Dark Matter & Radiation From Black Hole Domination

Gordan Krnjaic **‡**Fermilab

with Dan Hooper and Sam McDermott 1905.01301 [JHEP] University of Wisconsin, Madison Dec 11, 2019

Outstanding Fundamental Questions in Physics

Hubble Tension?

Also Quantum Gravity

Overview

Standard Cosmology: The Lore

Hawking Radiation

Subdominant BH Population

Black Hole Domination

Overview

Standard Cosmology: The Lore

Hawking Radiation

Subdominant BH Population

Black Hole Domination

Image: WMAP

 $t \sim 0$

Canonical Cosmological Timeline

Inflation

Reheating

Baryogenesis

Inflation exponentially dilutes pre-existing densities

Need dynamical mechanism to generate asymmetry

 $t \sim \sec$

 $t \sim 10^5 \text{ yr}$

 $t \sim 13.7 \text{ Gyr}$

 $t \sim 0$

Canonical Cosmological Timeline

Requires baryon asymmetry and a radiation dominated universe T > few MeV

Canonical Cosmological Timeline

 $t \sim 0$

Integrated probe of late universe physics

Canonical Cosmological Timeline

 $t \sim 0$

 $t \sim 13.7 \text{ Gyr}$

What if we add a BH population early on?

 $t \sim 13.7 \text{ Gyr}$

Overview

Standard Cosmology: The Lore

Hawking Radiation

Subdominant BH Population

Black Hole Domination

Hawking Radiation

Hawking, Commun. Math. Phys. 43, 199 (1975) B. J. Carr, Astrophys. J. 206, 8 (1976). MacGibbon, Webber, Phys. Rev. D 41, 3052 (1990).

Hawking Radiation

$$T_{\rm BH} = \frac{M_{\rm Pl}^2}{8\pi M_{\rm BH}} \simeq 1.05 \times 10^{13} \,\mathrm{GeV}\left(\frac{\mathrm{g}}{M_{\rm BH}}\right)$$

Equivalence principle: all gravitationally coupled species are produced in hawking radiation

$$\frac{dM_{\rm BH}}{dt} = -\frac{\mathcal{G}\,g_{\star,H}(T_{\rm BH})\,M_{\rm Pl}^4}{30720\,\pi\,M_{\rm BH}^2} \simeq -7.6\times10^{24}\,{\rm g\,s^{-1}}\,\,g_{\star,H}(T_{\rm BH})\left(\frac{{\rm g}}{M_{\rm BH}}\right)^2$$

Hawking, Commun. Math. Phys. 43, 199 (1975) B. J. Carr, Astrophys. J. 206, 8 (1976). MacGibbon, Webber, Phys. Rev. D 41, 3052 (1990).

Hawking Radiation

$$T_{\rm BH} = \frac{M_{\rm Pl}^2}{8\pi M_{\rm BH}} \simeq 1.05 \times 10^{13} \,\mathrm{GeV}\left(\frac{\rm g}{M_{\rm BH}}\right)$$

Equivalence principle: all gravitationally coupled species are produced in hawking radiation

$$\frac{dM_{\rm BH}}{dt} = \frac{\mathcal{G}g_{\star,H}(T_{\rm BH})M_{\rm Pl}^4}{30720\,\pi\,M_{\rm BH}^2} \simeq -7.6 \times 10^{24}\,{\rm g\,s^{-1}}\,\,g_{\star,H}(T_{\rm BH})\left(\frac{{\rm g}}{M_{\rm BH}}\right)^2$$

"Gray body factor" ~ 3.8 (transmission coefficient in curved space)

Hawking, Commun. Math. Phys. 43, 199 (1975) B. J. Carr, Astrophys. J. 206, 8 (1976). MacGibbon, Webber, Phys. Rev. D 41, 3052 (1990).

Hawking Radiation

$$T_{\rm BH} = \frac{M_{\rm Pl}^2}{8\pi M_{\rm BH}} \simeq 1.05 \times 10^{13} \,\mathrm{GeV}\left(\frac{\mathrm{g}}{M_{\rm BH}}\right)$$

Equivalence principle: all gravitationally coupled species are produced in hawking radiation

0.05

s = 2

$$\frac{dM_{\rm BH}}{dt} = -\frac{\mathcal{G}(g_{\star,H}(T_{\rm BH})M_{\rm Pl}^4)}{30720\,\pi\,M_{\rm BH}^2} \simeq -7.6 \times 10^{24}\,{\rm g\,s^{-1}}\,\,g_{\star,H}(T_{\rm BH})\left(\frac{{\rm g}}{M_{\rm BH}}\right)^2$$

Not the usual relativistic DOF
 $g_{\star,H}(T_{\rm BH}) \equiv \sum_i w_i g_{i,H} \quad , \quad g_{i,H} = \begin{cases} 1.82 & s = 0\\ 1.0 & s = 1/2\\ 0.41 & s = 1 \end{cases}$

Hawking, Commun. Math. Phys. 43, 199 (1975) Carr, Astrophys. J. 206, 8 (1976). MacGibbon, Webber, Phys. Rev. D 41, 3052 (1990).

Hawking Radiation

$$T_{\rm BH} = \frac{M_{\rm Pl}^2}{8\pi M_{\rm BH}} \simeq 1.05 \times 10^{13} \,\mathrm{GeV}\left(\frac{\rm g}{M_{\rm BH}}\right)$$

Equivalence principle: all gravitationally coupled species are produced in hawking radiation

$$\frac{dM_{\rm BH}}{dt} = -\frac{\mathcal{G}\,g_{\star,H}(T_{\rm BH})\,M_{\rm Pl}^4}{30720\,\pi\,M_{\rm BH}^2} \simeq -7.6 \times 10^{24}\,{\rm g\,s^{-1}}\,\,g_{\star,H}(T_{\rm BH})\left(\frac{{\rm g}}{M_{\rm BH}}\right)^2$$

Unlike particle population: same evaporation time for all BH of same mass! most particles produced near this time

$$\tau \approx 1.3 \times 10^{-25} \,\mathrm{s\,g^{-3}} \int_0^{M_i} \frac{dM_{\rm BH} M_{\rm BH}^2}{g_{\star,H}(T_{\rm BH})} \approx 4.0 \times 10^{-4} \,\mathrm{s} \, \left(\frac{M_i}{10^8 \,\mathrm{g}}\right)^3 \left(\frac{108}{g_{\star,H}(T_{\rm BH})}\right)$$

Require full* evaporation before BBN at ~ 1 sec

 $NB: m_{Pl} \sim mg$

Overview

Standard Cosmology: The Lore

Hawking Radiation

Subdominant BH Population

Black Hole Domination

Assume all BH have the same mass M_0

Assume all BH have the same mass M_0

BH relative density grows, but never dominates the total energy of the universe

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 \propto \rho_{\rm SM}$$

Initial BH yield at reheating

$$Y_{\rm BH}^0 = \frac{n_{\rm BH}(t_{\rm RH})}{s(t_{\rm RH})} = \left(\frac{f_{\rm BH}\pi^2 g_*(T_{\rm RH})T_{\rm RH}^4}{30M_0}\right) \left(\frac{45}{2\pi^2 g_*(T_{\rm RH})T_{\rm RH}^3}\right) = \frac{3f_{\rm BH}T_{\rm RH}}{4M_0}$$

Is Background Accretion Important?

If BH are subdominant fraction in background radiation bath with T_R

$$\frac{dM_{\rm BH}}{dt}\Big|_{\rm Accretion} = \frac{4\pi\lambda M_{\rm BH}^2\rho_R}{M_{\rm Pl}^4(1+c_s^2)^{3/2}} \qquad \lambda \sim \mathcal{O}(1), \ c_s = \frac{1}{\sqrt{s}}$$

Accretion + Hawking radiation contribution

$$\frac{dM_{\rm BH}}{dt} = \frac{\pi \mathcal{G}g_{*,H}(T_{\rm BH})T_{\rm BH}^2}{480} \left[\frac{\lambda g_*(T_R)}{\mathcal{G}g_{*,H}(T_{\rm BH})(1+c_s^2)^{3/2}} \left(\frac{T_R}{T_{\rm BH}}\right)^4 - 1 \right]$$

Combination of factors here satisfies

$$\frac{\lambda g_*(T_R)}{(1+c_s^2)^{3/2}} \sim \mathcal{O}(1)$$

So accretion only matters if the radiation bath is hotter

Massive Particle Production: Dark Matter

From mass/temperature relation

$$dM_{\rm BH} = -dE = -\frac{M_{\rm Pl}^2}{8\pi} \frac{dT_{\rm BH}}{T_{\rm BH}^2}$$

dN number of total particles emitted per dT loss

$$dN = \frac{dE}{3T_{\rm BH}} = \frac{M_{\rm Pl}^2}{24\pi} \frac{dT_{\rm BH}}{T_{\rm BH}^3}$$

Massive Particle Production: Dark Matter

From mass/temperature relation

$$dM_{\rm BH} = -dE = -\frac{M_{\rm Pl}^2}{8\pi} \frac{dT_{\rm BH}}{T_{\rm BH}^2}$$

dN number of total particles emitted per dT loss

$$dN = \frac{dE}{3T_{\rm BH}} = \frac{M_{\rm Pl}^2}{24\pi} \frac{dT_{\rm BH}}{T_{\rm BH}^3}$$

Including "branching fraction" to DM particles

$$dN_{\chi} = \frac{g_{\chi}}{g_{\star} + g_{\chi}} dN \implies N_{\chi} = \int_{T_0}^{\infty} dN_{\chi} = \frac{M_{\rm Pl}^2}{24\pi} \int_{m_{\chi}}^{\infty} \frac{dT_{\rm BH}}{T_{\rm BH}^3} \frac{g_{\chi}}{g_{\star}(T_{\rm BH}) + g_{\chi}}$$

Total DM yield $Y_{\chi}^{\infty} = N_{\chi}Y_{\rm BH}^0 \implies \Omega_{\chi} = \frac{m_{\chi}s_0Y_{\chi}^{\infty}}{\rho_{\rm crit}}$

See also Baumann, Steinhart, Turok 0703250 Lennon, March-Russell, Petrosian-Bryne 1712.07664

Morrison, Profumo 1812.10606

Massive Particle Production: Dark Matter

 $M_{BH,0} = 10^8 \,\mathrm{g}$ $f_i = 8 \times 10^{-14} \,\mathrm{at} \, T_i = 10^{10} \,\mathrm{GeV},$

However BH Generically "Catch Up"

$$H^2 \equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \left(\frac{\rho_{R,i}}{a^4} + \frac{\rho_{\mathrm{BH},i}}{a^3}\right)$$

Eventual BH Domination for some initial reheat temperature after inflation T_i

$$f_i \equiv \frac{\rho_{\rm BH,i}}{\rho_{R,i}} \gtrsim 4 \times 10^{-12} \left(\frac{10^{10} \,\text{GeV}}{T_i}\right) \left(\frac{10^8 \,\text{g}}{M_i}\right)^{3/2} \qquad \qquad H = \sqrt{\frac{8\pi G \rho_{\rm BH}}{3}} = \frac{2}{3t}$$

However BH Generically "Catch Up"

$$H^2 \equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \left(\frac{\rho_{R,i}}{a^4} + \frac{\rho_{\mathrm{BH},i}}{a^3}\right)$$

Eventual BH Domination for some initial reheat temperature after inflation T_i

$$f_i \equiv \frac{\rho_{\rm BH,i}}{\rho_{R,i}} \gtrsim 4 \times 10^{-12} \left(\frac{10^{10} \,\text{GeV}}{T_i}\right) \left(\frac{10^8 \,\text{g}}{M_i}\right)^{3/2} \qquad \qquad H = \sqrt{\frac{8\pi G \rho_{\rm BH}}{3}} = \frac{2}{3t}$$

BH evaporation restores SM

$$\rho_{\rm BH}(\tau) \propto M_{\rm Pl}^2 H^2(\tau) = \frac{4M_{\rm Pl}^2}{9\tau^2} = \frac{\pi^2 g_*}{30} T_{\rm RH}^4$$

Now insensitive to initial fraction or temperature

$$T_{\rm RH} \simeq 50 \,{\rm MeV} \left(\frac{10^8 \,{\rm g}}{M_i}\right)^{3/2} \left(\frac{g_{\star,H}(T_{\rm BH})}{108}\right)^{1/2} \left(\frac{14}{g_{\star}(T_{\rm RH})}\right)^{1/4} .$$

"Re-Reheating"

However BH Generically "Catch Up"

BH Domination

Observed DM density on dashed lines Scenario works mainly with heavy DM

Assuming no additional DM interactions, if BH dominate: $m_{\rm DM}$ >

 $m_{\rm DM} > 10^9 \,{\rm GeV}$

Overview

Standard Cosmology: The Lore

Hawking Radiation

Subdominant BH Population

Black Hole Domination

Black Hole Domination

Doesn't matter how we get to BH domination could even start as small fraction and "catch up"

Goal: calculate energy density of light BSM particles @ CMB era

 $\Delta N_{\rm eff} \propto \frac{\rho_{\rm DR}(T_{\rm EQ})}{\rho_{\rm SM}(T_{\rm EO})}$

Goal: calculate energy density of light BSM particles @ CMB era

Depends only on BH mass and assumption of BH domination

Goal: calculate energy density of light BSM particles @ CMB era

System evolves according to

SM+DR

$$\frac{d\rho_{\rm SM}}{dt} = -4\rho_{\rm SM} - \rho_{\rm BH} \frac{dM_{\rm BH}}{dt} \bigg|_{\rm SM} \frac{1}{M_{\rm BH}}$$

SM radiation density sets RH temp Only produce species with mass less than BH temp *Integrable*

Goal: calculate energy density of light BSM particles @ CMB era

 $\Delta N_{\rm eff} \propto \frac{\rho_{\rm DR}(T_{\rm EQ})}{\rho_{\rm SM}(T_{\rm EO})}$

System evolves according to

 $\frac{d\rho_{\rm BH}}{dt} = -3\rho_{\rm BH}H + \rho_{\rm BH}\frac{dM_{\rm BH}}{dt}\frac{1}{M_{\rm BH}}$

$$\frac{d\rho_{\rm SM}}{dt} = -4\rho_{\rm SM} - \rho_{\rm BH} \frac{dM_{\rm BH}}{dt} \bigg|_{\rm SM} \frac{1}{M_{\rm BH}}$$

 $\frac{d\rho_{\rm DR}}{dt} = -4\rho_{\rm DR} - \rho_{\rm BH} \frac{dM_{\rm BH}}{dt} |_{\rm DR} \frac{1}{M_{\rm BH}}$

DR density, also integrable

Step 1: Create the full SM radiation bath at the BH evaporation time

RH temperature of the SM bath once BH are gone

Step 2: Determine SM radiation density at matter-radiation equality Entropy conservation

$$(a^{3}s)_{\rm RH} = (a^{3}s)_{\rm EQ} \implies a^{3}_{\rm RH} g_{\star,S}(T_{\rm RH}) T^{3}_{\rm RH} = a^{3}_{\rm EQ} g_{\star,S}(T_{\rm EQ}) T^{3}_{\rm EQ}$$

Entropic DOF (not to be confused with Hawking evaporation DOF)

$$\frac{T_{\rm EQ}}{T_{\rm RH}} = \left(\frac{a_{\rm RH}}{a_{\rm EQ}}\right) \left(\frac{g_{\star,S}(T_{\rm RH})}{g_{\star,S}(T_{\rm EQ})}\right)^{1/3} \qquad T_{\rm EQ} = 0.75 \,\mathrm{eV}$$

Step 2: Determine SM radiation density at matter-radiation equality Entropy conservation

$$(a^{3}s)_{\rm RH} = (a^{3}s)_{\rm EQ} \implies a^{3}_{\rm RH} g_{\star,S}(T_{\rm RH}) T^{3}_{\rm RH} = a^{3}_{\rm EQ} g_{\star,S}(T_{\rm EQ}) T^{3}_{\rm EQ}$$

Entropic DOF (not to be confused with Hawking evaporation DOF)

$$\frac{T_{\rm EQ}}{T_{\rm RH}} = \left(\frac{a_{\rm RH}}{a_{\rm EQ}}\right) \left(\frac{g_{\star,S}(T_{\rm RH})}{g_{\star,S}(T_{\rm EQ})}\right)^{1/3} \qquad T_{\rm EQ} = 0.75 \,\mathrm{eV}$$

SM Temperature ratio and energy density @EQ

$$\frac{\rho_R(T_{\rm EQ})}{\rho_R(T_{\rm RH})} = \left(\frac{a_{\rm RH}}{a_{\rm EQ}}\right)^4 \left(\frac{g_\star(T_{\rm EQ})}{g_\star(T_{\rm RH})}\right) \left(\frac{g_{\star,S}(T_{\rm RH})}{g_{\star,S}(T_{\rm EQ})}\right)^{4/3} = \left(\frac{a_{\rm RH}}{a_{\rm EQ}}\right)^4 \left(\frac{g_\star(T_{\rm EQ})}{g_{\star,S}(T_{\rm EQ})^{4/3}}\right)^{4/3}$$

Step 3: calculate the ratio of dark/visible radiation

No entropy dumps in DR

$$\frac{\rho_{\rm DR}(T_{\rm EQ})}{\rho_{\rm DR}(T_{\rm RH})} = \left(\frac{a_{\rm RH}}{a_{\rm EQ}}\right)^4$$

Step 3: calculate the ratio of dark/visible radiation

No entropy dumps in DR $\frac{\rho}{\rho}$

$$\frac{\rho_{\rm DR}(T_{\rm EQ})}{\rho_{\rm DR}(T_{\rm RH})} = \left(\frac{a_{\rm RH}}{a_{\rm EQ}}\right)^4$$

Ratio to SM set by Hawking DOF

$$\frac{\rho_{\rm DR}(T_{\rm EQ})}{\rho_R(T_{\rm EQ})} = \left(\frac{g_{\rm DR,H}}{g_{\star,H}}\right) \left(\frac{g_{\star,S}(T_{\rm EQ})^{4/3}}{g_{\star}(T_{\rm EQ}) \ g_{\star,S}(T_{\rm RH})^{1/3}}\right)_{\rm T}$$

Step 3: calculate the ratio of dark/visible radiation

No entropy dumps in DR $\frac{\rho_{\rm DR}(T_{\rm EQ})}{\rho_{\rm DR}(T_{\rm RH})} = \left(\frac{a_{\rm RH}}{a_{\rm EQ}}\right)^4$

Ratio to SM set by Hawking DOF

$$\frac{\rho_{\rm DR}(T_{\rm EQ})}{\rho_R(T_{\rm EQ})} = \left(\frac{g_{\rm DR,H}}{g_{\star,H}}\right) \left(\frac{g_{\star,S}(T_{\rm EQ})^{4/3}}{g_{\star}(T_{\rm EQ}) \ g_{\star,S}(T_{\rm RH})^{1/3}}\right)$$

Final result *milder* than naive expectation

$$\Delta N_{\rm eff} = \frac{\rho_{\rm DR}(T_{\rm EQ})}{\rho_R(T_{\rm EQ})} \left[N_\nu + \frac{8}{7} \left(\frac{11}{4}\right)^{4/3} \right] \approx 0.10 \left(\frac{g_{\rm DR,H}}{4}\right) \left(\frac{106}{g_\star(T_{\rm RH})}\right)^{1/3}$$

BH is hotter than RH temp —> smaller branching to DS

Neff in BH Domination

Comparing to Conventional Thermal Relics

 $\Delta N_{\rm eff}$

Flaugher et. al. CMBS4 science book

Unlike relics, for BH, all DR is within interesting range for future CMB S4 which will measure this at few % level

Connection to Hubble Tension?

$$\frac{r_*}{3000 \,\mathrm{Mpc}} = \int_{z_*}^{\infty} \frac{c_s dz}{\left[\Omega_{\gamma} h^2 \left(1 + \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}} N_{\mathrm{eff}}\right) (1+z)^4 + \Omega_m h^2 (1+z)^3\right]^{1/2}} \frac{d_A}{3000 \,\mathrm{Mpc}} = \int_0^{z_*} \frac{dz}{\left[\Omega_m h^2 (1+z)^3 + \Omega_\Lambda h^2\right]^{1/2}}$$

Martina Gerbino

NeutrinoTelescopes, 21/03/19

Comparing to Conventional Thermal Relics

Usual picture of particles in thermal equilibrium

Comparing to Conventional Thermal Relics

From BH domination, note that heavier masses can count as radiation! b/c typically emitted at higher energies than the SM bath

[Assumes that the dark radiation does not thermalize with the SM]

Concluding Remarks

-We don't know what happened before BBN

-Early BH population: evaporation can seed initial conditions for BBN

-Can produce super heavy DM and exotic particles (added Neff)

-Interesting Neff range to *reduce* Hubble tension

Other possibilities:

Modified structure formation (Ericeck 2015)?

Vary distribution of BH masses?

Add BH spins or charges?