Cosmology in the next Decade

Fundamental Physics, Systematics and Synergies between cosmological probes

Sukhdeep Singh

Berkeley Center for Cosmological Physics University of California, Berkeley

Physics Seminar University of Wisconsin-Madison February 2020

Outline

• Overview

- The large scale structure and fundamental physics
- Galaxy-Lensing cross correlations
 - Cosmological constraints
- The upcoming stage-IV surveys
 - Synergies and Challenges
 - Covariance matrices
 - Photometric redshifts

Our Universe

Consistent with six parameter ACDM model

Simple yet mysterious

- Initial conditions
 - Expansion history of the universe

- Expansion history of the universe
- Inflation

BOSS collaboration

Focus of this Talk

Clustering of matter and galaxies
The Large Scale Structure

• Growth of the large scale structure

Late time universe

The Large Scale structure

http://cosmicweb.uchicago.edu/filaments.html

Structure grows over time

- The initial perturbations grow under the influence of gravity.
- Growth of LSS over cosmological time scales is a sensitive probe of Dark energy, Gravity and neutrinos.

The Large Scale structure

 Clustering and Growth of LSS over cosmological time scales is a sensitive probe of Dark energy, Gravity and neutrinos.

- Galaxies
 - Positions
 - Velocities
- Weak gravitational lensing
 - Traces matter
- **Gas** Lyman alpha forest, HI, CIB, SZ, X-ray etc.

Probes of LSS Galaxies - Overview

Wechsler & Tinker 2018

Dark matter

Galaxies

Galaxies are biased tracers of matter.

• Galaxy bias is degenerate with growth parameter.

Galaxies live inside dark matter halos.

- Full model: Hydrodynamical simulations, expensive to run.
- Complicated high dimensional empirical models for galaxy-halo connection.
- Still not a fully solved problem.

٠

• Difficult to robustly extract cosmological information from galaxies alone.

Weak gravitational Lensing - Overview

- Light rays deflected by gravitational effects of large scale structure
- Distorts and magnifies background source.
- Sensitive to all structure between source and observer.
- Probes growth of structure, geometry, gravity.

Weak gravitational Lensing - Overview

Galaxy Shear: Lensing Distorts the shape of the background source.

Weak gravitational Lensing - Overview

Galaxy Shear: Lensing Distorts the shape of the background source.

Wikipedia

Weak gravitational Lensing - Overview

• Lensing efficiency depends on distances.

 $\Sigma_{\rm crit} = \frac{c^2}{4\pi G} \frac{D_S}{(1+z_l)D_L D_{LS}}$

Need good redshift estimates

Measuring the lensing signal around galaxies

•Direct probe of galaxy-matter cross correlations.

- Combined with clustering, probes matter correlations.
- Sensitive to small scale galaxy physics
- Sensitive to small scale dark matter physics
- Robust to some lensing and galaxy systematics.
- Provides tomography.

Data

- Galaxy survey covering ~20% of the sky.
- ~ 1 Million spectroscopic `lens' galaxies
- ~ 30 Million photometric `source galaxies'

Model

$$\Upsilon_{gm} = r_{cc}^{\Upsilon} \sqrt{\Upsilon_{gg}} \Upsilon_{mm}$$

S. Singh+ 2020, 1811.06499

Model

Model

Clustering+Lensing breaks bias-growth degeneracy

S. Singh+ 2020, 1811.06499

Fit to Mock datasets

Accurate fit down to 1 Mpc/h Recover correct cosmology with better than 2% accuracy.

S. Singh+ 2020, 1811.06499

Galaxy-Lensing cross correlations Cosmological Parameter Estimation

~ 6% measurement of lensing amplitude Photometric redshifts dominate the systematics error budget

Summary - I

- Large scale structure and its evolution provides sensitive probes of Fundamental physics.
- Joint analysis of probes help in breaking parameter degeneracies.
- Current surveys are already providing interesting measurements
 - ~5% constraints on growth of LSS
 - ~10% constraints on gravity (S. Singh+ 2018, not shown)
 - Some tensions appearing with CMB measurements
 - Rapidly approaching the systematics dominated regime.

Cosmology in the next decade

Upcoming cosmology surveys

DESI LSST WFIRST SPHEREX Simons Observatory CMB S4

Map Matter and Galaxy distribution out to redshift 2 and beyond.

Fundamental Physics

- Dark energy and its evolution over time.
- Neutrino physics, Light relics.
- Inflation and primordial non-gaussianity, fNL
- Testing theories of gravity

- Dark energy with BAO distance measurements; growth rate measurements
- ~10 X volume, ~20 X more galaxies than SDSS BOSS survey
- Great for cross correlation science
 - Dark energy Tests of gravity fNL Galaxy and dark matter Physics
- Currently taking commissioning data

LSST

- Fast, Deep, Wide photometric survey
- 18,000 square degrees, observed once every few days
- Tens of billions of objects, each one observed ~900 times

- Dark energy science
 - 2 Billion+ galaxies for cosmology
 - Supernova distance measurements
- Cross correlations
- Will require excellent photometric redshift calibrations.

Next generation joint analysis

LSST+DESI+CMB experiments

Next generation joint analysis

LSST+DESI+CMB experiments

Challenges

Systematics/ Nuisance parameters

- Astrophysical
 - Intrinsic alignments of galaxies
 - · Galaxy physics, e.g. S. Singh+ 2020
- Observational systematics
 - Selection function of galaxies
 - Blending, fiber collisions
- Photometric redshift uncertainties

Data

- Need to understand the estimators, selection effects.
- Covariance Matrices
 S. Singh+ 2017; S. Singh+ in prep

Modeling

- Accurate predictions on non-linear scales. e.g. S. Singh+ 2020
- Accurate and high precision emulators.
- Modeling baryonic physics
- · Speed

A biased and very incomplete list

Challenges

Systematics/ Nuisance parameters

- Astrophysical
 - Intrinsic alignments of galaxies
 - Galaxy physics, e.g. S. Singh+ 2020
- Observational systematics
 - Selection function of galaxies
 - Blending, fiber collisions
- Photometric redshift uncertainties

Data

٠

- Need to understand estimators, selection effects.
 - **Covariance Matrices**

S. Singh+ 2017; S. Singh+ in prep

Modeling

- Accurate predictions on non-linear scales. e.g. S. Singh+ 2020
- Accurate and high precision emulators.
- Modeling baryonic physics
- Speed

A biased and very incomplete list

$$\chi^2 = (\text{data} - \text{Model})Cov^{-1}(\text{data} - \text{Model})$$

Important for optimal combinations of different datasets.

$$\chi^2 = (\text{data} - \text{Model})Cov^{-1}(\text{data} - \text{Model})$$

- · Important for optimal combinations of different datasets.
- Scales as $N_{\rm probe}^4$
 - DES: 5 Galaxy bins + 5 lensing bins
 - LSST: 10 Galaxy bins + 10 lensing bins
 - + DESI: 10+ Galaxy bins (2X multipoles each)
 - + CMB: CMB lensing, SZ, CIB, etc.

$$\chi^2 = (\text{data} - \text{Model})Cov^{-1}(\text{data} - \text{Model})$$

- Important for optimal combinations of different datasets.
- Scales as $N_{\rm probe}^4$
- Common methods for computing covariances
 - Mock datasets: Computationally expensive, noisy, wrong physics
 - Analytical calculations: Noiseless, wrong physics
 - Data based: Very noisy (e.g. Jackknife), limits the information we can use.

$$\chi^2 = (data - Model)Cov^{-1}(data - Model)$$

• New approach: Hybrid covariances

Analytical covariance with corrections from mocks or data based estimates.

Faster, accurate and very low noise covariance matrices

Li, S. Singh+ 2019; S. Singh+ in prep; Yu, S. Singh+ in prep

Challenges

Systematics/ Nuisance parameters

- Astrophysical
 - Intrinsic alignments of galaxies
 - Galaxy physics, e.g. S. Singh+ 2020
- Observational systematics
 - Selection function of galaxies
 - Blending, fiber collisions

Photometric redshift uncertainties

Data

- Need to understand estimators, selection effects. S. Singh+ 2017; S. Singh+ in prep
- Covariance Matrices

Modeling

- Accurate predictions on non-linear scales. e.g. S. Singh+ 2020
- Accurate and high precision emulators.
- Modeling baryonic physics
- Speed

A biased and very incomplete list

The Problem

- Cosmological inferences depend on the distance estimates to galaxies.
 - Need good redshift estimates

The Problem

Need large number of galaxies for high precision measurements Photometric surveys

The Problem

Need large number of galaxies for high precision lensing measurements -Photometric surveys

٠

•

The lensing and galaxy clustering signals depend on the redshift distribution of galaxies - Need good redshift estimates

The Problem

Need large number of galaxies for high precision lensing measurements -Photometric surveys

٠

•

The lensing and galaxy clustering signals depend on the redshift distribution of galaxies - Need good redshift estimates

What we need

• Understand the uncertainties in the obtained redshift distribution.

What we need

- Understand the uncertainties in the obtained redshift distribution.
- Cross correlations with the spectroscopic galaxy samples.
 - Degenerate with systematics, especially galaxy bias. (e.g. S. Singh+, 2018)
- Need to develop strategies to properly marginalize over uncertainties.

Next Decade

 Cross correlations with the spectroscopic galaxy samples.

DESI can improve the LSST constraining power

- Understand the uncertainties in the obtained redshift distribution.
 - Sets the prior used

S. Singh+, in prep

Fundamental Plane of galaxies

A New Probe

Fundamental Plane of galaxies A New Probe

Fundamental plane is an empirical relation between galaxy properties that can be used to predict galaxy sizes

$$\log R_0 = a \log \sigma_0 + b \log I_0 + c$$

Velocity dispersion Size

Surface brightness

The galaxy sizes can be used to measure

- Weak gravitational lensing
- Galaxy velocities •
- Galaxy distances
- Galaxy Physics

Fundamental Plane of galaxies A New Probe

Cosmology with Fundamental plane

- Probes weak lensing convergence
 - Up to factor of 2 improvement in lensing measurements.
- Dependence on galaxy distances.
 - Photometric redshift calibration using lensing cross correlations.
 - Redshift distance relation with spectroscopic galaxy samples
- Galaxy velocities: Cross correlations with galaxies
- Size dependent selection biases in galaxy clustering. (S. Singh+ 2020)

Fundamental Plane of galaxies A New Probe

Cosmology with Fundamental plane

Challenges

- Dependence on galaxy properties, density field and observational systematics.
 Joachimi, S. Singh+ 2015; S. Singh+ 2020
- Need detailed study of galaxy sizes in cosmological volume simulations
- Generalized size predictor over a wider population of galaxies.

Summary

sukhdeep1@berkeley.edu

- Upcoming cosmological surveys will map the LSS and its growth at percent level precision.
 - Dark energy Gravity Inflation Neutrinos Dark matter Galaxy physics
- With improved Statistical precision, we will be well within the systematics dominated regime.
- Synergies between different probes will reduce the impact of systematics and improve the constraints on fundamental physics.
- Galaxy sizes provide new ways to probe weak lensing, photometric redshifts.
- Full optimal analysis presents interesting computational and theoretical challenges that need to be solved.

Back up Slides

CMB lensing

Hu&Okamoto 2001

$$T(\widehat{n}) \to T(\widehat{n} + \alpha)$$

Convergence

$$\kappa(r_p) = \frac{\Sigma(r_p)}{\Sigma_{\text{crit}}} \qquad \Sigma_{\text{crit}} = \frac{c^2}{4\pi G} \frac{D_S}{(1+z_l)D_L D_{LS}}$$

Estimator

$$\Sigma_{gR} = \Sigma_g - \Sigma_R$$

Galaxy-Lensing Cross correlations

- Robust to additive lensing systematics.
- Direct probe of galaxy-matter cross correlations
- Combined with clustering, provides mattermatter correlation function.

Seljak et al. 2005, Baldauf et al. 2010, Mandelbaum et al. 2013, More et al. 2015, Kwan et al. 2016

Not In this Talk

• A unique probe of galaxy-dark matter halo connection and dark matter physics.

Mandelbaum et al. 2006, Tinker et al. 2012, Leauthaud et al. 2012, Sifon et al. 2015

S. Singh+ 2015

Galaxy-lensing estimator

$$\Delta \Sigma(r_p) = \overline{\Sigma}(\langle r_p) - \Sigma(r_p)$$

Difficult to model Contains information from small scales.

ADSD Estimator

Baldauf+ 2010

$$\Upsilon(r_p; r_0) = \Delta \Sigma(r_p) - \left(\frac{r_0}{r_p}\right)^2 \Delta \Sigma(r_0)$$

- Removes information from scales $< r_{0.}$
- · Lowers impact of

٠

- non-linear bias and galaxy-matter correlation.
- Baryon effects
- RSD (projected clustering)
- Cost: Removing signal. Lowers S/N at small scales.

Galaxy-Lensing cross correlations Model

Galaxy-Lensing cross correlations

Model

S. Singh+ 2020, 1811.06499

Measurements

Galaxy-Lensing Cross correlations

S. Singh+ 2016b

Measurements

Galaxy-Lensing Cross correlations

Testing ΛCDM + GR

- · Independent of linear galaxy bias and amplitude of matter fluctuations.
- Different theories of gravity predict different values of E_G.

E_G **Parameter**

$$E_G = \frac{1}{\beta} \frac{\rho_m}{\rho_{\text{crit}}} \frac{P_{gm}}{P_{gg}} = \frac{\Omega_m}{f(z)}$$

Zhang+ 2007

$$E_G = \frac{1}{\beta} \frac{\Upsilon_{gm}}{\Upsilon_{gg}}$$

Reyes+ 2010

See also, Pullen+ 2015, Leonard+ 2015

Problems

- Non-linear galaxy bias and galaxy-matter cross-correlation.
- Residual linear RSD in galaxy clustering
 Baldauf+ 2010

Need to compute corrections from simulations and/or theory.

E_G Measurements

See also: Reyes et al. 2010, Blake et al. 2016, Pullen et al. 2016, Alam et al. 2016

E_G Measurements

Measurement as function of scale

~10% constraints on E_G at multiple redshifts.

Consistent with Planck ΛCDM predictions

S. Singh+, 2018

Z,

More Applications

Constraining lensing Systematics

The shape measurement Problem

Need image simulations to calibrate shape measurements.

See Great-3 challenge. Mandelbaum+ 2014, 2015.

- Multiplicative bias degenerate with linear power spectrum amplitude.
- IA, Photo-z bias can also show up as multiplicative bias.

Constraining lensing Systematics

CMB and Galaxies lensing have

- Overlapping kernels: Lensing by same structure
- Very different systematics

Cross-Correlations Allow for self-calibration

Vallinotto 2012, Das+ 2013, Schaan+ 2016

Schaan+ 2016

Constraining lensing Systematics

Х

See Van Engelen+ 2014 for discussion on systematics in CMB lensing

Cosmic Distance Ratio

$$\mathcal{R} = \frac{g\kappa_{\rm CMB}}{g\kappa_{gal}} = \frac{\Sigma_c(z_l, z_s)}{\Sigma_c(z_l, z_*)} \frac{\Sigma(z_l)}{\Sigma(z_l)} \qquad \text{Hu+ 2007b}$$

Geometric test, independent of power spectrum

Problems

٠

- Not scale independent with non-linear growth. (work with narrow lens redshift bins)
- Weak dependence on cosmology

A good test for lensing systematics

$$\frac{\mathcal{R}_{\Lambda CDM}}{\mathcal{R}_{\text{measured}}} \sim b_{\gamma}$$

Next generation joint analysis

LSST+DESI+CMB experiments

Redshift overlap of different probes

(y-axis normalization is arbitrary, for clarity)

Computational Challenges

The Inference Problem

$$P(\theta_{cosmo}|data) \propto \int d\theta_{nuisance} P(data|\theta_{cosmo}, \theta_{nuisance})$$

Accurate inference in high dimensional space, O(50) or more parameters

- Standard power spectrum analysis: model calculations scale as $N_{\rm Probe}^2$
- MCMC complexity scales exponentially with dimensions

What we need

- Speeding up calculations.
- Differentiable models or emulators: Speeding up inference.
- Fast posterior estimations, e.g. Seljak & Yu 2019.

Challenges

Clustering photo-z

Galaxy bias and lensing calibration

arXiv: 1803.08915

Challenges

Systematics/ Nuisance parameters

- Astrophysical
 - Intrinsic alignments of galaxies
 - Galaxy physics, e.g. S. Singh+ 2020
- Observational systematics
 - Selection function of galaxies
 - Blending, fiber collisions
 - Photometric redshift uncertainties

Data

- Need to understand estimators, selection effects. S. Singh+ 2017; S. Singh+ in prep
- Covariance Matrices

Modeling

- Accurate predictions on non-linear scales. e.g. S. Singh+ 2020
- Accurate and high precision emulators.
- Modeling baryonic physics
- Speed

A biased and very incomplete list

Intrinsic alignments of galaxy shapes

Galaxy Shapes are aligned with the matter distribution

Biases the weak lensing measurements using galaxy shear

Can bias galaxy clustering measurements

(Hirata 2009, S. Singh+ 2020)
Intrinsic alignments of galaxy shapes

Biases the weak lensing measurements using galaxy shear

Can bias redshift space measurements

Intrinsic alignments of galaxy shapes

State of the art

- Detections in red, elliptical galaxies
- No detection for spiral galaxies
- Multiple studies in simulations
- Simulations do not agree, among themselves and with data

S. Singh+ 2015, 2016a Tenneti, S. Singh+ 2015

Need better measurements

Intrinsic alignments of galaxy shapes

Next Decade

Extremely important for weak lensing and redshift space distortions science

- High precision measurements over a broader population of galaxies.
 DESI+LSST
 - Wider redshift and luminosity coverage.
 - · Measurements for spiral galaxies.
- New mitigation strategies for weak lensing analysis.
 - Cross correlations.
 - Splitting samples based on expected IA.
- New mitigation strategies for redshift space distortions analysis (S. Singh+, 2020).
- New probes of galaxy physics (DESI+LSST+SZ)
 - E.g. Galaxies are more aligned with dark matter than gas inside halos.

Martin & SS, in prep