-quark
sector. Assuming that m0

b ' mb, Bd � B̄d mixing mediated by the neutral scalar bosons
sets a limit a . 3 ⇥ 10�3/ tan � for scalar masses of order 100 GeV, while Bs � B̄s mixing
constrains b . 10�2/ tan � on the parameters a and b appearing in the down quark mass
matrix in Eq. (2) (see Sec. 4 for details). Here we have defined tan � ⌘ v
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is more constrained by FCNC processes.
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of the up-quarks (and similarly for the down-quarks) would imply that there are Higgs-
mediated flavor changing neutral current (FCNC) processes in the model. We shall see that
these processes are within acceptable limits, provided that the neutral Higgs bosons have
masses of order hundred GeV.

As only the third family carries the new U(1)(3)B�L charge, the Cabibbo angle can be
generated without inducing any FCNC mediated by neutral scalar bosons or the X gauge
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where Rij parametrizes an i � j rotation in terms of a mixing angle and a phase. While
these forms are quite general, we shall approximate m0

i in Eq. (2) to be nearly equal to the
physical eigenvalue mi and V 0

ij to be nearly equal to the actual CKM mixing element Vij.
The down quark mass matrix given in Eq. (2) is diagonalized by right-handed rotations

alone, with the left-handed mixing matrix being very close to an identity matrix. Thus Vcb

and Vub should arise primarily from the up-quark sector. The FCNC constraints arising
from the down-quark sector are more severe compared to those arising from the up-quark
sector. Assuming that m0

b ' mb, Bd � B̄d mixing mediated by the neutral scalar bosons
sets a limit a . 3 ⇥ 10�3/ tan � for scalar masses of order 100 GeV, while Bs � B̄s mixing
constrains b . 10�2/ tan � on the parameters a and b appearing in the down quark mass
matrix in Eq. (2) (see Sec. 4 for details). Here we have defined tan � ⌘ v
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up-quark and down-quark mass matrices would be interchanged. We do not pursue this scenario here, as it
is more constrained by FCNC processes.
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of the up-quarks (and similarly for the down-quarks) would imply that there are Higgs-
mediated flavor changing neutral current (FCNC) processes in the model. We shall see that
these processes are within acceptable limits, provided that the neutral Higgs bosons have
masses of order hundred GeV.

As only the third family carries the new U(1)(3)B�L charge, the Cabibbo angle can be
generated without inducing any FCNC mediated by neutral scalar bosons or the X gauge
boson. We thus make 1-2 rotations in both the up- and down- quark sectors, thereby
inducing a nonzero (1, 2) entry in the CKM matrix. The other CKM matrix elements Vub
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where Rij parametrizes an i � j rotation in terms of a mixing angle and a phase. While
these forms are quite general, we shall approximate m0

i in Eq. (2) to be nearly equal to the
physical eigenvalue mi and V 0

ij to be nearly equal to the actual CKM mixing element Vij.
The down quark mass matrix given in Eq. (2) is diagonalized by right-handed rotations

alone, with the left-handed mixing matrix being very close to an identity matrix. Thus Vcb

and Vub should arise primarily from the up-quark sector. The FCNC constraints arising
from the down-quark sector are more severe compared to those arising from the up-quark
sector. Assuming that m0

b ' mb, Bd � B̄d mixing mediated by the neutral scalar bosons
sets a limit a . 3 ⇥ 10�3/ tan � for scalar masses of order 100 GeV, while Bs � B̄s mixing
constrains b . 10�2/ tan � on the parameters a and b appearing in the down quark mass
matrix in Eq. (2) (see Sec. 4 for details). Here we have defined tan � ⌘ v
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5Another possibility would be to assign U(1)
(3)
B�L charge of �1/3 to �1. In this case, the form of the

up-quark and down-quark mass matrices would be interchanged. We do not pursue this scenario here, as it
is more constrained by FCNC processes.
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Φ1 induces mass mixing between X and Z gauge bosons

U(1)(3)B�L charge and �
1

carrying U1) charge of 1/3, as well as a SM singlet field s. The

U(1)(3)B�L charges of the scalars are listed in Table 1. �
2

is the Higgs doublet that generates
diagonal mass terms for the quarks and leptons, while �

1

induces o↵-diagonal quark mixing
terms involving the third family. The field s is needed for consistent symmetry breaking as
well as for inducing neutrino mixings. The U(1)(3)B�L charge of s field is uniquely fixed to
be 1/3 or 1/6, other choices would lead to an enhanced global U(1) symmetry in the Higgs
potential, resulting in an unwanted pseudo-Goldstone boson. We shall focus on s charge
being 1/3, which leads to a slightly simpler neutrino mass generation scheme.

Since the Higgs doublet �
1

carries both U(1)Y and U(1)(3)B�L charges, when its neutral
component acquires a vacuum expectation value (VEV) it will induce mixing between the
Z and the new gauge boson X. As the new symmetry is an Abelian U(1), the model also
admits the possibility of kinetic mixing between the hypercharge gauge boson and the X
boson.

�
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s
SU(2)L 2 2 1
U(1)Y +1 +1 0

U(1)(3)B�L +1/3 0 +1/3

Table 1: Scalar fields and their charges under the Standard Model gauge group and the
U(1)(3)B�L gauge symmetry. In our notation, the U(1)(3)B�L charge of the third family quarks is
+1/3, while that for the third family leptons is �1. The first two families of fermions have

zero U(1)(3)B�L charges.

The Yukawa sector

Since the third family quarks carry a nonzero U(1)(3)B�L charge while the first two families do
not, the Yukawa couplings that would induce three family quark mixing should involve both
doublets �

1

and �
2

. The �
1

field is introduced for the purpose of inducing quark mixing
with the third family. The Yukawa Lagrangian for the quarks is given by

Lq
yuk = QL
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and �
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in the Yukawa couplings

5Another possibility would be to assign U(1)
(3)
B�L charge of �1/3 to �1. In this case, the form of the

up-quark and down-quark mass matrices would be interchanged. We do not pursue this scenario here which
is more constrained by FCNC processes.
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the second Pauli matrix.5 The simultaneous presence of �
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and �
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in the Yukawa couplings
of the up-quarks (and similarly for the down-quarks) would imply that there are Higgs-
mediated flavor changing neutral current (FCNC) processes in the model. We shall see that
these processes are within acceptable limits, provided that the neutral Higgs bosons have
masses of order hundred GeV.

As only the third family carries the new U(1)(3)B�L charge, the Cabibbo angle can be
generated without inducing any FCNC mediated by neutral scalar bosons or the X gauge
boson. We thus make 1-2 rotations in both the up- and down- quark sectors, thereby
inducing a nonzero (1, 2) entry in the CKM matrix. The other CKM matrix elements Vub

and Vcb can be generated from the rotated mass matrices which can be written in the form
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where Rij parametrizes an i � j rotation in terms of a mixing angle and a phase. While
these forms are quite general, we shall approximate m0

i in Eq. (2) to be nearly equal to the
physical eigenvalue mi and V 0

ij to be nearly equal to the actual CKM mixing element Vij.
The down quark mass matrix given in Eq. (2) is diagonalized by right-handed rotations

alone, with the left-handed mixing matrix being very close to an identity matrix. Thus Vcb

and Vub should arise primarily from the up-quark sector. The FCNC constraints arising
from the down-quark sector are more severe compared to those arising from the up-quark
sector. Assuming that m0

b ' mb, Bd � B̄d mixing mediated by the neutral scalar bosons
sets a limit a . 3 ⇥ 10�3/ tan � for scalar masses of order 100 GeV, while Bs � B̄s mixing
constrains b . 10�2/ tan � on the parameters a and b appearing in the down quark mass
matrix in Eq. (2) (see Sec. 4 for details). Here we have defined tan � ⌘ v
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. Similar

5Another possibility would be to assign U(1)
(3)
B�L charge of �1/3 to �1. In this case, the form of the

up-quark and down-quark mass matrices would be interchanged. We do not pursue this scenario here, as it
is more constrained by FCNC processes.

5

generating CKM

These operators could be generated by exchanging singlet neutrinos with U(1)(3)B�L charges
0, ±1/3 and ±2/3. The first of those can be identified as the usual right-handed neutrinos
of the first two families, while the remaining two are singlet fermions which are vector-like
under U(1)(3)B�L. Note that the right-handed neutrino ⌫

3R with U(1)(3)B�L charge �1 will mix
with the vector-like component with charge ±2/3 via the Yukawa coupling ⌫

3Rn
2/3s once the

s field acquires a VEV. Thus there are no light sterile neutrinos in the model, provided that
the vector-like singlet neutrinos are not too heavy (otherwise the mass of ⌫

3R will become
small via a seesaw suppression factor).

Since all neutrino mixing angles are relatively large, the mass matrix elements coming
from the dimension–5 and the dimension–6 operators should be comparable. If the singlet
neutrinos that are integrated out have masses not far above the TeV scale, so that they do
not introduce an additional hierarchy problem for the Higgs boson mass [10], then these
di↵erent contributions to light neutrino masses would be of the same order.

2.2 The gauge boson sector

Now we turn our attention to the gauge boson sector. We adopt the convention q = I
3

+Y/2
for the hypercharge, where q is the electric charge, I

3

= 0,±1/2 for SU(2)L singlet and
doublet fields, and Y is the hypercharge. The gauge kinetic terms for the scalar fields are
given by

P
i |Dµ�i|2 + |Dµs|2 where the covariant derivatives are defined as

Dµ�i =

✓
@µ � ig

⌧i
2
W i

µ � ig0
Y

2
Bµ � igXqXX

0

µ

◆
�i, Dµs = @µs� igXqXs. (8)

When the scalar fields acquire VEVs, SU(2)L⇥U(1)Y ⇥U(1)(3)B�L symmetry breaks sponta-

neously down to U(1)em. Since the doublet field �
1

is charged under both Y and U(1)(3)B�L,
its VEV will induce mixing between the Z and the new gauge boson X. In the absence of
kinetic mixing the gauge boson mass-squared matrix is given as (in the basis (Y,W

3L, X0)
where X0 indicates a state before mixing)

M2

gauge

=
1

4

0

@
g02v2 �gg0v2 �2g0gXv2

1

/3
�gg0v2 g2v2 2ggXv2

1

/3
�2g0gXv2

1

/3 2ggXv2
1

/3 4g2X(v
2

1

+ v2s)/9

1

A . (9)

Here v
1

, v
2

, vs are the VEVs of �
1

, �
2

, and s, respectively, with v2
1

+ v2
2

⌘ v2 = (246 GeV)2.
The photon is still the combination Aµ = cwBµ + swW 3

µ (cw = cos ✓w, sw = sin ✓w, tan ✓w =
g0/g), while the physical Z and X boson eigenstates are given by (ignoring terms of order
O(g2X)),

Zµ ' �swBµ + cwW
3

µ � sXX
0

µ, (10)

Xµ ' sX(�swBµ + cwW
3

µ) +X0

µ, (11)
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U(1)(3)B�L charge and �
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carrying U1) charge of 1/3, as well as a SM singlet field s. The

U(1)(3)B�L charges of the scalars are listed in Table 1. �
2

is the Higgs doublet that generates
diagonal mass terms for the quarks and leptons, while �

1

induces o↵-diagonal quark mixing
terms involving the third family. The field s is needed for consistent symmetry breaking as
well as for inducing neutrino mixings. The U(1)(3)B�L charge of s field is uniquely fixed to
be 1/3 or 1/6, other choices would lead to an enhanced global U(1) symmetry in the Higgs
potential, resulting in an unwanted pseudo-Goldstone boson. We shall focus on s charge
being 1/3, which leads to a slightly simpler neutrino mass generation scheme.

Since the Higgs doublet �
1

carries both U(1)Y and U(1)(3)B�L charges, when its neutral
component acquires a vacuum expectation value (VEV) it will induce mixing between the
Z and the new gauge boson X. As the new symmetry is an Abelian U(1), the model also
admits the possibility of kinetic mixing between the hypercharge gauge boson and the X
boson.
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Table 1: Scalar fields and their charges under the Standard Model gauge group and the
U(1)(3)B�L gauge symmetry. In our notation, the U(1)(3)B�L charge of the third family quarks is
+1/3, while that for the third family leptons is �1. The first two families of fermions have

zero U(1)(3)B�L charges.

The Yukawa sector

Since the third family quarks carry a nonzero U(1)(3)B�L charge while the first two families do
not, the Yukawa couplings that would induce three family quark mixing should involve both
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and �
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. The �
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field is introduced for the purpose of inducing quark mixing
with the third family. The Yukawa Lagrangian for the quarks is given by
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B�L charge of �1/3 to �1. In this case, the form of the

up-quark and down-quark mass matrices would be interchanged. We do not pursue this scenario here which
is more constrained by FCNC processes.
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1

and �
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in the Yukawa couplings
of the up-quarks (and similarly for the down-quarks) would imply that there are Higgs-
mediated flavor changing neutral current (FCNC) processes in the model. We shall see that
these processes are within acceptable limits, provided that the neutral Higgs bosons have
masses of order hundred GeV.

As only the third family carries the new U(1)(3)B�L charge, the Cabibbo angle can be
generated without inducing any FCNC mediated by neutral scalar bosons or the X gauge
boson. We thus make 1-2 rotations in both the up- and down- quark sectors, thereby
inducing a nonzero (1, 2) entry in the CKM matrix. The other CKM matrix elements Vub
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where Rij parametrizes an i � j rotation in terms of a mixing angle and a phase. While
these forms are quite general, we shall approximate m0

i in Eq. (2) to be nearly equal to the
physical eigenvalue mi and V 0

ij to be nearly equal to the actual CKM mixing element Vij.
The down quark mass matrix given in Eq. (2) is diagonalized by right-handed rotations

alone, with the left-handed mixing matrix being very close to an identity matrix. Thus Vcb

and Vub should arise primarily from the up-quark sector. The FCNC constraints arising
from the down-quark sector are more severe compared to those arising from the up-quark
sector. Assuming that m0

b ' mb, Bd � B̄d mixing mediated by the neutral scalar bosons
sets a limit a . 3 ⇥ 10�3/ tan � for scalar masses of order 100 GeV, while Bs � B̄s mixing
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2

/v
1

. Similar

5Another possibility would be to assign U(1)
(3)
B�L charge of �1/3 to �1. In this case, the form of the

up-quark and down-quark mass matrices would be interchanged. We do not pursue this scenario here, as it
is more constrained by FCNC processes.

5

generating CKM
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of the first two families, while the remaining two are singlet fermions which are vector-like
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3R with U(1)(3)B�L charge �1 will mix
with the vector-like component with charge ±2/3 via the Yukawa coupling ⌫

3Rn
2/3s once the
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3R will become
small via a seesaw suppression factor).
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not introduce an additional hierarchy problem for the Higgs boson mass [10], then these
di↵erent contributions to light neutrino masses would be of the same order.

2.2 The gauge boson sector

Now we turn our attention to the gauge boson sector. We adopt the convention q = I
3

+Y/2
for the hypercharge, where q is the electric charge, I

3

= 0,±1/2 for SU(2)L singlet and
doublet fields, and Y is the hypercharge. The gauge kinetic terms for the scalar fields are
given by

P
i |Dµ�i|2 + |Dµs|2 where the covariant derivatives are defined as
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✓
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⌧i
2
W i
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2
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µ

◆
�i, Dµs = @µs� igXqXs. (8)

When the scalar fields acquire VEVs, SU(2)L⇥U(1)Y ⇥U(1)(3)B�L symmetry breaks sponta-

neously down to U(1)em. Since the doublet field �
1

is charged under both Y and U(1)(3)B�L,
its VEV will induce mixing between the Z and the new gauge boson X. In the absence of
kinetic mixing the gauge boson mass-squared matrix is given as (in the basis (Y,W

3L, X0)
where X0 indicates a state before mixing)

M2
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=
1

4

0

@
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1

/3
�gg0v2 g2v2 2ggXv2

1
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1

/3 2ggXv2
1

/3 4g2X(v
2
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+ v2s)/9

1

A . (9)

Here v
1

, v
2

, vs are the VEVs of �
1

, �
2

, and s, respectively, with v2
1

+ v2
2

⌘ v2 = (246 GeV)2.
The photon is still the combination Aµ = cwBµ + swW 3

µ (cw = cos ✓w, sw = sin ✓w, tan ✓w =
g0/g), while the physical Z and X boson eigenstates are given by (ignoring terms of order
O(g2X)),

Zµ ' �swBµ + cwW
3

µ � sXX
0

µ, (10)

Xµ ' sX(�swBµ + cwW
3

µ) +X0

µ, (11)

7

EWPT suggests 
small mixing, and 

thus small masses…
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constraints are obtained from the decays Bd ! X� ! e+e�� [11] and Bs ! X ! µ+µ�.
With these constraints, the parameters a and b in Eq. (2) cannot significantly contribute to
the generation of CKM mixing angles Vcb and Vub, which we shall thus ignore. Within these
assumptions, the left-handed rotations that diagonalize Mu and Md are given by (in a basis
where the 1-2 up-sector is already diagonal, i.e., with RuL

12

, RuR
12

being identity matrices)

V L
u = RuL

23

(Vcb)R
uL
13

(Vub), (3)

V L†
d = RdL

12

(Vus)
†. (4)

The quark mixing matrix is given by V
CKM

= V L
u V L†

d . It can be readily checked that a
CP violating phase of the correct magnitude is obtained from complex entries of the mass
matrices. It follows from Eq. (2) that any FCNC e↵ects induced by scalar boson exchanges
would be weighted by Vub and Vcb in the top sector where the experimental constraints are
meager, and by VubVcb in the u� c sector. This suppression factor will be su�cient to avoid
the stringent D0 �D0 mixing bounds, as we will see in Sec. 3.

In the charged lepton sector Yukawa couplings between the third and the first two families
are strictly forbidden owing to the charge assignment and minimality of the Higgs sector of
the model. Charged lepton masses arise through the Yukawa Lagrangian involving the �

2

scalar only and is given by
L`

yuk = y`ijLi�2

`Rj, (5)

with yij = 0 for ij = 13, 23, 31, 32. We see that the leptonic mixing angle ✓`
12

could be
generated from here, but not ✓`

23

and ✓`
13

. There are no FCNC processes mediated by the
Higgs bosons, since the Yukawa coupling matrix is proportional to the charged lepton mass
matrix. There are also no FCNC processes mediated by the X gauge boson, since the
mass eigenbasis and the flavor eigenbasis coincide for the charged leptons. The complete
absence of tree-level FCNC in the charged lepton sector is a compelling feature of the model,
protecting it from the severe bounds that could have arisen from flavor changing muon and
tau decays.

Neutrino mass generation calls for additional physics which can however reside at a
higher scale. In the minimal setup considered here, we can infer neutrino masses as arising
from e↵ective operators via a generalized seesaw mechanism. For the 1-2 sector as well as for
the 3-3 entry of the e↵ective Majorana matrix of the light neutrinos the usual dimension–5
operators can be built (with L̃i ⌘ i⌧

2

L⇤
i ):

1

⇤

⇣
L̄
1,2�̃2

⌘⇣
�†
2

L̃
1,2

⌘
,

1

⇤

⇣
L̄
3

�̃
2

⌘⇣
�†
2

L̃
3

⌘
, (6)

while the mixing responsible for ✓`
13

and ✓`
23

should come from a dimension–6 operator

1

⇤2

⇣
L̄
3

�̃
1

⌘⇣
�†
1

L̃
1,2

⌘
s⇤. (7)

6

No flavor changing interactions in the lepton sector
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Figure 1: Branching ratios of X for two values of tan � ⌘ v
2

/v
1

with no kinetic mixing.

where s is the center of mass energy of the e+e� collision [19, 20]. We estimate the X
hadronic width to be 6

�(X ! hadrons) = �(X ! µ+µ�)R(s = M2

X). (35)

Above 2.2 GeV we calculate the partial widths to partons.

3.2 Lepton universality in ⌥ decays

Precise measurements of the ⌥ ! ⌧+⌧� and ⌥ ! µ+µ� branching ratios by BaBar [21]
constrain the deviation from lepton universality via the ratio

R⌧µ ⌘ �(⌥(1S) ! ⌧+⌧�)

�(⌥(1S) ! µ+µ�)
= 1.005± 0.013(stat.)± 0.022(syst.) . (36)

6In fact, the X branching ratios should not be exactly the values obtained here. The hadronic cross
section at low energy e+e� colliders is dominated by photon exchange. Since the coupling of X to light
quarks arrives from X �Z mixing, they di↵ers from the photon couplings: they are not universal and have
an axial-vector component. Nevertheless, the hadronic branching ratios derived here are expected to provide
a good approximation to the exact ones (which cannot be calculated perturbatively).
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We shall use these couplings when deriving the constraints from decays of various particles
into longitudinal modes of X boson.

The gauge boson kinetic terms allow for mixing between Xµ⌫ and Bµ⌫ parametrized by
". These are given by

Lkin = �1

4
W 3

µ⌫W
3µ⌫ � 1

4
Bµ⌫B

µ⌫ � 1

4
Xµ⌫X

µ⌫ +
"

2
Xµ⌫B

µ⌫ (17)

= �1

4
Aµ⌫A

µ⌫ � 1

4
Zµ⌫Z

µ⌫ � 1

4
Xµ⌫X

µ⌫ +
"

2
Xµ⌫(cwA

µ⌫ � swZ
µ⌫) +O("3). (18)

To obtain canonical kinetic terms for the gauge bosons, up to O("3), the photon and the X
fields can be redefined as [11]

Aµ ! Aµ + "cwXµ, (19)

Xµ ! Xµ � "swZµ. (20)

The e↵ect of the photon field shift is only to couple the standard electromagnetic current
to X, with the coupling strength being "cw. The X field shift has two e↵ects. First, it
couples the X current to the Z charge, so the Z couplings to particles that are charged
under the new symmetry are slightly modified. Second, as X is massive, its shift gives rise
to a Z � X mass term �2"swM2

X . Assuming MX ⌧ MZ , a small rotation by "M2

X/M
2

Z

is required to have diagonal mass terms for the Z and X bosons. Due to the additional
suppression factor M2

X/M
2

Z , this rotation is not significant, and we shall neglect this e↵ect.
It is important to notice that the non-unitary character of the shift assures the absence of
millicharged particles: although electrically charged particles acquire small X charges, the
opposite, viz., particles charged under X acquiring small electric charge, does not happen.

Since the U(1)(3)B�L gauge interaction distinguishes flavor, it leads to FCNCs. In the flavor
basis the X interactions to SM fermions are given by

LffX = c↵f̄↵�µf↵X
µ, with c↵ = q↵cwe "+

⇣
gXq

X
↵ + sX

p
g2 + g02qZ↵

⌘
, (21)

where q↵, qX↵ , and qZ↵ = I↵
3

� s2wq↵, are the electric charge, the X charge and the Z charge,
respectively, of the fermion ↵. Notice that, as c↵ depends on the chirality of the field, it is not
possible to have an accidental cancellation between " and gX for both L and R components
of any particle. The relative sign (and magnitude) between " and gX is physically observable.

We can understand the FCNC processes induced by the X gauge boson by writing the
non-universal piece of the interaction explicitly as

L
X�FCNC

=
gX
3
QL

0

@
0 0 0
0 0 0
0 0 1

1

A �µQLXµ, (22)
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Light X: ντντ dominates

Hadronic cross section:

ut and ct), while the two scalars, the pseudoscalar and the charged one would have masses
of 620 GeV, 420 GeV, 620 GeV, and 590 GeV. This scalar spectrum would lead to a small
deviation on the electroweak T parameter of about �T = 0.13.

3 Phenomenology

The phenomenology of a light mediator coupled to the standard model fields through kinetic
mixing has been studied in the literature in great detail (see Ref. [18] and references therein).
Our model has a very rich phenomenology as, besides mixing kinetically with the photon,
the X gauge boson also mixes with the Z via mass terms. Furthermore, the couplings
of X to fermions are flavor non-universal, which would lead to flavor changing neutral
currents mediated by both X and the new scalar bosons needed for symmetry breaking. In
this section we present the main results obtained from various constraints arising from low
energy processes. For definiteness, when quoting numbers we focus on benchmark points
where we set " = 0 and tan � = 0.5, 2, while in presenting the constraints as plots we scan
the entire allowed range of tan � = (0.5, 25), with " = 0. We present in Table 2 a summary
of the most constraining experimental limits together with a brief description of each bound.
The branching ratios of X are shown in Fig. 1, while in Figs. 3 and 4 we present a summary
of the most relevant constraints. Additional experimental constraints are analyzed in Sec. 4,
which turn out to be important, but only to a lesser degree. We elaborate now on how the
main results summarized in Table 2 and Figs. 3 and 4 are obtained.

3.1 Branching ratios of X

Before discussing the constraints in detail, we first explore the X branching ratios which
will define the typical signature of the new gauge boson. If MX is lighter than the tau mass,
it can only decay to first and second family charged fermions, and to all neutrinos. In this
case, the partial widths to the charged fermions go as ⇠ g2X/(1+t2�)

2 while the width to ⌫⌧⌫⌧
goes as g2X , and hence the branching ratio to the first two families has a t�4

� suppression (in
the limit of large t�). For instance, if MX < 2me, we obtain

BR(X ! e+e�) =
1� 4s2w + 8s4w

7� 4s2w + 8s4w + 12t2� + 9t4�
=

0.056

0.72 + 1.3t2� + t4�
. (33)

In Fig. 1 we provide the exact branching ratios of X for two di↵erent values of t�.
To obtain the hadronic partial width for MX below 1.8 GeV we use the experimentally

measured ratio

R(s) =
�(e+e� ! hadrons; s)

�(e+e� ! µ+µ�; s)
, (34)
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Figure 1: Branching ratios of X for two values of tan � ⌘ v
2

/v
1

with no kinetic mixing.

where s is the center of mass energy of the e+e� collision [19, 20]. We estimate the X
hadronic width to be 6

�(X ! hadrons) = �(X ! µ+µ�)R(s = M2

X). (35)

Above 2.2 GeV we calculate the partial widths to partons.

3.2 Lepton universality in ⌥ decays

Precise measurements of the ⌥ ! ⌧+⌧� and ⌥ ! µ+µ� branching ratios by BaBar [21]
constrain the deviation from lepton universality via the ratio

R⌧µ ⌘ �(⌥(1S) ! ⌧+⌧�)

�(⌥(1S) ! µ+µ�)
= 1.005± 0.013(stat.)± 0.022(syst.) . (36)

6In fact, the X branching ratios should not be exactly the values obtained here. The hadronic cross
section at low energy e+e� colliders is dominated by photon exchange. Since the coupling of X to light
quarks arrives from X �Z mixing, they di↵ers from the photon couplings: they are not universal and have
an axial-vector component. Nevertheless, the hadronic branching ratios derived here are expected to provide
a good approximation to the exact ones (which cannot be calculated perturbatively).
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with the Z �X mixing angle sX defined as

sX ⌘ 2

3

gXp
g2 + g02

v2
1

v2
. (12)

We observe that it is the VEV of �
1

that induces the Z � X mixing, and that sX is
proportional to gX and v

1

. The mass of the X gauge boson is obtained as

M2

X =
1

9
g2X

✓
v2
1

v2
2

v2
+ v2s

◆
. (13)

Notice that a nonzero vs can only raise MX . When v
1

and v
2

are comparable, MX is
essentially fixed in terms of vs, while for large tan� there is some dependence on v

1

and v
2

as well. Then, for a given gX , Eq. (13) defines a minimum mass for the X boson.
As will be seen later, the longitudinal mode XL plays a very important role on the

phenomenology, particularly in the case of light X (with respect to the scale of the process
in question). In such case, the equivalence theorem implies that XL can be substituted by
its corresponding Goldstone boson GX . It is easy to see that GX is given by

GX =
1

3

gX
MXv2

⇥�v
1

v2
2

Im(�0

1

) + v2
1

v
2

Im(�0

2

)� v2vs Im(s0)
⇤
. (14)

Its diagonal couplings to fermions are given by

yGX
i =

i

3
gX

v2
1

v2
mi

MX

, (15)

while the o↵-diagonal couplings between the third and first two families of quarks is

yGX
ij =

i

3
gX

v2
2

v2
mij

MX

. (16)

The gauge boson kinetic terms allow for mixing between Xµ⌫ and Bµ⌫ parametrized by
". These are given by

Lkin = �1

4
W 3

µ⌫W
3µ⌫ � 1

4
Bµ⌫B

µ⌫ � 1

4
Xµ⌫X

µ⌫ +
"

2
Xµ⌫B

µ⌫ (17)

= �1

4
Aµ⌫A

µ⌫ � 1

4
Zµ⌫Z

µ⌫ � 1

4
Xµ⌫X

µ⌫ +
"

2
Xµ⌫(cwA

µ⌫ � swZ
µ⌫) +O("3). (18)

To obtain canonical kinetic terms for the gauge bosons, up to O("3), the photon and the X
fields can be redefined as [12]

Aµ ! Aµ + "cwXµ, (19)

Xµ ! Xµ � "swZµ. (20)
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U(1) B – L of the third family

Complete model, including 
scalar sector and CKM 

generation

 

These operators could be generated by exchanging singlet neutrinos with U(1)(3)B�L charges
0, ±1/3 and ±2/3. The first of those can be identified as the usual right-handed neutrinos
of the first two families, while the remaining two are singlet fermions which are vector-like
under U(1)(3)B�L. Note that the right-handed neutrino ⌫

3R with U(1)(3)B�L charge �1 will mix
with the vector-like component with charge ±2/3 via the Yukawa coupling ⌫

3Rn
2/3s once the

s field acquires a VEV. Thus there are no light sterile neutrinos in the model, provided that
the vector-like singlet neutrinos are not too heavy (otherwise the mass of ⌫

3R will become
small via a seesaw suppression factor).

Since all neutrino mixing angles are relatively large, the mass matrix elements coming
from the dimension–5 and the dimension–6 operators should be comparable. If the singlet
neutrinos that are integrated out have masses not far above the TeV scale, so that they do
not introduce an additional hierarchy problem for the Higgs boson mass [10], then these
di↵erent contributions to light neutrino masses would be of the same order.

2.2 The gauge boson sector

Now we turn our attention to the gauge boson sector. We adopt the convention q = I
3

+Y/2
for the hypercharge, where q is the electric charge, I

3

= 0,±1/2 for SU(2)L singlet and
doublet fields, and Y is the hypercharge. The gauge kinetic terms for the scalar fields are
given by

P
i |Dµ�i|2 + |Dµs|2 where the covariant derivatives are defined as

Dµ�i =

✓
@µ � ig

⌧i
2
W i

µ � ig0
Y

2
Bµ � igXqXX

0

µ

◆
�i, Dµs = @µs� igXqXs. (8)

When the scalar fields acquire VEVs, SU(2)L⇥U(1)Y ⇥U(1)(3)B�L symmetry breaks sponta-

neously down to U(1)em. Since the doublet field �
1

is charged under both Y and U(1)(3)B�L,
its VEV will induce mixing between the Z and the new gauge boson X. In the absence of
kinetic mixing the gauge boson mass-squared matrix is given as (in the basis (Y,W

3L, X0)
where X0 indicates a state before mixing)

M2

gauge

=
1

4

0

@
g02v2 �gg0v2 �2g0gXv2

1

/3
�gg0v2 g2v2 2ggXv2

1

/3
�2g0gXv2

1

/3 2ggXv2
1

/3 4g2X(v
2

1

+ v2s)/9

1

A . (9)

Here v
1

, v
2

, vs are the VEVs of �
1

, �
2

, and s, respectively, with v2
1

+ v2
2

⌘ v2 = (246 GeV)2.
The photon is still the combination Aµ = cwBµ + swW 3

µ (cw = cos ✓w, sw = sin ✓w, tan ✓w =
g0/g), while the physical Z and X boson eigenstates are given by (ignoring terms of order
O(g2X)),

Zµ ' �swBµ + cwW
3

µ � sXX
0

µ, (10)

Xµ ' sX(�swBµ + cwW
3

µ) +X0

µ, (11)
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its VEV will induce mixing between the Z and the new gauge boson X. In the absence of
kinetic mixing the gauge boson mass-squared matrix is given as (in the basis (Z0, X0) where
the 0 subscript indicates a state before Z �X mixing)
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Here v
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⌘ v2 = (246 GeV)2.
The photon is still the combination Aµ = cwBµ + swW 3

µ (cw = cos ✓w, sw = sin ✓w, tan ✓w =
g0/g), while the physical Z and X boson eigenstates are given by (ignoring terms of order
O(g2X)),
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µ, (11)
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µ, (12)

with the Z �X mixing angle sX defined as

sX ⌘ 2
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g2 + g02
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v2
. (13)

We observe that it is the VEV of �
1

that induces the Z � X mixing, and that sX is
proportional to gX and v
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. The mass of the X gauge boson is obtained as

M2

X =
1
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Notice that a nonzero vs can only raise MX . When v
1

and v
2

are comparable, MX is
essentially fixed in terms of vs, while for large tan� there is some dependence on v

1

and v
2

as well. Then, for a given gX , Eq. (14) defines a minimum mass for the X boson.
As will be seen later, the longitudinal mode XL plays a prominent role on the phe-

nomenology, particularly in the case of light X (with respect to the scale of the process in
question). In such case, the equivalence theorem implies that XL can be substituted by its
corresponding Goldstone boson GX . It is easy to see that GX is given by

GX =
1

3
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MXv2
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v2
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Im(�0
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) + v2
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Some of the Goldstone boson couplings will be particularly important, namely,

LGX = iGX
gX
3

mt

MX


�v2

1

v2
t̄�

5

t+ Vcb(c̄LtR � t̄RcL) + VubVcb(c̄LuR � ūRcL)

�
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3
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v2
⌧̄ �

5

⌧ + . . . (16)
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tβ fixes v1 and v2

MX has a lower value

These operators could be generated by exchanging singlet neutrinos with U(1)(3)B�L charges
0, ±1/3 and ±2/3. The first of those can be identified as the usual right-handed neutrinos
of the first two families, while the remaining two are singlet fermions which are vector-like
under U(1)(3)B�L. Note that the right-handed neutrino ⌫

3R with U(1)(3)B�L charge �1 will mix
with the vector-like component with charge ±2/3 via the Yukawa coupling ⌫

3Rn
2/3s once the

s field acquires a VEV. Thus there are no light sterile neutrinos in the model, provided that
the vector-like singlet neutrinos are not too heavy (otherwise the mass of ⌫

3R will become
small via a seesaw suppression factor).

Since all neutrino mixing angles are relatively large, the mass matrix elements coming
from the dimension–5 and the dimension–6 operators should be comparable. If the singlet
neutrinos that are integrated out have masses not far above the TeV scale, so that they do
not introduce an additional hierarchy problem for the Higgs boson mass [10], then these
di↵erent contributions to light neutrino masses would be of the same order.

2.2 The gauge boson sector

Now we turn our attention to the gauge boson sector. We adopt the convention q = I
3

+Y/2
for the hypercharge, where q is the electric charge, I

3

= 0,±1/2 for SU(2)L singlet and
doublet fields, and Y is the hypercharge. The gauge kinetic terms for the scalar fields are
given by
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neously down to U(1)em. Since the doublet field �
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is charged under both Y and U(1)(3)B�L,
its VEV will induce mixing between the Z and the new gauge boson X. In the absence of
kinetic mixing the gauge boson mass-squared matrix is given as (in the basis (Y,W
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where X0 indicates a state before mixing)
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The photon is still the combination Aµ = cwBµ + swW 3
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its VEV will induce mixing between the Z and the new gauge boson X. In the absence of
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Notice that a nonzero vs can only raise MX . When v
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are comparable, MX is
essentially fixed in terms of vs, while for large tan� there is some dependence on v
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as well. Then, for a given gX , Eq. (14) defines a minimum mass for the X boson.
As will be seen later, the longitudinal mode XL plays a prominent role on the phe-

nomenology, particularly in the case of light X (with respect to the scale of the process in
question). In such case, the equivalence theorem implies that XL can be substituted by its
corresponding Goldstone boson GX . It is easy to see that GX is given by
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a similar matrix for y0dij , and also
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+
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�
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µ
��
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�
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�
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�
�
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�
p
2�2
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p
2vst2�

�
�
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� �
34

+ (�
34

� �
2

) t2�
�

µ
�
t2� + 1

�
⌘
. (31)

This will induce top to charm Higgs decays, which will be analyzed in Sec. 3.
In this basis, the electroweak gauge bosons couple only to H, and hence any mixing

of this state can only reduce the couplings of the SM-like Higgs to WW and ZZ. The
requirement that the SM-like Higgs boson couples to the gauge bosons with strengths very
close to the SM values constrains the admixture of Re(H0) with the other scalars. LHC
Higgs data constrain the sum of the square of these mixings to be about 0.1 [13]. LHC
searches for a heavy Higgs boson decaying to ZZ [14, 15] are sensitive to masses roughly
between 200 GeV and 900 GeV, assuming production via gluon fusion and a branching ratio
to ZZ similar to a SM-like Higgs of corresponding mass. Due to the structure of the Yukawa
couplings the heavy Higgs bosons of the model have suppressed couplings to tt, leading to
smaller production cross sections, thus evading the LHC search limits. (Note that in the
large tan � limit, h

125

⇠ Re(H0) ⇠ Re(�0

2

), and since only �
2

has a tt coupling, the couplings
of all heavy Higgs bosons with tt will be suppressed by small mixing angles.) Besides, due
to the X � Z mixing, the real component of H

1

will couple to X like

LhXX =
g2X
9

v2
1

v2
2

v3
Re(H0)XµX

µ. (32)

This coupling will contribute mainly to the invisible width of the Higgs, as we will see in
the next section.

With the aid of the cubic scalar coupling µ the mass of the charged scalar can be raised
above the electroweak scale, which may be very important for the following reason. In type-
II 2HDM, where each Higgs couples exclusively to up- and down-type quarks, the charged
Higgs contribution to b ! s� transitions constrains its mass to be above ⇠ 400�500 GeV for
tan � ' 1 [16]. Although our model is not a type-II 2HDM, the t̄ bH+ and t̄sH+ couplings
are similar, and therefore a comparable bound should be applicable here as well. 5 LHC
searches for H± ! tb [17] are sensitive to masses below 250 � 300 GeV only if tan � > 2.
As an example, the parameters tan � = 10, vs = 300 GeV, µ = 181 GeV, �

1

= 1, �
2

= 0.24,
�s = 2, �

3

= 0.1, �
4

= 1.5, �
1s = 1, and �

2s = 0.1 lead to a physical Higgs at 125 GeV with
couplings almost identical to the SM Higgs (except for small flavor violating couplings to

5As a side remark, we note that the µ parameter cannot be made arbitrarily large while keeping the Higgs
mass light, as it would violate unitarity in certain scattering processes. The amplitude for the scattering
�i�h ! �i�j would grow like µ2/m2, where m is the mass of the virtual scalar exchanged, which would
violate unitarity if µ � m.
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Figure 3: Feynman diagrams involved in the calculation of K+ ! ⇡+X. Analogous diagrams
were computed for B+ ! K+X.
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t/M
2

W and u = m2

t/M
2

H± . The T
1,2,3 terms correspond to the loop diagrams con-

taining a transverse W , G±
W and H±, and the triple coupling W±H⌥GX , respectively. The

amplitude is given by

A(K+ ! ⇡+XL) = gsdXh⇡|d̄�µs|Kiqµ ' 2gsdXF+

(0)p · q, (54)

where the form factor F
+

(0) = 0.96 [58]. This leads to the partial width
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(0)|2M3
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where we have neglected M2

X/M
2

K terms.
The two best experimental measurements of K+ ! ⇡+⌫⌫̄ have di↵erent cuts for the pion

momentum. In Ref. [59], the pion momentum is required to be between 211 and 229 MeV,
and the measurement yielded BR(K+ ! ⇡+⌫⌫̄) = (1.47+1.30

�0.89) ⇥ 10�10, while in Ref. [61] the
pion momentum is required to be between 140 and 199 MeV and the measurement reads
BR(K+ ! ⇡+⌫⌫̄) = (1.73+1.15

�1.05) ⇥ 10�10. These cuts in momentum translate into the two
intervals MX < 114 MeV and 151 < MX < 260 MeV, where the constraint should be valid.
The standard model value for this branching ratio is (0.80 ± 0.11) ⇥ 10�10. The constraint is
shown in Figs. 2 and 4, where we required the sum of the standard and new contributions not
to exceed the 2� experimental value. The gap in the excluded region is the result of the two
intervals for MX .

For the B+ ! K+⌫⌫ decay, a very similar calculation is performed and yields a bound that
is weaker than the Kaon decay bound, but goes to higher values of X masses 8. Furthermore,
the dependence with the mass of H+ and � is more pronounced in the B decay constraint.
The reason is because all contributions in Eq. (51) are comparable for K+ ! ⇡+X, but only
the last one is significant for B+ ! K+X, and thus the � dependence and the interplay with

8For the B ! K transitions, the relevant form factor is smaller, F+(0) = 0.331 [60].
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For the B+ ! K+⌫⌫ decay, a very similar calculation is performed and yields a bound that
is weaker than the Kaon decay bound, but goes to higher values of X masses 8. Furthermore,
the dependence with the mass of H+ and � is more pronounced in the B decay constraint.
The reason is because all contributions in Eq. (51) are comparable for K+ ! ⇡+X, but only
the last one is significant for B+ ! K+X, and thus the � dependence and the interplay with

8For the B ! K transitions, the relevant form factor is smaller, F+(0) = 0.331 [60].
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This calculation di↵ers from the usual Z-induced Kaon decay precisely by the dominance of
the longitudinal mode, which lead us to the following considerations. Since the internal X
vertex e↵ectively couples to the Yukawa instead of the gauge coupling, we can safely take all
quark masses, except for the top, to be zero. The charm quark contribution to the amplitude
is suppressed in our scenario, and thus we neglect it. Moreover, the usual counterterms from
the self-energy diagrams are omitted since they are proportional to the mass of the s or the b.

There are three main contributions (in the Feynman gauge) to this coupling, i.e., loops with
transverse W , longitudinal W or charged Higgs, and both transverse W and charged Higgs (via
a W±H⌥GX coupling), see Fig. 3. For the longitudinal W diagram in Fig. 3(a), the internal
fermions could be tt, or a top and a light up-type quark. These contributions scale as (see
Eq. (16))

g(1)sdX ⇠ g2gX
96⇡2MX

⇥ {VtdV
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tsc

2

� , Vtd(VcbV
⇤
cs + VubV
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us) } ⇠ (1.5� 0.6i)10�7

gX
MX

⇥ {�c2� , 1}. (47)

For the longitudinal W and the charged Higgs in Fig. 3(b), having a light quark in the loop
would suppress the diagram by m2

light

/m2

t , so these contributions are negligible. Thus, the top
loop exchange goes as

g(2)sdX ⇠ g2gX
96⇡2MX

VtdV
⇤
ts

c2�
s�

⇠ �(1.5� 0.6i)10�7

gX
MX

c2�
s�

. (48)

Finally, for the diagram arriving from the W±H⌥GX coupling in Fig. 3(c) and 3(d), only an
internal top will lead to sizable contributions,

g(3)sdX ⇠ g2gX
96⇡2MX

VtdV
⇤
tsc� ⇠ �(1.5� 0.6i)10�7

gX
MX

c�. (49)

We emphasize that all contributions are comparable and have slightly di↵erent dependences on
t�, which will result in a bound from K+ ! ⇡+X that depends mildly on t�.

A full calculation of these loop amplitudes yields the following result (for similar calculations
see e.g. Refs. [62, 63, 64, 65, 66])

gsdX = i
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ts t u c�
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Longitudinal enhancement

As the X boson couples dominantly to the third family, this measurement can be used
to constrain gX . In the limit of small Z � X mixing and neglecting the tiny Z exchange
diagram, we obtain

R⌧µ ' 1� 2
g2X
e2

M2

⌥

M2

⌥

�M2

X

, (37)

where the second term comes from the � �X interference. In our numerical evaluation we
used the exact expression for R⌧µ. This imposes gX < 0.027 for mX ⌧ m

⌥

. If mX � m
⌥

,
this process actually constrains vs. In such case, vs > 960 GeV, roughly independent of
tan �.

3.3 ⌥ ! X� decay

The decay ⌥ ! XL� can also occur and can be used to constrain the parameters of the
model.7 Here XL is the longitudinal mode of X. Although this process involves gauge
bosons, the equivalence theorem tells us that this width is actually probing the Yukawa
coupling of the corresponding Goldstone to the b quarks, and therefore the bound is inde-
pendent of whether the theory is gauged or not, as long as MX ⌧ mb holds. Yang’s theorem,
which states that a vector particle cannot decay into a pair of massless spin-1 particles, does
not apply in this case as the ⌥ is decaying into the longitudinal mode of X and a massless
photon. Moreover, due to charge conjugation symmetry, only the axial-vector coupling of
X, that is, cbR � cbL from Eq. (21), will contribute to ⌥ ! XL�. This branching ratio can
be computed using non-relativistic e↵ective field theory [22], where the amplitude is approx-
imated by the zero momentum amplitude for the hard scattering times the wave function of
the ⌥ at the origin, A

⌥

' A(0) (0). We get rid of the wave function at the origin by taking
the ratio of this width with a measured decay width like ⌥ ! e+e�. Therefore we have

R ⌘ BR(⌥ ! XL�)

BR(⌥ ! e+e�)
=

| (0)|2 ��A(0; bb̄ ! XL�)
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9e2v4M2
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2m2

bv
4

1

e2v2(v2v2s + v2
1

v2
2

)
<

4.5⇥ 10�6

0.0238
, (38)

where the right-hand side of the inequality shows the measured values of the branching
ratios being considered [9]. The constraint on vs is vs > 2(0.5) TeV for tan � = 0.5(2).

3.4 D0 �D0 mixing

A light gauge boson with flavor changing couplings to quarks can contribute to meson-
antimeson mixing. In our model, since the first two families carry no U(1)(3)B�L charge, and

7We have checked that ⌥ ! XLXL does not lead to any meaningful bound due to a weaker experimental
limit on the branching fraction.
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Experimental
constraint

Remarks

Neutrino oscillations Non-universal matter e↵ects bounded by atmospheric neutrinos
Atomic parity

violation
X � Z mixing modifies weak charge of 133Cs

⌥ decay
⌥ ! �X ! �⌫⌫̄: Goldstone boson equivalence theorem
constrains Yukawa coupling

⌥ decay
⌥ ! ⌧+⌧�: Direct constraint on the gauge coupling as the
process only involves third family fermions

Electroweak T
parameter

Z �X mixing modifies MZ/MW and constrains the mixing
parameter sX

D0 �D0 mixing
Mediated by scalar constrains mass of heavy scalar > O(100)
GeV; significant constraint on the coupling of X only when X
mass is below or close to the D0 mass

t ! cX
Flavor changing c tX coupling can contribute to the total top
width, which is bounded as ��t < 0.44 GeV [11]

X at the LHC
Resonant production of X decaying to ⌧+⌧� in association with
two b-jets at the LHC may constrain the parameter space for
realizations of the model at the TeV scale

Table 2: A summary of the major experimental constraints on the model.

3.1 ⌥ ! ⌧+⌧� decay

Precise measurements of the ⌥ ! ⌧+⌧� and ⌥ ! µ+µ� branching ratios by BaBar [22]
constrain the deviation from lepton universality via the ratio

R⌧µ ⌘ �(⌥(1S) ! ⌧+⌧�)

�(⌥(1S) ! µ+µ�)
= 1.005± 0.013(stat.)± 0.022(syst.) . (32)

As the X boson couples dominantly to the third family, this measurement can be used to
constrain gX . Assuming the mixing with the Z to be small (which does not a↵ect much the
ratio R⌧µ) and neglecting the tiny Z exchange diagram, we obtain

R⌧µ ' 1� 2
g2X
e2

M2

⌥

M2

⌥

�M2

X

, (33)

where the second term comes from the � � X interference. This imposes gX < 0.027 for
mX ⌧ m

⌥

. If mX � m
⌥

, this process actually constrains vs. In such case, vs > 960 GeV,
roughly independent of tan � (see Figs. 1 and 2).
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2.1 The Yukawa sector

Since the third family quarks carry a nonzero U(1)(3)B�L charge while the first two families do
not, the Yukawa couplings that would induce three family quark mixing should involve both
doublets �

1

and �
2

. The �
1

field is introduced for the purpose of inducing quark mixing
with the third family. The Yukawa Lagrangian for the quarks is given by
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the second Pauli matrix.5 The simultaneous presence of �

1

and �
2

in the Yukawa couplings
of the up-quarks (and similarly for the down-quarks) would imply that there are Higgs-
mediated flavor changing neutral current (FCNC) processes in the model. We shall see that
these processes are within acceptable limits, provided that the neutral Higgs bosons have
masses of order hundred GeV.

As only the third family carries the new U(1)(3)B�L charge, the Cabibbo angle can be
generated without inducing any FCNC mediated by neutral scalar bosons or the X gauge
boson. We thus make 1-2 rotations in both the up- and down- quark sectors, thereby
inducing a nonzero (1, 2) entry in the CKM matrix. The other CKM matrix elements Vub

and Vcb can be generated from the rotated mass matrices which can be written in the form
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where Rij parametrizes an i � j rotation in terms of a mixing angle and a phase. While
these forms are quite general, we shall approximate m0

i in Eq. (2) to be nearly equal to the
physical eigenvalue mi and V 0

ij to be nearly equal to the actual CKM mixing element Vij.
The down quark mass matrix given in Eq. (2) is diagonalized by right-handed rotations

alone, with the left-handed mixing matrix being very close to an identity matrix. Thus Vcb

and Vub should arise primarily from the up-quark sector. The FCNC constraints arising
from the down-quark sector are more severe compared to those arising from the up-quark
sector. Assuming that m0

b ' mb, Bd � B̄d mixing mediated by the neutral scalar bosons
sets a limit a . 3 ⇥ 10�3/ tan � for scalar masses of order 100 GeV, while Bs � B̄s mixing
constrains b . 10�2/ tan � on the parameters a and b appearing in the down quark mass
matrix in Eq. (2) (see Sec. 4 for details). Here we have defined tan � ⌘ v
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5Another possibility would be to assign U(1)
(3)
B�L charge of �1/3 to �1. In this case, the form of the

up-quark and down-quark mass matrices would be interchanged. We do not pursue this scenario here, as it
is more constrained by FCNC processes.
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constraints are obtained from the decays Bd ! X� ! e+e�� [11] and Bs ! X ! µ+µ�.
With these constraints, the parameters a and b in Eq. (2) cannot significantly contribute to
the generation of CKM mixing angles Vcb and Vub, which we shall thus ignore. Within these
assumptions, the left-handed rotations that diagonalize Mu and Md are given by (in a basis
where the 1-2 up-sector is already diagonal, i.e., with RuL

12

, RuR
12

being identity matrices)

V L
u = RuL

23

(Vcb)R
uL
13

(Vub), (3)

V L†
d = RdL

12

(Vus)
†. (4)

The quark mixing matrix is given by V
CKM

= V L
u V L†

d . It can be readily checked that a
CP violating phase of the correct magnitude is obtained from complex entries of the mass
matrices. It follows from Eq. (2) that any FCNC e↵ects induced by scalar boson exchanges
would be weighted by Vub and Vcb in the top sector where the experimental constraints are
meager, and by VubVcb in the u� c sector. This suppression factor will be su�cient to avoid
the stringent D0 �D0 mixing bounds, as we will see in Sec. 3.

In the charged lepton sector Yukawa couplings between the third and the first two families
are strictly forbidden owing to the charge assignment and minimality of the Higgs sector of
the model. Charged lepton masses arise through the Yukawa Lagrangian involving the �

2

scalar only and is given by
L`

yuk = y`ijLi�2

`Rj, (5)

with yij = 0 for ij = 13, 23, 31, 32. We see that the leptonic mixing angle ✓`
12

could be
generated from here, but not ✓`

23

and ✓`
13

. There are no FCNC processes mediated by the
Higgs bosons, since the Yukawa coupling matrix is proportional to the charged lepton mass
matrix. There are also no FCNC processes mediated by the X gauge boson, since the
mass eigenbasis and the flavor eigenbasis coincide for the charged leptons. The complete
absence of tree-level FCNC in the charged lepton sector is a compelling feature of the model,
protecting it from the severe bounds that could have arisen from flavor changing muon and
tau decays.

Neutrino mass generation calls for additional physics which can however reside at a
higher scale. In the minimal setup considered here, we can infer neutrino masses as arising
from e↵ective operators via a generalized seesaw mechanism. For the 1-2 sector as well as for
the 3-3 entry of the e↵ective Majorana matrix of the light neutrinos the usual dimension–5
operators can be built (with L̃i ⌘ i⌧

2

L⇤
i ):
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, (6)

while the mixing responsible for ✓`
13

and ✓`
23

should come from a dimension–6 operator
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3

�̃
1
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�†
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s⇤. (7)
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As the X boson couples dominantly to the third family, this measurement can be used
to constrain gX . In the limit of small Z � X mixing and neglecting the tiny Z exchange
diagram, we obtain

R⌧µ ' 1� 2
g2X
e2

M2

⌥

M2

⌥

�M2

X

, (37)

where the second term comes from the � �X interference. In our numerical evaluation we
used the exact expression for R⌧µ. This imposes gX < 0.027 for mX ⌧ m

⌥

. If mX � m
⌥

,
this process actually constrains vs. In such case, vs > 960 GeV, roughly independent of
tan �.

3.3 ⌥ ! X� decay

The decay ⌥ ! XL� can also occur and can be used to constrain the parameters of the
model.7 Here XL is the longitudinal mode of X. Although this process involves gauge
bosons, the equivalence theorem tells us that this width is actually probing the Yukawa
coupling of the corresponding Goldstone to the b quarks, and therefore the bound is inde-
pendent of whether the theory is gauged or not, as long as MX ⌧ mb holds. Yang’s theorem,
which states that a vector particle cannot decay into a pair of massless spin-1 particles, does
not apply in this case as the ⌥ is decaying into the longitudinal mode of X and a massless
photon. Moreover, due to charge conjugation symmetry, only the axial-vector coupling of
X, that is, cbR � cbL from Eq. (21), will contribute to ⌥ ! XL�. This branching ratio can
be computed using non-relativistic e↵ective field theory [22], where the amplitude is approx-
imated by the zero momentum amplitude for the hard scattering times the wave function of
the ⌥ at the origin, A

⌥

' A(0) (0). We get rid of the wave function at the origin by taking
the ratio of this width with a measured decay width like ⌥ ! e+e�. Therefore we have

R ⌘ BR(⌥ ! XL�)

BR(⌥ ! e+e�)
=

| (0)|2 ��A(0; bb̄ ! XL�)
��2
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9e2v4M2
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=
2m2

bv
4

1

e2v2(v2v2s + v2
1

v2
2

)
<

4.5⇥ 10�6

0.0238
, (38)

where the right-hand side of the inequality shows the measured values of the branching
ratios being considered [9]. The constraint on vs is vs > 2(0.5) TeV for tan � = 0.5(2).

3.4 D0 �D0 mixing

A light gauge boson with flavor changing couplings to quarks can contribute to meson-
antimeson mixing. In our model, since the first two families carry no U(1)(3)B�L charge, and

7We have checked that ⌥ ! XLXL does not lead to any meaningful bound due to a weaker experimental
limit on the branching fraction.
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since the third family quark mixings arise from the up-quark mass matrix, these constraints
are not severe. The e↵ective interaction mediated by the X gauge boson responsible for
D0 �D0 mixing can be written as (see Eq. (23))

L
e↵

= C(q2)(uL�µcL)
2, (39)

where

C(q2) =
g2X
9

|VubVcb|2
q2 �M2

X

. (40)

Here q2 represents the momentum transfer. Demanding that the new contribution does not
exceed the experimental value of �mD, a limit on C(m2

D) has been obtained to be [23]

C(m2

D) <
5.9⇥ 10�7

TeV2

. (41)

For the case of a light X, this constraint leads to a limit gX < 2.6⇥10�2, which is significant,
but within our range for gX . When the X boson mass is much larger than mD, the limit
becomes gX < 1.4⇥ 10�2MX/GeV. The limit is plotted in Fig. 3 for the full range of MX .

The Higgs bosons in the model also mediate D0 � D0 mixing. The contribution from
tree level neutral scalar exchange to meson oscillations, in general, can be written as [24, 25]
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�
, (42)

where fS is the meson decay constant, BS is the bag parameter, mS is the meson mass, hij

and m' are the couplings to and masses of the physical scalars, and mqi,j are the masses of
the quarks constituting the meson. Since the flavor structure is determined, we obtain

�mscalars

D = �2.4⇥ 10�10

✓
100GeV

m'

◆
2

Re

✓
hu
12p

2mc/v

◆
2

GeV, (43)

which should be smaller than the theoretical uncertainty of 2.7 ⇥ 10�15 GeV [9]. As hu
12

⇠p
2VubVcbmc/v ⇠ 2⇥10�6, the new scalar contributions are within experimental limits, even

with the heavy Higgs boson mass m' being of order 100 GeV.

3.5 D+ ! ⇡+e+e� and D+ lifetime

The flavor properties of X can contribute to the D+ ! ⇡+X ! ⇡+e+e� branching ratio
which is bounded to be below 1.1⇥ 10�6 [9]. This process can be better understood by use
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with no kinetic mixing.

where s is the center of mass energy of the e+e� collision [19, 20]. We estimate the X
hadronic width to be 6

�(X ! hadrons) = �(X ! µ+µ�)R(s = M2

X). (35)

Above 2.2 GeV we calculate the partial widths to partons.

3.2 Lepton universality in ⌥ decays

Precise measurements of the ⌥ ! ⌧+⌧� and ⌥ ! µ+µ� branching ratios by BaBar [21]
constrain the deviation from lepton universality via the ratio

R⌧µ ⌘ �(⌥(1S) ! ⌧+⌧�)

�(⌥(1S) ! µ+µ�)
= 1.005± 0.013(stat.)± 0.022(syst.) . (36)

6In fact, the X branching ratios should not be exactly the values obtained here. The hadronic cross
section at low energy e+e� colliders is dominated by photon exchange. Since the coupling of X to light
quarks arrives from X �Z mixing, they di↵ers from the photon couplings: they are not universal and have
an axial-vector component. Nevertheless, the hadronic branching ratios derived here are expected to provide
a good approximation to the exact ones (which cannot be calculated perturbatively).

14

Figure 1: Branching ratios of X for two values of tan � ⌘ v
2

/v
1

with no kinetic mixing.

where s is the center of mass energy of the e+e� collision [19, 20]. We estimate the X
hadronic width to be 6

�(X ! hadrons) = �(X ! µ+µ�)R(s = M2

X). (35)

Above 2.2 GeV we calculate the partial widths to partons.

3.2 Lepton universality in ⌥ decays

Precise measurements of the ⌥ ! ⌧+⌧� and ⌥ ! µ+µ� branching ratios by BaBar [21]
constrain the deviation from lepton universality via the ratio

R⌧µ ⌘ �(⌥(1S) ! ⌧+⌧�)

�(⌥(1S) ! µ+µ�)
= 1.005± 0.013(stat.)± 0.022(syst.) . (36)

6In fact, the X branching ratios should not be exactly the values obtained here. The hadronic cross
section at low energy e+e� colliders is dominated by photon exchange. Since the coupling of X to light
quarks arrives from X �Z mixing, they di↵ers from the photon couplings: they are not universal and have
an axial-vector component. Nevertheless, the hadronic branching ratios derived here are expected to provide
a good approximation to the exact ones (which cannot be calculated perturbatively).

14

As the X boson couples dominantly to the third family, this measurement can be used
to constrain gX . In the limit of small Z � X mixing and neglecting the tiny Z exchange
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coupling of the corresponding Goldstone to the b quarks, and therefore the bound is inde-
pendent of whether the theory is gauged or not, as long as MX ⌧ mb holds. Yang’s theorem,
which states that a vector particle cannot decay into a pair of massless spin-1 particles, does
not apply in this case as the ⌥ is decaying into the longitudinal mode of X and a massless
photon. Moreover, due to charge conjugation symmetry, only the axial-vector coupling of
X, that is, cbR � cbL from Eq. (21), will contribute to ⌥ ! XL�. This branching ratio can
be computed using non-relativistic e↵ective field theory [22], where the amplitude is approx-
imated by the zero momentum amplitude for the hard scattering times the wave function of
the ⌥ at the origin, A

⌥

' A(0) (0). We get rid of the wave function at the origin by taking
the ratio of this width with a measured decay width like ⌥ ! e+e�. Therefore we have

R ⌘ BR(⌥ ! XL�)

BR(⌥ ! e+e�)
=

| (0)|2 ��A(0; bb̄ ! XL�)
��2

| (0)|2 ��A(0; bb̄ ! e+e�)
�� ' 2g2Xv

4

1

m2

b

9e2v4M2

X

=
2m2

bv
4

1

e2v2(v2v2s + v2
1

v2
2

)
<

4.5⇥ 10�6

0.0238
, (38)

where the right-hand side of the inequality shows the measured values of the branching
ratios being considered [9]. The constraint on vs is vs > 2(0.5) TeV for tan � = 0.5(2).

3.4 D0 �D0 mixing

A light gauge boson with flavor changing couplings to quarks can contribute to meson-
antimeson mixing. In our model, since the first two families carry no U(1)(3)B�L charge, and

7We have checked that ⌥ ! XLXL does not lead to any meaningful bound due to a weaker experimental
limit on the branching fraction.
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Table 2: A summary of the major experimental constraints on the model.
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Precise measurements of the ⌥ ! ⌧+⌧� and ⌥ ! µ+µ� branching ratios by BaBar [22]
constrain the deviation from lepton universality via the ratio

R⌧µ ⌘ �(⌥(1S) ! ⌧+⌧�)

�(⌥(1S) ! µ+µ�)
= 1.005± 0.013(stat.)± 0.022(syst.) . (32)

As the X boson couples dominantly to the third family, this measurement can be used to
constrain gX . Assuming the mixing with the Z to be small (which does not a↵ect much the
ratio R⌧µ) and neglecting the tiny Z exchange diagram, we obtain

R⌧µ ' 1� 2
g2X
e2

M2

⌥

M2

⌥

�M2

X

, (33)

where the second term comes from the � � X interference. This imposes gX < 0.027 for
mX ⌧ m

⌥

. If mX � m
⌥

, this process actually constrains vs. In such case, vs > 960 GeV,
roughly independent of tan � (see Figs. 1 and 2).

13

2.1 The Yukawa sector

Since the third family quarks carry a nonzero U(1)(3)B�L charge while the first two families do
not, the Yukawa couplings that would induce three family quark mixing should involve both
doublets �

1

and �
2

. The �
1

field is introduced for the purpose of inducing quark mixing
with the third family. The Yukawa Lagrangian for the quarks is given by
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Here the bold symbols stand for vectors in generation space, and e�i ⌘ i⌧
2

�⇤
i with ⌧

2

being
the second Pauli matrix.5 The simultaneous presence of �

1

and �
2

in the Yukawa couplings
of the up-quarks (and similarly for the down-quarks) would imply that there are Higgs-
mediated flavor changing neutral current (FCNC) processes in the model. We shall see that
these processes are within acceptable limits, provided that the neutral Higgs bosons have
masses of order hundred GeV.

As only the third family carries the new U(1)(3)B�L charge, the Cabibbo angle can be
generated without inducing any FCNC mediated by neutral scalar bosons or the X gauge
boson. We thus make 1-2 rotations in both the up- and down- quark sectors, thereby
inducing a nonzero (1, 2) entry in the CKM matrix. The other CKM matrix elements Vub

and Vcb can be generated from the rotated mass matrices which can be written in the form
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where Rij parametrizes an i � j rotation in terms of a mixing angle and a phase. While
these forms are quite general, we shall approximate m0

i in Eq. (2) to be nearly equal to the
physical eigenvalue mi and V 0

ij to be nearly equal to the actual CKM mixing element Vij.
The down quark mass matrix given in Eq. (2) is diagonalized by right-handed rotations

alone, with the left-handed mixing matrix being very close to an identity matrix. Thus Vcb

and Vub should arise primarily from the up-quark sector. The FCNC constraints arising
from the down-quark sector are more severe compared to those arising from the up-quark
sector. Assuming that m0

b ' mb, Bd � B̄d mixing mediated by the neutral scalar bosons
sets a limit a . 3 ⇥ 10�3/ tan � for scalar masses of order 100 GeV, while Bs � B̄s mixing
constrains b . 10�2/ tan � on the parameters a and b appearing in the down quark mass
matrix in Eq. (2) (see Sec. 4 for details). Here we have defined tan � ⌘ v

2

/v
1

. Similar

5Another possibility would be to assign U(1)
(3)
B�L charge of �1/3 to �1. In this case, the form of the

up-quark and down-quark mass matrices would be interchanged. We do not pursue this scenario here, as it
is more constrained by FCNC processes.
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Neutrino oscillations Non-universal matter e↵ects bounded by atmospheric neutrinos
Atomic parity

violation
X � Z mixing modifies weak charge of 133Cs

⌥ decay
⌥ ! �X ! �⌫⌫̄: Goldstone boson equivalence theorem
constrains Yukawa coupling

⌥ decay
⌥ ! ⌧+⌧�: Direct constraint on the gauge coupling as the
process only involves third family fermions

Electroweak T
parameter

Z �X mixing modifies MZ/MW and constrains the mixing
parameter sX

D0 �D0 mixing
Mediated by scalar constrains mass of heavy scalar > O(100)
GeV; significant constraint on the coupling of X only when X
mass is below or close to the D0 mass

t ! cX
Flavor changing c tX coupling can contribute to the total top
width, which is bounded as ��t < 0.44 GeV [11]

X at the LHC
Resonant production of X decaying to ⌧+⌧� in association with
two b-jets at the LHC may constrain the parameter space for
realizations of the model at the TeV scale

Table 2: A summary of the major experimental constraints on the model.

3.1 ⌥ ! ⌧+⌧� decay

Precise measurements of the ⌥ ! ⌧+⌧� and ⌥ ! µ+µ� branching ratios by BaBar [22]
constrain the deviation from lepton universality via the ratio

R⌧µ ⌘ �(⌥(1S) ! ⌧+⌧�)

�(⌥(1S) ! µ+µ�)
= 1.005± 0.013(stat.)± 0.022(syst.) . (32)

As the X boson couples dominantly to the third family, this measurement can be used to
constrain gX . Assuming the mixing with the Z to be small (which does not a↵ect much the
ratio R⌧µ) and neglecting the tiny Z exchange diagram, we obtain

R⌧µ ' 1� 2
g2X
e2

M2

⌥

M2

⌥

�M2

X

, (33)

where the second term comes from the � � X interference. This imposes gX < 0.027 for
mX ⌧ m

⌥

. If mX � m
⌥

, this process actually constrains vs. In such case, vs > 960 GeV,
roughly independent of tan � (see Figs. 1 and 2).
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constraints are obtained from the decays Bd ! X� ! e+e�� [11] and Bs ! X ! µ+µ�.
With these constraints, the parameters a and b in Eq. (2) cannot significantly contribute to
the generation of CKM mixing angles Vcb and Vub, which we shall thus ignore. Within these
assumptions, the left-handed rotations that diagonalize Mu and Md are given by (in a basis
where the 1-2 up-sector is already diagonal, i.e., with RuL

12

, RuR
12

being identity matrices)

V L
u = RuL

23

(Vcb)R
uL
13

(Vub), (3)

V L†
d = RdL

12

(Vus)
†. (4)

The quark mixing matrix is given by V
CKM

= V L
u V L†

d . It can be readily checked that a
CP violating phase of the correct magnitude is obtained from complex entries of the mass
matrices. It follows from Eq. (2) that any FCNC e↵ects induced by scalar boson exchanges
would be weighted by Vub and Vcb in the top sector where the experimental constraints are
meager, and by VubVcb in the u� c sector. This suppression factor will be su�cient to avoid
the stringent D0 �D0 mixing bounds, as we will see in Sec. 3.

In the charged lepton sector Yukawa couplings between the third and the first two families
are strictly forbidden owing to the charge assignment and minimality of the Higgs sector of
the model. Charged lepton masses arise through the Yukawa Lagrangian involving the �

2

scalar only and is given by
L`

yuk = y`ijLi�2

`Rj, (5)

with yij = 0 for ij = 13, 23, 31, 32. We see that the leptonic mixing angle ✓`
12

could be
generated from here, but not ✓`

23

and ✓`
13

. There are no FCNC processes mediated by the
Higgs bosons, since the Yukawa coupling matrix is proportional to the charged lepton mass
matrix. There are also no FCNC processes mediated by the X gauge boson, since the
mass eigenbasis and the flavor eigenbasis coincide for the charged leptons. The complete
absence of tree-level FCNC in the charged lepton sector is a compelling feature of the model,
protecting it from the severe bounds that could have arisen from flavor changing muon and
tau decays.

Neutrino mass generation calls for additional physics which can however reside at a
higher scale. In the minimal setup considered here, we can infer neutrino masses as arising
from e↵ective operators via a generalized seesaw mechanism. For the 1-2 sector as well as for
the 3-3 entry of the e↵ective Majorana matrix of the light neutrinos the usual dimension–5
operators can be built (with L̃i ⌘ i⌧

2

L⇤
i ):

1

⇤

⇣
L̄
1,2�̃2

⌘⇣
�†
2

L̃
1,2

⌘
,

1

⇤

⇣
L̄
3

�̃
2

⌘⇣
�†
2

L̃
3

⌘
, (6)

while the mixing responsible for ✓`
13

and ✓`
23

should come from a dimension–6 operator

1

⇤2

⇣
L̄
3

�̃
1

⌘⇣
�†
1

L̃
1,2

⌘
s⇤. (7)
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of the equivalence theorem, where the Goldstone coupling to uc is given in Eq. (16). The
D+ to ⇡+ transition can be parametrized by the form factors

h⇡+(p
2

)|ū�µc|D+(p
1

)i = F
+

(q2)(p
1

+ p
2

)µ + F�(q
2)(p

1

� p
2

)µ. (44)

At low recoils (for MX ⌧ MD+), the transition comes entirely from F
+

, which can be
determined by use of chiral perturbation theory for heavy hadrons (see e.g. Ref. [26]),

F
+

(s) =
fD
f⇡

gD⇤D⇡

1� s/M2

D⇤
. (45)

Here, fD = 200 MeV and f⇡ = 130 MeV are the D+ and ⇡+ decay constants, and gD⇤D⇡ =
0.59 is the strong coupling of D⇤ ! D⇡ decay, all yielding F

+

(0) = 0.91. Numerically, this
form factor agrees with the one obtained by assuming vector meson dominance [27]. The
D+ ! ⇡+X partial width is then given by

�(D+ ! ⇡+X) =
1

144⇡
|F

+

(M2

X)|2g2X |Vub|2|Vcb|2m
3

D+

M2

X

, (46)

Not requiring the e+e� pair in the final state makes very hard to reconstruct the D+

meson asX will typically decay to neutrinos (see Fig. 1). Nevertheless, one can still constrain
the model with the total D+ width. As a conservative requirement, we demand that the
partial width D+ ! ⇡+X does not exceed the D+ total width minus the partial inclusive
width to K0 and K̄0 (to which this new decay does not contribute), that is �(D+ ! ⇡X) <
0.39�D+ [9]. This constraint is included in our numerical analysis.

3.6 Neutrino oscillations

One of the most stringent bounds comes, perhaps surprisingly, from neutrino oscillation
experiments. The new interaction will change the neutrino matter potential which modifies
the neutrino oscillation pattern. It is useful to express the new interaction in terms of the
usual non-standard interaction (NSI) operators which normalize the strength of the new
matter potential to that induced by weak interactions. We define the NSI parameter by the
operator

2
p
2GF "

f
↵↵ (⌫̄↵L�µ⌫↵L)

�
f̄�µf

�
, (47)

and therefore we obtain

"f↵↵ =
c↵cf
g2

4M2

W

M2

X

. (48)

Due to the lack of flavor universality of the new gauge group we expect a non-standard
matter potential (we remind the reader that a universal diagonal matter potential has no
impact on neutrino oscillations)

VX / diag (0, 0, "⌧⌧ ) . (49)

17

Experimental
constraint

Remarks

Neutrino oscillations Non-universal matter e↵ects bounded by atmospheric neutrinos
Atomic parity

violation
X � Z mixing modifies weak charge of 133Cs

⌥ decay
⌥ ! �X ! �⌫⌫̄: Goldstone boson equivalence theorem
constrains Yukawa coupling

⌥ decay
⌥ ! ⌧+⌧�: Direct constraint on the gauge coupling as the
process only involves third family fermions

Electroweak T
parameter

Z �X mixing modifies MZ/MW and constrains the mixing
parameter sX

D0 �D0 mixing
Mediated by scalar constrains mass of heavy scalar > O(100)
GeV; significant constraint on the coupling of X only when X
mass is below or close to the D0 mass

D+ decays
D+ ! ⇡+X contributes to the total D+ width and to the
⇡+`+`� branching ratio. When the equivalence theorem is valid,
this process probes the Yukawa coupling

t ! cX
Flavor changing c tX coupling can contribute to the total top
width, which is bounded as ��t < 0.44 GeV [9]

Z ! ff̄X
There is no dedicated search for Z ! ⌧+⌧� + /ET (Z ! bb̄+ /ET ).
A direct bound on gX may be obtained by requiring these
branching ratios not to exceed 0.2 MeV (2.8 MeV).

X at the LHC
Resonant production of X decaying to ⌧+⌧� in association with
two b-jets at the LHC may constrain the parameter space for
realizations of the model at the TeV scale

Table 2: A summary of the major experimental constraints on the model.

It is important to mention that, as normal matter is neutral, the kinetic mixing parameter
" does not play any role in neutrino oscillations. If we assume the number density of
protons, neutrons and electrons all to be the same, and use Eq. (48), we can translate the
non-universal matter e↵ects into the usual non-standard interaction parameter:

"⌧⌧ ⌘ "p⌧⌧ + "n⌧⌧ + "e⌧⌧

=
4M2

W

g2M2

X

(�gX) [ceR + ceL + 3(cuR + cuL + cdR + cdL)] = 3
v2
1

v2

v2
1

v2
2

+ v2sv
2

. (50)

Atmospheric neutrinos play a major role in constraining the ⌧⌧ NSI, leading to [28]

|"⌧⌧ | < 0.09. (51)
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Figure 1: The survival probability for MINOS (L = 735 km) with a variety of neutral current NSI (non-
standard matter e↵ects) turned on as indicated in the plot. The solid (blue) lines are the neutrino survival
probabilities whereas the dashed (red) lines are for anti-neutrinos. The dotted (black) lines are the vacuum
survival probabilities. For the standard oscillation parameters, we have assumed �m2

32 = +2.86⇥ 10�3 eV2

and sin2 ✓23 = 0.38.

non-zero ✏mµ⌧ changes the disappearance probability most notably at large energies and shifts the
position of the minimum in energy. Whereas non-zero ✏m⌧⌧ changes the disappearance probability
most notably near the first oscillation minimum, especially in the depth of the minimum. Since the
tension between MINOS neutrino and anti-neutrino data is both in the position of the minimum
and in its depth, one requires non-zero ✏mµ⌧ and non-zero ✏m⌧⌧ in order to lift the tension in the
optimal way.

2.2. Charged current NSI

As an alternative to neutral current NSI, we also discuss non-standard charged current inter-
actions a↵ecting the neutrino production and/or detection processes as an explanation for the
MINOS results. If the Wilson coe�cients of the corresponding e↵ective operators are complex, the
interference term between the standard and non-standard Feynman amplitudes can be di↵erent
for neutrinos and anti-neutrinos and CP-violating phenomena can emerge. The modifications to
the far detector event spectra observed in MINOS can be induced by (i) operators leading to a
modified flux of ⌫µ at the far detector, but not at the near detector, and (ii) by operators leading
to the production of muons in interactions of ⌫⌧ . (We neglect the possibility of non-standard inter-
actions of ⌫e since their flux at the far detector is between one and two order of magnitude smaller
than that of ⌫µ because of the low ⌫e contamination of the NuMI beam and the smallness of the

4

Figure 1: The survival probability for MINOS (L = 735 km) with a variety of neutral current NSI (non-
standard matter e↵ects) turned on as indicated in the plot. The solid (blue) lines are the neutrino survival
probabilities whereas the dashed (red) lines are for anti-neutrinos. The dotted (black) lines are the vacuum
survival probabilities. For the standard oscillation parameters, we have assumed �m2

32 = +2.86⇥ 10�3 eV2

and sin2 ✓23 = 0.38.

non-zero ✏mµ⌧ changes the disappearance probability most notably at large energies and shifts the
position of the minimum in energy. Whereas non-zero ✏m⌧⌧ changes the disappearance probability
most notably near the first oscillation minimum, especially in the depth of the minimum. Since the
tension between MINOS neutrino and anti-neutrino data is both in the position of the minimum
and in its depth, one requires non-zero ✏mµ⌧ and non-zero ✏m⌧⌧ in order to lift the tension in the
optimal way.

2.2. Charged current NSI

As an alternative to neutral current NSI, we also discuss non-standard charged current inter-
actions a↵ecting the neutrino production and/or detection processes as an explanation for the
MINOS results. If the Wilson coe�cients of the corresponding e↵ective operators are complex, the
interference term between the standard and non-standard Feynman amplitudes can be di↵erent
for neutrinos and anti-neutrinos and CP-violating phenomena can emerge. The modifications to
the far detector event spectra observed in MINOS can be induced by (i) operators leading to a
modified flux of ⌫µ at the far detector, but not at the near detector, and (ii) by operators leading
to the production of muons in interactions of ⌫⌧ . (We neglect the possibility of non-standard inter-
actions of ⌫e since their flux at the far detector is between one and two order of magnitude smaller
than that of ⌫µ because of the low ⌫e contamination of the NuMI beam and the smallness of the

4

Figure 1: The survival probability for MINOS (L = 735 km) with a variety of neutral current NSI (non-
standard matter e↵ects) turned on as indicated in the plot. The solid (blue) lines are the neutrino survival
probabilities whereas the dashed (red) lines are for anti-neutrinos. The dotted (black) lines are the vacuum
survival probabilities. For the standard oscillation parameters, we have assumed �m2

32 = +2.86⇥ 10�3 eV2

and sin2 ✓23 = 0.38.

non-zero ✏mµ⌧ changes the disappearance probability most notably at large energies and shifts the
position of the minimum in energy. Whereas non-zero ✏m⌧⌧ changes the disappearance probability
most notably near the first oscillation minimum, especially in the depth of the minimum. Since the
tension between MINOS neutrino and anti-neutrino data is both in the position of the minimum
and in its depth, one requires non-zero ✏mµ⌧ and non-zero ✏m⌧⌧ in order to lift the tension in the
optimal way.

2.2. Charged current NSI

As an alternative to neutral current NSI, we also discuss non-standard charged current inter-
actions a↵ecting the neutrino production and/or detection processes as an explanation for the
MINOS results. If the Wilson coe�cients of the corresponding e↵ective operators are complex, the
interference term between the standard and non-standard Feynman amplitudes can be di↵erent
for neutrinos and anti-neutrinos and CP-violating phenomena can emerge. The modifications to
the far detector event spectra observed in MINOS can be induced by (i) operators leading to a
modified flux of ⌫µ at the far detector, but not at the near detector, and (ii) by operators leading
to the production of muons in interactions of ⌫⌧ . (We neglect the possibility of non-standard inter-
actions of ⌫e since their flux at the far detector is between one and two order of magnitude smaller
than that of ⌫µ because of the low ⌫e contamination of the NuMI beam and the smallness of the

Kopp Machado Parke 2010

X
Z

x

mailto:pmachado@fnal.gov


Mar/2018 Pedro A. N. Machado | Flavor gauge models below the Fermi scale [arXiv:1705.01822]                                           pmachado@fnal.gov

Flavor Physics

32

10-3 10-2 10-1 100 101 102
10-6

10-5

10-4

10-3

10-2

10-1

100

10-8

10-7

10-6

10-5

10-4

10-3

10-2

MX (GeV)

g X

tanβ = v2/v1 = 10

s X

un
ph
ys
ica
l

�→��
Γ�+

���
�+→π+�+�-

��-��
Υ→�γ
ν ����

Υ→ττ

K→πX

Babu Friedland Machado Mocioiu 2017

of the equivalence theorem, where the Goldstone coupling to uc is given in Eq. (16). The
D+ to ⇡+ transition can be parametrized by the form factors

h⇡+(p
2

)|ū�µc|D+(p
1

)i = F
+

(q2)(p
1

+ p
2

)µ + F�(q
2)(p

1

� p
2

)µ. (44)

At low recoils (for MX ⌧ MD+), the transition comes entirely from F
+

, which can be
determined by use of chiral perturbation theory for heavy hadrons (see e.g. Ref. [26]),

F
+

(s) =
fD
f⇡

gD⇤D⇡

1� s/M2

D⇤
. (45)

Here, fD = 200 MeV and f⇡ = 130 MeV are the D+ and ⇡+ decay constants, and gD⇤D⇡ =
0.59 is the strong coupling of D⇤ ! D⇡ decay, all yielding F

+

(0) = 0.91. Numerically, this
form factor agrees with the one obtained by assuming vector meson dominance [27]. The
D+ ! ⇡+X partial width is then given by

�(D+ ! ⇡+X) =
1

144⇡
|F

+

(M2

X)|2g2X |Vub|2|Vcb|2m
3

D+

M2

X

, (46)

Not requiring the e+e� pair in the final state makes very hard to reconstruct the D+

meson asX will typically decay to neutrinos (see Fig. 1). Nevertheless, one can still constrain
the model with the total D+ width. As a conservative requirement, we demand that the
partial width D+ ! ⇡+X does not exceed the D+ total width minus the partial inclusive
width to K0 and K̄0 (to which this new decay does not contribute), that is �(D+ ! ⇡X) <
0.39�D+ [9]. This constraint is included in our numerical analysis.

3.6 Neutrino oscillations

One of the most stringent bounds comes, perhaps surprisingly, from neutrino oscillation
experiments. The new interaction will change the neutrino matter potential which modifies
the neutrino oscillation pattern. It is useful to express the new interaction in terms of the
usual non-standard interaction (NSI) operators which normalize the strength of the new
matter potential to that induced by weak interactions. We define the NSI parameter by the
operator

2
p
2GF "

f
↵↵ (⌫̄↵L�µ⌫↵L)

�
f̄�µf

�
, (47)

and therefore we obtain

"f↵↵ =
c↵cf
g2

4M2

W

M2

X

. (48)

Due to the lack of flavor universality of the new gauge group we expect a non-standard
matter potential (we remind the reader that a universal diagonal matter potential has no
impact on neutrino oscillations)

VX / diag (0, 0, "⌧⌧ ) . (49)
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X � Z mixing modifies weak charge of 133Cs

⌥ decay
⌥ ! �X ! �⌫⌫̄: Goldstone boson equivalence theorem
constrains Yukawa coupling

⌥ decay
⌥ ! ⌧+⌧�: Direct constraint on the gauge coupling as the
process only involves third family fermions

Electroweak T
parameter

Z �X mixing modifies MZ/MW and constrains the mixing
parameter sX

D0 �D0 mixing
Mediated by scalar constrains mass of heavy scalar > O(100)
GeV; significant constraint on the coupling of X only when X
mass is below or close to the D0 mass

D+ decays
D+ ! ⇡+X contributes to the total D+ width and to the
⇡+`+`� branching ratio. When the equivalence theorem is valid,
this process probes the Yukawa coupling

t ! cX
Flavor changing c tX coupling can contribute to the total top
width, which is bounded as ��t < 0.44 GeV [9]

Z ! ff̄X
There is no dedicated search for Z ! ⌧+⌧� + /ET (Z ! bb̄+ /ET ).
A direct bound on gX may be obtained by requiring these
branching ratios not to exceed 0.2 MeV (2.8 MeV).

X at the LHC
Resonant production of X decaying to ⌧+⌧� in association with
two b-jets at the LHC may constrain the parameter space for
realizations of the model at the TeV scale

Table 2: A summary of the major experimental constraints on the model.

It is important to mention that, as normal matter is neutral, the kinetic mixing parameter
" does not play any role in neutrino oscillations. If we assume the number density of
protons, neutrons and electrons all to be the same, and use Eq. (48), we can translate the
non-universal matter e↵ects into the usual non-standard interaction parameter:

"⌧⌧ ⌘ "p⌧⌧ + "n⌧⌧ + "e⌧⌧

=
4M2

W

g2M2

X
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Atmospheric neutrinos play a major role in constraining the ⌧⌧ NSI, leading to [28]

|"⌧⌧ | < 0.09. (51)
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of the equivalence theorem, where the Goldstone coupling to uc is given in Eq. (16). The
D+ to ⇡+ transition can be parametrized by the form factors
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At low recoils (for MX ⌧ MD+), the transition comes entirely from F
+

, which can be
determined by use of chiral perturbation theory for heavy hadrons (see e.g. Ref. [26]),

F
+

(s) =
fD
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gD⇤D⇡

1� s/M2

D⇤
. (45)

Here, fD = 200 MeV and f⇡ = 130 MeV are the D+ and ⇡+ decay constants, and gD⇤D⇡ =
0.59 is the strong coupling of D⇤ ! D⇡ decay, all yielding F

+

(0) = 0.91. Numerically, this
form factor agrees with the one obtained by assuming vector meson dominance [27]. The
D+ ! ⇡+X partial width is then given by

�(D+ ! ⇡+X) =
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Not requiring the e+e� pair in the final state makes very hard to reconstruct the D+

meson asX will typically decay to neutrinos (see Fig. 1). Nevertheless, one can still constrain
the model with the total D+ width. As a conservative requirement, we demand that the
partial width D+ ! ⇡+X does not exceed the D+ total width minus the partial inclusive
width to K0 and K̄0 (to which this new decay does not contribute), that is �(D+ ! ⇡X) <
0.39�D+ [9]. This constraint is included in our numerical analysis.

3.6 Neutrino oscillations

One of the most stringent bounds comes, perhaps surprisingly, from neutrino oscillation
experiments. The new interaction will change the neutrino matter potential which modifies
the neutrino oscillation pattern. It is useful to express the new interaction in terms of the
usual non-standard interaction (NSI) operators which normalize the strength of the new
matter potential to that induced by weak interactions. We define the NSI parameter by the
operator

2
p
2GF "

f
↵↵ (⌫̄↵L�µ⌫↵L)

�
f̄�µf

�
, (47)

and therefore we obtain

"f↵↵ =
c↵cf
g2

4M2

W

M2

X

. (48)

Due to the lack of flavor universality of the new gauge group we expect a non-standard
matter potential (we remind the reader that a universal diagonal matter potential has no
impact on neutrino oscillations)

VX / diag (0, 0, "⌧⌧ ) . (49)
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of the equivalence theorem, where the Goldstone coupling to uc is given in Eq. (16). The
D+ to ⇡+ transition can be parametrized by the form factors
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At low recoils (for MX ⌧ MD+), the transition comes entirely from F
+

, which can be
determined by use of chiral perturbation theory for heavy hadrons (see e.g. Ref. [26]),
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Here, fD = 200 MeV and f⇡ = 130 MeV are the D+ and ⇡+ decay constants, and gD⇤D⇡ =
0.59 is the strong coupling of D⇤ ! D⇡ decay, all yielding F

+

(0) = 0.91. Numerically, this
form factor agrees with the one obtained by assuming vector meson dominance [27]. The
D+ ! ⇡+X partial width is then given by
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Not requiring the e+e� pair in the final state makes very hard to reconstruct the D+

meson asX will typically decay to neutrinos (see Fig. 1). Nevertheless, one can still constrain
the model with the total D+ width. As a conservative requirement, we demand that the
partial width D+ ! ⇡+X does not exceed the D+ total width minus the partial inclusive
width to K0 and K̄0 (to which this new decay does not contribute), that is �(D+ ! ⇡X) <
0.39�D+ [9]. This constraint is included in our numerical analysis.

3.6 Neutrino oscillations

One of the most stringent bounds comes, perhaps surprisingly, from neutrino oscillation
experiments. The new interaction will change the neutrino matter potential which modifies
the neutrino oscillation pattern. It is useful to express the new interaction in terms of the
usual non-standard interaction (NSI) operators which normalize the strength of the new
matter potential to that induced by weak interactions. We define the NSI parameter by the
operator
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and therefore we obtain
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Due to the lack of flavor universality of the new gauge group we expect a non-standard
matter potential (we remind the reader that a universal diagonal matter potential has no
impact on neutrino oscillations)

VX / diag (0, 0, "⌧⌧ ) . (49)
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D+ ! ⇡+X contributes to the total D+ width and to the
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this process probes the Yukawa coupling

t ! cX
Flavor changing c tX coupling can contribute to the total top
width, which is bounded as ��t < 0.44 GeV [9]

Z ! ff̄X
There is no dedicated search for Z ! ⌧+⌧� + /ET (Z ! bb̄+ /ET ).
A direct bound on gX may be obtained by requiring these
branching ratios not to exceed 0.2 MeV (2.8 MeV).

X at the LHC
Resonant production of X decaying to ⌧+⌧� in association with
two b-jets at the LHC may constrain the parameter space for
realizations of the model at the TeV scale
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It is important to mention that, as normal matter is neutral, the kinetic mixing parameter
" does not play any role in neutrino oscillations. If we assume the number density of
protons, neutrons and electrons all to be the same, and use Eq. (48), we can translate the
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Atmospheric neutrinos play a major role in constraining the ⌧⌧ NSI, leading to [28]

|"⌧⌧ | < 0.09. (51)
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Matter potential           symmetry breaking scale

VCC =
p
2GFNe, GF =

1p
2v2

of the equivalence theorem, where the Goldstone coupling to uc is given in Eq. (16). The
D+ to ⇡+ transition can be parametrized by the form factors

h⇡+(p
2

)|ū�µc|D+(p
1

)i = F
+

(q2)(p
1

+ p
2

)µ + F�(q
2)(p

1

� p
2

)µ. (44)

At low recoils (for MX ⌧ MD+), the transition comes entirely from F
+

, which can be
determined by use of chiral perturbation theory for heavy hadrons (see e.g. Ref. [26]),

F
+

(s) =
fD
f⇡

gD⇤D⇡

1� s/M2

D⇤
. (45)

Here, fD = 200 MeV and f⇡ = 130 MeV are the D+ and ⇡+ decay constants, and gD⇤D⇡ =
0.59 is the strong coupling of D⇤ ! D⇡ decay, all yielding F

+

(0) = 0.91. Numerically, this
form factor agrees with the one obtained by assuming vector meson dominance [27]. The
D+ ! ⇡+X partial width is then given by

�(D+ ! ⇡+X) =
1

144⇡
|F

+

(M2

X)|2g2X |Vub|2|Vcb|2m
3

D+

M2

X

, (46)

Not requiring the e+e� pair in the final state makes very hard to reconstruct the D+

meson asX will typically decay to neutrinos (see Fig. 1). Nevertheless, one can still constrain
the model with the total D+ width. As a conservative requirement, we demand that the
partial width D+ ! ⇡+X does not exceed the D+ total width minus the partial inclusive
width to K0 and K̄0 (to which this new decay does not contribute), that is �(D+ ! ⇡X) <
0.39�D+ [9]. This constraint is included in our numerical analysis.

3.6 Neutrino oscillations

One of the most stringent bounds comes, perhaps surprisingly, from neutrino oscillation
experiments. The new interaction will change the neutrino matter potential which modifies
the neutrino oscillation pattern. It is useful to express the new interaction in terms of the
usual non-standard interaction (NSI) operators which normalize the strength of the new
matter potential to that induced by weak interactions. We define the NSI parameter by the
operator

2
p
2GF "

f
↵↵ (⌫̄↵L�µ⌫↵L)

�
f̄�µf

�
, (47)

and therefore we obtain

"f↵↵ =
c↵cf
g2

4M2

W

M2

X

. (48)

Due to the lack of flavor universality of the new gauge group we expect a non-standard
matter potential (we remind the reader that a universal diagonal matter potential has no
impact on neutrino oscillations)

VX / diag (0, 0, "⌧⌧ ) . (49)
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Figure 1: Branching ratios of X for two values of tan � ⌘ v
2

/v
1

with no kinetic mixing.

where s is the center of mass energy of the e+e� collision [19, 20]. We estimate the X
hadronic width to be 6

�(X ! hadrons) = �(X ! µ+µ�)R(s = M2

X). (35)

Above 2.2 GeV we calculate the partial widths to partons.

3.2 Lepton universality in ⌥ decays

Precise measurements of the ⌥ ! ⌧+⌧� and ⌥ ! µ+µ� branching ratios by BaBar [21]
constrain the deviation from lepton universality via the ratio

R⌧µ ⌘ �(⌥(1S) ! ⌧+⌧�)

�(⌥(1S) ! µ+µ�)
= 1.005± 0.013(stat.)± 0.022(syst.) . (36)

6In fact, the X branching ratios should not be exactly the values obtained here. The hadronic cross
section at low energy e+e� colliders is dominated by photon exchange. Since the coupling of X to light
quarks arrives from X �Z mixing, they di↵ers from the photon couplings: they are not universal and have
an axial-vector component. Nevertheless, the hadronic branching ratios derived here are expected to provide
a good approximation to the exact ones (which cannot be calculated perturbatively).
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We shall use these couplings when deriving the constraints from decays of various particles
into longitudinal modes of X boson.

The gauge boson kinetic terms allow for mixing between Xµ⌫ and Bµ⌫ parametrized by
". These are given by

Lkin = �1

4
W 3

µ⌫W
3µ⌫ � 1

4
Bµ⌫B

µ⌫ � 1

4
Xµ⌫X

µ⌫ +
"

2
Xµ⌫B

µ⌫ (17)

= �1

4
Aµ⌫A

µ⌫ � 1

4
Zµ⌫Z

µ⌫ � 1

4
Xµ⌫X

µ⌫ +
"

2
Xµ⌫(cwA

µ⌫ � swZ
µ⌫) +O("3). (18)

To obtain canonical kinetic terms for the gauge bosons, up to O("3), the photon and the X
fields can be redefined as [11]

Aµ ! Aµ + "cwXµ, (19)

Xµ ! Xµ � "swZµ. (20)

The e↵ect of the photon field shift is only to couple the standard electromagnetic current
to X, with the coupling strength being "cw. The X field shift has two e↵ects. First, it
couples the X current to the Z charge, so the Z couplings to particles that are charged
under the new symmetry are slightly modified. Second, as X is massive, its shift gives rise
to a Z � X mass term �2"swM2

X . Assuming MX ⌧ MZ , a small rotation by "M2

X/M
2

Z

is required to have diagonal mass terms for the Z and X bosons. Due to the additional
suppression factor M2

X/M
2

Z , this rotation is not significant, and we shall neglect this e↵ect.
It is important to notice that the non-unitary character of the shift assures the absence of
millicharged particles: although electrically charged particles acquire small X charges, the
opposite, viz., particles charged under X acquiring small electric charge, does not happen.

Since the U(1)(3)B�L gauge interaction distinguishes flavor, it leads to FCNCs. In the flavor
basis the X interactions to SM fermions are given by

LffX = c↵f̄↵�µf↵X
µ, with c↵ = q↵cwe "+

⇣
gXq

X
↵ + sX

p
g2 + g02qZ↵

⌘
, (21)

where q↵, qX↵ , and qZ↵ = I↵
3

� s2wq↵, are the electric charge, the X charge and the Z charge,
respectively, of the fermion ↵. Notice that, as c↵ depends on the chirality of the field, it is not
possible to have an accidental cancellation between " and gX for both L and R components
of any particle. The relative sign (and magnitude) between " and gX is physically observable.

We can understand the FCNC processes induced by the X gauge boson by writing the
non-universal piece of the interaction explicitly as

L
X�FCNC

=
gX
3
QL

0

@
0 0 0
0 0 0
0 0 1

1

A �µQLXµ, (22)

9

Light X: ντντ dominates

Hadronic cross section:

ut and ct), while the two scalars, the pseudoscalar and the charged one would have masses
of 620 GeV, 420 GeV, 620 GeV, and 590 GeV. This scalar spectrum would lead to a small
deviation on the electroweak T parameter of about �T = 0.13.

3 Phenomenology

The phenomenology of a light mediator coupled to the standard model fields through kinetic
mixing has been studied in the literature in great detail (see Ref. [18] and references therein).
Our model has a very rich phenomenology as, besides mixing kinetically with the photon,
the X gauge boson also mixes with the Z via mass terms. Furthermore, the couplings
of X to fermions are flavor non-universal, which would lead to flavor changing neutral
currents mediated by both X and the new scalar bosons needed for symmetry breaking. In
this section we present the main results obtained from various constraints arising from low
energy processes. For definiteness, when quoting numbers we focus on benchmark points
where we set " = 0 and tan � = 0.5, 2, while in presenting the constraints as plots we scan
the entire allowed range of tan � = (0.5, 25), with " = 0. We present in Table 2 a summary
of the most constraining experimental limits together with a brief description of each bound.
The branching ratios of X are shown in Fig. 1, while in Figs. 3 and 4 we present a summary
of the most relevant constraints. Additional experimental constraints are analyzed in Sec. 4,
which turn out to be important, but only to a lesser degree. We elaborate now on how the
main results summarized in Table 2 and Figs. 3 and 4 are obtained.

3.1 Branching ratios of X

Before discussing the constraints in detail, we first explore the X branching ratios which
will define the typical signature of the new gauge boson. If MX is lighter than the tau mass,
it can only decay to first and second family charged fermions, and to all neutrinos. In this
case, the partial widths to the charged fermions go as ⇠ g2X/(1+t2�)

2 while the width to ⌫⌧⌫⌧
goes as g2X , and hence the branching ratio to the first two families has a t�4

� suppression (in
the limit of large t�). For instance, if MX < 2me, we obtain

BR(X ! e+e�) =
1� 4s2w + 8s4w

7� 4s2w + 8s4w + 12t2� + 9t4�
=

0.056

0.72 + 1.3t2� + t4�
. (33)

In Fig. 1 we provide the exact branching ratios of X for two di↵erent values of t�.
To obtain the hadronic partial width for MX below 1.8 GeV we use the experimentally

measured ratio

R(s) =
�(e+e� ! hadrons; s)

�(e+e� ! µ+µ�; s)
, (34)
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Electroweak T parameter

Notice that the new matter potential does not depend on the gauge coupling, but only on the
VEVs of the scalar fields, analogous to what happens with the standard matter potential.
Note also that in the absence of the singlet scalar s, the non-standard interaction would be
"⌧⌧ = 3v2/v2

1

> 3, which violates the experimental limit of Eq. (51), for any MX . Plugging
in numbers we find vs > 1.3(0.6) TeV for tan � = 0.5(2).

3.7 Atomic parity violation

Another important process is atomic parity violation (APV), in which the weak charge,
especially for 133Cs, has been measured very precisely. The standard model prediction
is QSM

W = �73.16 ± 0.3, while the experimental measurement combined with theoretical
calculations yield QW = �73.16 ± 0.35 [29]. In our model, since the X boson mixes with
the Z, there are new contributions to QW . The fractional contribution of the X mediated
APV is given by

fAPV = 1 + s2X
M2

Z

M2

X + q2
= 1± 0.0063, (52)

where hq2i ' (2.4 MeV)2 is the estimated average squared momentum transfer. This allows
us to put a direct bound vs > 2(0.5) TeV at 90% CL for tan � = 0.5(2) and for mediator
squared-masses above hq2i.

3.8 Electroweak T parameter

From the mass matrix (10), we can see that the Z boson mass is shifted from its SM value
by

�M2

Z ' g2X
9

v4
1

v2
, (53)

which contributes to the electroweak T parameter. Therefore, the current bound [9] 8

T ' 1

↵

�M2

Z

M2

Z

= 0.01± 0.12 (54)

imposes a constraint gX < 0.035 for tan � = 1/2, with the constraint becoming weaker for
larger values of tan � = v

2

/v
1

as the fourth power.

3.9 Flavor changing top decay

The X boson can also mediate flavor-changing processes involve the top quark. The decay
t ! cX is predicted in the model. The width for this decay can be calculated directly, or

8X is not expected to contribute to the running of electroweak parameters at low scales due to small gX .
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where s is the center of mass energy of the e+e� collision [19, 20]. We estimate the X
hadronic width to be 6

�(X ! hadrons) = �(X ! µ+µ�)R(s = M2

X). (35)

Above 2.2 GeV we calculate the partial widths to partons.

3.2 Lepton universality in ⌥ decays

Precise measurements of the ⌥ ! ⌧+⌧� and ⌥ ! µ+µ� branching ratios by BaBar [21]
constrain the deviation from lepton universality via the ratio

R⌧µ ⌘ �(⌥(1S) ! ⌧+⌧�)

�(⌥(1S) ! µ+µ�)
= 1.005± 0.013(stat.)± 0.022(syst.) . (36)

6In fact, the X branching ratios should not be exactly the values obtained here. The hadronic cross
section at low energy e+e� colliders is dominated by photon exchange. Since the coupling of X to light
quarks arrives from X �Z mixing, they di↵ers from the photon couplings: they are not universal and have
an axial-vector component. Nevertheless, the hadronic branching ratios derived here are expected to provide
a good approximation to the exact ones (which cannot be calculated perturbatively).
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As the X boson couples dominantly to the third family, this measurement can be used
to constrain gX . In the limit of small Z � X mixing and neglecting the tiny Z exchange
diagram, we obtain

R⌧µ ' 1� 2
g2X
e2

M2

⌥

M2

⌥

�M2

X

, (37)

where the second term comes from the � �X interference. In our numerical evaluation we
used the exact expression for R⌧µ. This imposes gX < 0.027 for mX ⌧ m

⌥

. If mX � m
⌥

,
this process actually constrains vs. In such case, vs > 960 GeV, roughly independent of
tan �.

3.3 ⌥ ! X� decay

The decay ⌥ ! XL� can also occur and can be used to constrain the parameters of the
model.7 Here XL is the longitudinal mode of X. Although this process involves gauge
bosons, the equivalence theorem tells us that this width is actually probing the Yukawa
coupling of the corresponding Goldstone to the b quarks, and therefore the bound is inde-
pendent of whether the theory is gauged or not, as long as MX ⌧ mb holds. Yang’s theorem,
which states that a vector particle cannot decay into a pair of massless spin-1 particles, does
not apply in this case as the ⌥ is decaying into the longitudinal mode of X and a massless
photon. Moreover, due to charge conjugation symmetry, only the axial-vector coupling of
X, that is, cbR � cbL from Eq. (21), will contribute to ⌥ ! XL�. This branching ratio can
be computed using non-relativistic e↵ective field theory [22], where the amplitude is approx-
imated by the zero momentum amplitude for the hard scattering times the wave function of
the ⌥ at the origin, A

⌥

' A(0) (0). We get rid of the wave function at the origin by taking
the ratio of this width with a measured decay width like ⌥ ! e+e�. Therefore we have

R ⌘ BR(⌥ ! XL�)

BR(⌥ ! e+e�)
=

| (0)|2 ��A(0; bb̄ ! XL�)
��2

| (0)|2 ��A(0; bb̄ ! e+e�)
�� ' 2g2Xv

4

1

m2

b

9e2v4M2

X

=
2m2

bv
4

1

e2v2(v2v2s + v2
1

v2
2

)
<

4.5⇥ 10�6

0.0238
, (38)

where the right-hand side of the inequality shows the measured values of the branching
ratios being considered [9]. The constraint on vs is vs > 2(0.5) TeV for tan � = 0.5(2).

3.4 D0 �D0 mixing

A light gauge boson with flavor changing couplings to quarks can contribute to meson-
antimeson mixing. In our model, since the first two families carry no U(1)(3)B�L charge, and

7We have checked that ⌥ ! XLXL does not lead to any meaningful bound due to a weaker experimental
limit on the branching fraction.
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Experimental
constraint

Remarks

Neutrino oscillations Non-universal matter e↵ects bounded by atmospheric neutrinos
Atomic parity

violation
X � Z mixing modifies weak charge of 133Cs

⌥ decay
⌥ ! �X ! �⌫⌫̄: Goldstone boson equivalence theorem
constrains Yukawa coupling

⌥ decay
⌥ ! ⌧+⌧�: Direct constraint on the gauge coupling as the
process only involves third family fermions

Electroweak T
parameter

Z �X mixing modifies MZ/MW and constrains the mixing
parameter sX

D0 �D0 mixing
Mediated by scalar constrains mass of heavy scalar > O(100)
GeV; significant constraint on the coupling of X only when X
mass is below or close to the D0 mass

t ! cX
Flavor changing c tX coupling can contribute to the total top
width, which is bounded as ��t < 0.44 GeV [11]

X at the LHC
Resonant production of X decaying to ⌧+⌧� in association with
two b-jets at the LHC may constrain the parameter space for
realizations of the model at the TeV scale

Table 2: A summary of the major experimental constraints on the model.
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Precise measurements of the ⌥ ! ⌧+⌧� and ⌥ ! µ+µ� branching ratios by BaBar [22]
constrain the deviation from lepton universality via the ratio

R⌧µ ⌘ �(⌥(1S) ! ⌧+⌧�)

�(⌥(1S) ! µ+µ�)
= 1.005± 0.013(stat.)± 0.022(syst.) . (32)

As the X boson couples dominantly to the third family, this measurement can be used to
constrain gX . Assuming the mixing with the Z to be small (which does not a↵ect much the
ratio R⌧µ) and neglecting the tiny Z exchange diagram, we obtain
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g2X
e2

M2

⌥

M2

⌥

�M2

X
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where the second term comes from the � � X interference. This imposes gX < 0.027 for
mX ⌧ m

⌥

. If mX � m
⌥

, this process actually constrains vs. In such case, vs > 960 GeV,
roughly independent of tan � (see Figs. 1 and 2).
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2.1 The Yukawa sector

Since the third family quarks carry a nonzero U(1)(3)B�L charge while the first two families do
not, the Yukawa couplings that would induce three family quark mixing should involve both
doublets �

1

and �
2

. The �
1

field is introduced for the purpose of inducing quark mixing
with the third family. The Yukawa Lagrangian for the quarks is given by
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Here the bold symbols stand for vectors in generation space, and e�i ⌘ i⌧
2
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i with ⌧

2

being
the second Pauli matrix.5 The simultaneous presence of �

1

and �
2

in the Yukawa couplings
of the up-quarks (and similarly for the down-quarks) would imply that there are Higgs-
mediated flavor changing neutral current (FCNC) processes in the model. We shall see that
these processes are within acceptable limits, provided that the neutral Higgs bosons have
masses of order hundred GeV.

As only the third family carries the new U(1)(3)B�L charge, the Cabibbo angle can be
generated without inducing any FCNC mediated by neutral scalar bosons or the X gauge
boson. We thus make 1-2 rotations in both the up- and down- quark sectors, thereby
inducing a nonzero (1, 2) entry in the CKM matrix. The other CKM matrix elements Vub

and Vcb can be generated from the rotated mass matrices which can be written in the form
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where Rij parametrizes an i � j rotation in terms of a mixing angle and a phase. While
these forms are quite general, we shall approximate m0

i in Eq. (2) to be nearly equal to the
physical eigenvalue mi and V 0

ij to be nearly equal to the actual CKM mixing element Vij.
The down quark mass matrix given in Eq. (2) is diagonalized by right-handed rotations

alone, with the left-handed mixing matrix being very close to an identity matrix. Thus Vcb

and Vub should arise primarily from the up-quark sector. The FCNC constraints arising
from the down-quark sector are more severe compared to those arising from the up-quark
sector. Assuming that m0

b ' mb, Bd � B̄d mixing mediated by the neutral scalar bosons
sets a limit a . 3 ⇥ 10�3/ tan � for scalar masses of order 100 GeV, while Bs � B̄s mixing
constrains b . 10�2/ tan � on the parameters a and b appearing in the down quark mass
matrix in Eq. (2) (see Sec. 4 for details). Here we have defined tan � ⌘ v

2

/v
1

. Similar

5Another possibility would be to assign U(1)
(3)
B�L charge of �1/3 to �1. In this case, the form of the

up-quark and down-quark mass matrices would be interchanged. We do not pursue this scenario here, as it
is more constrained by FCNC processes.
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Experimental
constraint

Remarks

Neutrino oscillations Non-universal matter e↵ects bounded by atmospheric neutrinos
Atomic parity

violation
X � Z mixing modifies weak charge of 133Cs

⌥ decay
⌥ ! �X ! �⌫⌫̄: Goldstone boson equivalence theorem
constrains Yukawa coupling

⌥ decay
⌥ ! ⌧+⌧�: Direct constraint on the gauge coupling as the
process only involves third family fermions

Electroweak T
parameter

Z �X mixing modifies MZ/MW and constrains the mixing
parameter sX

D0 �D0 mixing
Mediated by scalar constrains mass of heavy scalar > O(100)
GeV; significant constraint on the coupling of X only when X
mass is below or close to the D0 mass

t ! cX
Flavor changing c tX coupling can contribute to the total top
width, which is bounded as ��t < 0.44 GeV [11]

X at the LHC
Resonant production of X decaying to ⌧+⌧� in association with
two b-jets at the LHC may constrain the parameter space for
realizations of the model at the TeV scale

Table 2: A summary of the major experimental constraints on the model.

3.1 ⌥ ! ⌧+⌧� decay

Precise measurements of the ⌥ ! ⌧+⌧� and ⌥ ! µ+µ� branching ratios by BaBar [22]
constrain the deviation from lepton universality via the ratio

R⌧µ ⌘ �(⌥(1S) ! ⌧+⌧�)

�(⌥(1S) ! µ+µ�)
= 1.005± 0.013(stat.)± 0.022(syst.) . (32)

As the X boson couples dominantly to the third family, this measurement can be used to
constrain gX . Assuming the mixing with the Z to be small (which does not a↵ect much the
ratio R⌧µ) and neglecting the tiny Z exchange diagram, we obtain

R⌧µ ' 1� 2
g2X
e2

M2

⌥

M2

⌥

�M2

X

, (33)

where the second term comes from the � � X interference. This imposes gX < 0.027 for
mX ⌧ m

⌥

. If mX � m
⌥

, this process actually constrains vs. In such case, vs > 960 GeV,
roughly independent of tan � (see Figs. 1 and 2).
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constraints are obtained from the decays Bd ! X� ! e+e�� [11] and Bs ! X ! µ+µ�.
With these constraints, the parameters a and b in Eq. (2) cannot significantly contribute to
the generation of CKM mixing angles Vcb and Vub, which we shall thus ignore. Within these
assumptions, the left-handed rotations that diagonalize Mu and Md are given by (in a basis
where the 1-2 up-sector is already diagonal, i.e., with RuL

12

, RuR
12

being identity matrices)

V L
u = RuL

23

(Vcb)R
uL
13

(Vub), (3)

V L†
d = RdL

12

(Vus)
†. (4)

The quark mixing matrix is given by V
CKM

= V L
u V L†

d . It can be readily checked that a
CP violating phase of the correct magnitude is obtained from complex entries of the mass
matrices. It follows from Eq. (2) that any FCNC e↵ects induced by scalar boson exchanges
would be weighted by Vub and Vcb in the top sector where the experimental constraints are
meager, and by VubVcb in the u� c sector. This suppression factor will be su�cient to avoid
the stringent D0 �D0 mixing bounds, as we will see in Sec. 3.

In the charged lepton sector Yukawa couplings between the third and the first two families
are strictly forbidden owing to the charge assignment and minimality of the Higgs sector of
the model. Charged lepton masses arise through the Yukawa Lagrangian involving the �

2

scalar only and is given by
L`

yuk = y`ijLi�2

`Rj, (5)

with yij = 0 for ij = 13, 23, 31, 32. We see that the leptonic mixing angle ✓`
12

could be
generated from here, but not ✓`

23

and ✓`
13

. There are no FCNC processes mediated by the
Higgs bosons, since the Yukawa coupling matrix is proportional to the charged lepton mass
matrix. There are also no FCNC processes mediated by the X gauge boson, since the
mass eigenbasis and the flavor eigenbasis coincide for the charged leptons. The complete
absence of tree-level FCNC in the charged lepton sector is a compelling feature of the model,
protecting it from the severe bounds that could have arisen from flavor changing muon and
tau decays.

Neutrino mass generation calls for additional physics which can however reside at a
higher scale. In the minimal setup considered here, we can infer neutrino masses as arising
from e↵ective operators via a generalized seesaw mechanism. For the 1-2 sector as well as for
the 3-3 entry of the e↵ective Majorana matrix of the light neutrinos the usual dimension–5
operators can be built (with L̃i ⌘ i⌧

2

L⇤
i ):

1

⇤

⇣
L̄
1,2�̃2

⌘⇣
�†
2

L̃
1,2

⌘
,

1

⇤

⇣
L̄
3

�̃
2

⌘⇣
�†
2

L̃
3

⌘
, (6)

while the mixing responsible for ✓`
13

and ✓`
23

should come from a dimension–6 operator

1

⇤2

⇣
L̄
3

�̃
1

⌘⇣
�†
1

L̃
1,2

⌘
s⇤. (7)
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Atomic Parity Violation
mixing with Z boson

Notice that the new matter potential does not depend on the gauge coupling, but only on the
VEVs of the scalar fields, analogous to what happens with the standard matter potential.
Note also that in the absence of the singlet scalar s, the non-standard interaction would be
"⌧⌧ = 3v2/v2

1

> 3, which violates the experimental limit of Eq. (51), for any MX . Plugging
in numbers we find vs > 1.3(0.6) TeV for tan � = 0.5(2).

3.7 Atomic parity violation

Another important process is atomic parity violation (APV), in which the weak charge,
especially for 133Cs, has been measured very precisely. The standard model prediction
is QSM

W = �73.16 ± 0.3, while the experimental measurement combined with theoretical
calculations yield QW = �73.16 ± 0.35 [29]. In our model, since the X boson mixes with
the Z, there are new contributions to QW . The fractional contribution of the X mediated
APV is given by

fAPV = 1 + s2X
M2

Z

M2

X + q2
= 1± 0.0063, (52)

where hq2i ' (2.4 MeV)2 is the estimated average squared momentum transfer. This allows
us to put a direct bound vs > 2(0.5) TeV at 90% CL for tan � = 0.5(2) and for mediator
squared-masses above hq2i.

3.8 Electroweak T parameter

From the mass matrix (10), we can see that the Z boson mass is shifted from its SM value
by

�M2

Z ' g2X
9

v4
1

v2
, (53)

which contributes to the electroweak T parameter. Therefore, the current bound [9] 8

T ' 1

↵

�M2

Z

M2

Z

= 0.01± 0.12 (54)

imposes a constraint gX < 0.035 for tan � = 1/2, with the constraint becoming weaker for
larger values of tan � = v

2

/v
1

as the fourth power.

3.9 Flavor changing top decay

The X boson can also mediate flavor-changing processes involve the top quark. The decay
t ! cX is predicted in the model. The width for this decay can be calculated directly, or

8X is not expected to contribute to the running of electroweak parameters at low scales due to small gX .
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by

�M2

Z ' g2X
9

v4
1

v2
, (53)

which contributes to the electroweak T parameter. Therefore, the current bound [9] 8

T ' 1

↵

�M2

Z

M2

Z

= 0.01± 0.12 (54)

imposes a constraint gX < 0.035 for tan � = 1/2, with the constraint becoming weaker for
larger values of tan � = v

2

/v
1

as the fourth power.

3.9 Flavor changing top decay

The X boson can also mediate flavor-changing processes involve the top quark. The decay
t ! cX is predicted in the model. The width for this decay can be calculated directly, or

8X is not expected to contribute to the running of electroweak parameters at low scales due to small gX .
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which becomes, after rotating the quarks to the physical basis,
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The FCNC in the up sector induces flavor-changing top quark decays t ! uX, cX which is
presently not much constrained, and it contributes to D0� D̄0 mixing and D+ decays. Note
that the D0 � D̄0 mixing is doubly suppressed by the VubVcb factor and by the smallness of
gX . We emphasize that there are no FCNC mediated by the X gauge boson in the charged
lepton sector, since the corresponding mass matrix is diagonal.

2.3 The scalar potential

Now we turn our attention to the scalar sector of the model. The most general renormalizable
scalar potential involving �
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The presence of the s field which allows for the cubic scalar coupling µ has several important
consequences. First, it removes an unwanted global symmetry and the associated pseudo-
Goldstone boson that would exist in its absence. (The charge of the s field is chosen
precisely to achieve this.) Second, the µ term allows to take the decoupling limit of the
model. By making µ large, the second Higgs doublet can be assigned arbitrarily large mass,
so that the low energy theory is the SM. Without this term, the masses of the second Higgs
doublet would have been bounded by about 600 GeV, analogous to the two Higgs doublet
models with a spontaneously broken discrete Z

2

symmetry [12]. This decoupling behavior
of s enabled by µ is essential to evade large deviations in ⌥ and D+ decays, atomic parity
violation and neutrino experiments.

The physical scalar spectrum consists of three neutral scalars, one of which should be
identified with the 125 GeV SM-like Higgs, a pseudoscalar, and a charged scalar. A pair of
pseudoscalars and a charged scalar are absorbed by the Z,X and W± gauge bosons. The
physical pseudoscalar boson mass is given by
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while the real scalar mass matrix is given by (in the basis (Re(�
1

),Re(�
2

),Re(s))
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Although it is not easy to write down simple analytic expressions for the masses and
mixings of the real scalars as functions of the parameters of the potential, we still can
understand the interplay between the mixing in the scalar sector and the symmetry structure
of the model by very simple arguments. �

2

has diagonal couplings to quarks and leptons
which cannot distinguish between the Re(�

1

) and Re(s) components of the physical SM-like
Higgs, h. These couplings to fermions have the structure mf/v2 �2

f̄f , and since v2
1

+v2
2

= v2,
with v ' 246 GeV, the Yukawa couplings are always larger compared to the SM Yukawas.
For the top-quark Yukawa coupling to be in the perturbative range, v

2

cannot be much
smaller than v. The scalar �

1

couples o↵-diagonally to quarks (mediating flavor changing
processes). In order to have perturbative Yukawa couplings with the top, tan� should lie
in the range between 0.5 and 30, with the upper limit arising from the o↵-diagonal Yukawa
coupling equal to Vcbmt/v1.

To understand the SM-like Higgs FCNC couplings, it is better to go to the Higgs basis,
in which H = c��1

+ s��2

and H 0 = �s��1

+ c��2

, which leads to hHi = v, and hH 0i = 0.
Here, H = (H+, (h + v)/

p
2). The mass matrix in the basis (Re(H),Re(H 0),Re(s)), to

leading order in each entry assuming v ⌧ µ, vs is given by
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, (28)

where we have defined �
34

= �
3

+�
4

. The first entry is the SM-like Higgs state, the second is
the flavor changing Higgs and the third refers to the state which does not couple to fermions.
Integrating out the heavy scalars, when their masses are non-degenerate, yields the e↵ective
flavor changing operators

y0uij
H†H

⇤2

Q̄iLH̃ujR + y0dij
H†H

⇤2

Q̄iLHdjR, (29)

with
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0 0 c�

1

A , (30)
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entirely from the mixing with the Z. Because of that, the X fractional contribution to APV

is basically the mixing with the Z and the ratio of propagators,

ASM+X

PV

ASM

PV

� 1 =
s2XM

2

Z

q2 +M2

X

< 0.21, (59)

where we added the statistical and systematical fractional errors in quadrature. The average
momentum transfer is hq2i = (0.161 GeV)2.

3.12 Z decays to ⌧+⌧�X and bb̄X

For MX below the Z mass, the processes Z ! ⌧+⌧�X and Z ! bb̄X may also constrain
our model. When MX ⌧ MZ , these processes will measure the diagonal Yukawas between
the third family fermions and GX , the Goldstone mode of X, see Eq. 16.

In this limit, the partial widths above can be written as 9
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with

g⌧V =
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In the limit of heavy X, the Goldstone modes contribute very little, and the mass of the
fermions can be safely neglected. In this case, the results of Ref. [32] on Z ! W `⌫ can be
easily recast into our scenario leading to

d�(Z ! ff̄X)

dx
=

MZ

6⇡3

h
(gfV c

f
V + gfAc

f
A)

2(h
1

(x) + h
3

(x))
i
, (62)

where x = 2EX/MZ is the energy fraction carried by X, and

cfV ⌘ (cfR + cfL), cfA ⌘ (cfR � cfL), (63)

where c↵ is defined in Eq. (21). The functions h
1

(x) and h
3

(x) are given in Eqs. (10.1),
and (10.3) of Ref. [32]. The total width is obtained by integrating the di↵erential width in
x from 2MX/MZ to 1 +M2

X/M
2

Z .
There are no dedicated searches for these channels. For the Z ! ⌧+⌧�, we require

the additional width not to exceed the experimental uncertainties of 0.2 MeV. In the case
of Z ! bb̄, the uncertainty on Rb imposes the additional width to be below 2.8 MeV. In
Fig. 3 we show only the constraint from Z ! bb̄X, as it is slightly more stringent than
Z ! ⌧+⌧�X. These e↵ects could be of particular interest to the models discussed in

9The log divergence should be regulated by the 1-loop amplitude. We estimate the e↵ect to be small for
the range of parameters chosen here.
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Light X (longitudinal enhancement):

Heavy X (transverse modes):

W. J. Marciano and D. Wyler: W:production via Z-decay 

Using (5.1)-(5.3) found in terms of our general 
couplings we obtain 

raft bf  s .- _ 
2 W ' J / / t  t - t  - ) g4I(KM)I2~( 2~+ l - ~ P ' q  
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Next we integrate over the momenta of the fer- 
mions and over the directions (angles) of the W. 
Writing for the energy of the W 

ko=xMz/2 (8) 
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Table 1. Values of the functions HI(R) defined in (13) for some 
specific R values. In the WS-model R=cos 20w 

HI(R) H2(R) H3(R) H4(R) 

R=0.36 0.034 0.87 0.01 0.10 
R=0.49 0.0072 0.098 0.0023 0.015 
R=0.64 0.00087 0.0078 0.00028 0.0015 
R=0.77 0 . 0 0 0 0 7 2  0 . 0 0 0 5 1  0 . 0 0 0 0 2 4  0.00011 
R=0.81 0 . 0 0 0 0 2 5  0 . 0 0 0 1 7  0 .0000084  0.000038 
R= 1.0 0 0 0 0 

we obtain the following x-distribution for the Z decay: 
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where (10.4) 
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(In the WS-model R = c o s  z 0 w.) The four bracketed 
terms in (9) correspond to the contributions from (7) 
as follows: The first term comes from (7.1) plus (7.2), 
the second from (7.3), the third from two times (7.4) 
and the last from two times (7.5) plus two times (7.6). 

The total decay rate is 
I+R 

I'(Z--+ Wflf2 )=2 ~V-ff dx dr.dx (12) 

For practical purposes we define 
I+R 

H,(R)= J dxhi(x) (13) 
2J/R- 
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Figure 5: Dominant X production mode at the LHC for mX at the TeV scale.

violation, neutrino oscillations and D0 � D0 mixing on vs as a function of tan �. We see
clearly that D+ ! ⇡+e+e� dominate for tan � < 8, as long as 2me < MX < mD+ �m⇡+ .
The total D+ width dominates for tan � > 13 ifMX < mD+�m⇡+ . The neutrino oscillations
bound is independent of MX . It is the main constraint for 8 < tan � < 13, or 1.5 < tan �
if the D+ channels are forbidden. The region tan � < 1.5 is well covered for any MX by
the combination of APV and ⌥ ! X�. Higgs invisible branching ratio and top width
provide complementary constraints for large tan�. Once the X boson mass exceed MD0 or
M

⌥

, D0 � D0 mixing and ⌥ ! ⌧⌧ dominate the constraints for tan� above 7.5 and 3.2,
respectively.

4 Other constraints

Here we provide a more complete analysis, including those which turned out a posteriori to
be not as stringent as the ones discussed in the previous section.

4.1 Meson-antimeson oscillations

The presence of FCNC in scalar and gauge boson interactions can modify K0�K0, Bd�Bd,
Bs � Bs, and D0 � D0 oscillations. The case of D0 � D0 mixing, which provides the best
limits on the model, is already analyzed in Sec. 3. Here we complete this analysis.

The general scalar contributions to meson-antimeson mixing is given in Eq. (42). The
vector boson X will also contribute to the meson oscillation via s-channel exchange [37]

(�mS)X =

p
2

6
GFf

2

SmSBS⌘S
M2

Z

m2

S �M2

X

�����
2g2XU

X
ij /3

g/cw

�����

2

, (64)

where UX = V L
u,d.diag(0, 0, 1).V

L†
u,d . In fact, this contribution is suppressed by both the small

mixing, UX
ij and gX . Except for the case of D0 � D0 mixing where the X boson exchange

becomes important for MX ⇠ MeV, this contribution is generally sub-leading.
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Using the parameters found in refs. [24, 25] and imposing that the extra contribution is
smaller than the experimental and theoretical uncertainties [38, 39] we find that

K � K̄ :

✓
100GeV

m'

◆
Re

✓
hd
21p

2ms/v

◆
. 1.4⇥ 10�2 (65)

Bd � B̄d :

✓
100GeV

m'

◆
Re

✓
hd
31p

2mb/v

◆
. 3.1⇥ 10�3 (66)

Bs � B̄s :

✓
100GeV

m'

◆
Re

✓
hd
32p

2mb/v

◆
. 1.3⇥ 10�2 (67)

D � D̄ :

✓
100GeV

m'

◆
Re

✓
hu
12p

2mc/v

◆
. 3.4⇥ 10�3 (68)

In our benchmark points, all contributions to down flavored meson oscillation vanish, since
Vub and Vcb are generated in the up-quark sector.

4.2 Kaon decays

If Vcb is generated in the down sector, the small branching ratio K ! ⇡⌫⌫ [40] may play an
important role in the regime MX < MK �M⇡. It is not straightforward to implement this
bound, as the analysis relies on a strong cut on the pion momentum in order to reduce the
backgrounds. There is still a loop induced contribution to the branching ratio K ! ⇡X,
with X being on-shell, even if Vcb is originated in the up sector, but it is always below the
10�10 level.

4.3 Tau physics

Precise measurements of the ⌧ mass and production cross section were performed by the
BESIII collaboration [44]. Doing a scan in the energy of the e+e� beam around the ⌧
threshold made it possible to measure the ⌧⌧ production cross section at the sub-percent
level. To estimate the constraint from BESIII, we require the ratio of BSM and standard
cross sections �(e+e� ! A,X,Z ! ⌧+⌧�)/�SM(e+e� ! A,Z ! ⌧+⌧�) not to exceed the
experimental errors at fixed

p
s, namely 3.1039, 3.542, 3.553, and 3.5611 GeV.

4.4 (g � 2)µ

The X boson may contribute to the muon anomalous magnetic moment through its mass
mixing with the Z. In contrast to the case of pure vectorial couplings, the axial-vector
contribution to (g � 2)µ does not saturate for small MX [42, 43], growing as MX diminish.
For MX ⌧ mµ, requiring the modification to aµ not to exceed 10.8⇥ 10�8 the constraint is
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