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Energy	scales	probed	by	cosmology
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Cosmological	collider	physics
Particle	collisions
• Standard	model	Lagrangian

• Calculate	scattering	
amplitudes	

• Can	get	more	data.

Inflation
• Inflation	Lagrangian

• Calculate	equal	time	N-point	correlation	
functions	of	the	primordial	perturbations	ɸ.

• Can’t	re-run	the	experiment.	

Cosmic	Variance

Linfl(�, gµ⌫ ,m�..)

Power	spectrum

Non-Gaussianity

P (k) / h�(k)�(k)i

h�(k1)...�(kN )i

CERN

Example:	4-point	function	
“Feynman	diagram”



Non-Gaussianity	search	with	the	CMB
• The	“primary	CMB”	is	a	linear	map	of	the	primordial	potential.	

• Planck	satellite	results.	Akrami,	MM	et.	al.,	1905.05697
• Constrained	many	theoretically	motivated	3-point	correlation	functions.

• Roughly:	Non-Gaussianity	is	constrained	to	be	~10-4	smaller	than	Gaussian	
part.	The	minimum	possible	value	is	~10-7.

• Aside:	Something	new	in	CMB	non-Gaussianities:	large-N-point	function	searches	
MM	et.	al.,	1910.00596,	PRD

TCMB(k) = �(k)�(k)

� TCMB

h�k1�k2�k3i / fNL Constraints	on	the	amplitude	fNL.

“transfer	function”



The	future	of	cosmological	collider	physics
• Sensitivity	to	primordial	physics:	

• O(1)	fraction	of	all	modes	in	the	primary	CMB	were	measured	by	Planck.

• Near	term	goal:	Probe	multi-field	inflation	/	local	non-Gaussianity.

• Long	term	goal: Detect	masses,	couplings	and	spins	of	primordial	fields.
• Ultimate	constraints	from	intensity	mapping	of	the	”dark	ages”:	MM	et.	al.,	
1610.06559,	JCAP

�fNL / 1p
N

modes

Need	other	probes	with	more	modes.

Current	constraint	fNL =	-0.9	± 5.1	(from	Planck)	must	get	10	times	tighter.



What	data	will	we	get	next?

DESI	(spectroscopic,	2021)
LSST/VRO	(photometric,	
2022)

Main	goals:	
• Expansion	history	/	dark	

energy	(DESI)
• Dark	matter,	Dark	energy,	

Transients	(VRO)

Simons	Observatory	
(2021)

Main	goals:
- Primordial	B-modes	

(gravitational	waves)
- Secondary	CMB	

anisotropies	

CHIME	(now),	PUMA	(2030)

Main	goals:	
• Establish	the	technology
• Map	BAO	up	to	redshift	2	

(Chime)
• Map	all	linear	modes	up	to	

redshift	6	(Puma).

Orange:	Collaborations	that	I	am	a	member	of.

Strong	synergy.	Focus	of	my	research.



The	problem	of	non-linearities

• Non-linear	evolution	and	complicated	astrophysics	are	a	major	problem	for	
cosmological	collider	physics!	

• Generates	large	non-primordial	N-point	functions,	that	we	can’t	fully	calculate.

IllustrisTNG simulation

Complicated	
astrophysics

Non-linear	gravitational	
evolution

Theory.	Part	1	of	this	talk.

Computation.	Part	2	of	this	talk.

How	do	we	use	this	data	for	
fundamental	physics?	



(Non-)linearities	at	different	scales

• Large	scales	evolve	linearly.																				Easy	to	use	for	cosmology.
• Small	scales	have	very	complicated	astrophysics.	 Hard	to	use	for	

cosmology,	but	MUCH	more	information.

The	all	important	matter	power	spectrum	plot!

Fourier	space

Large	
scales

Small	
scales



Approach	1:	Theory	– A	new	way	
to	map	the	universe
Approach	2:	Computation	–
Cosmology	with	machine	learning



CMB	anisotropies	overview
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• Primary	anisotropies	from	early	
universe	(when	electrons	and	protons	
combine).	

• Secondary	anisotropies	from	
gravitational	lensing	and	photon	
scattering	on	electrons.	

Primary	vs	secondary	anisotropies

Planck	satellite,
Primary	anisotropies,
Linear	physics

Upcoming	experiments,
Secondary	anisotropies,	
non-linear	physics

Planck	collaboration



Kinetic	Sunyaev-Zeldovich	effect
• Thompson	scattering	of	CMB	photons	on	free	electrons

• Doppler	shift	interpretation:
• For	vr >	0		CMB	photons	are	red	shifted	(cold	spot)
• For	vr <	0		CMB	photons	are	blue	shifted	(hot	spot)

Electron	density Radial	velocity
e�

~ve�CMB

�kSZ

observer

TCMB
kSZ ⇠

Z
dr ⇢e(r) vr(r)



What	is	the	kSZ	good	for?
• Prior	to	my	work:	kSZ	signal	was	widely	believed	to	be	interesting	only	for	
small	scale	astrophysics	(many	papers),	not	cosmology.	

Domain	of	astrophysics,
kSZ	anisotropy	scales,
Length	scale	of	galaxy	clusters



What	is	the	kSZ	good	for?

We	will	use	this	information		
to	measure	the	matter	
distribution	over	there!

Now	we	will	see:	the	kSZ	can	be	used	as	the	best	tracer	of	matter	on	large	scales!



Overview	of	the	method
• Step	1:	estimate	the	radial	velocity	field	from	kSZ

• Step	2:		From	reconstructed	velocities,	we	can	calculate	the	
matter	density	perturbations	(continuity	equation).

From	CMB Estimate!From	galaxy	survey

v / �m
k

TCMB
kSZ ⇠

Z
dr ⇢e(r) vr(r)Idea:

v̂r(k) �̂r(k)



Velocity	estimator	(in	pictures)

Large-scale	radial	velocity

Matter	density	

Resulting	kSZ	temperature

Cross	correlation	estimator

�m

vr

TkSZ ⇠ vr ⇥ �m

v̂r ⇠ h�mTkSZi

Observer



Velocity	estimator	(in	math)

• Optimal	quadratic	estimator	for	large	scale	velocity	field:

• From	the	estimator	we	calculate	its	noise	depending	on	the	
experimental	parameters.

optimal	weights quadratic	combinations	of	CMB	and	
galaxy	data	

Deutsch,	MM	et.	al.,	1707.08129,	PRD



Forecast	for	upcoming	experiments	(SO+DESI)

Galaxy	“shot	noise”	
DESI	galaxies

kSZ	method	noise.
DESI	galaxies	+	SO

Region	of	improvement
Lower	noise	than	galaxies	
themselves!

The	lowest	noise	known	probe	of	matter	
at	large	scales!	Will	be	done	with	

experiments	in	2022.

Smith,	MM	et.	al.,	1810.13423

Matter	/	galaxy	power	spectrum



What	can	we	do	with	it?

• The	”killer	application”	(so	far):				primordial	non-Gaussianity	

What	is	it	good	for?	Lots	of	possibilities	are	being	explored.
e.g.:	Neutrino	masses,	dark	energy,	statistical	anisotropies.

Simulation	from	Cayuso et.	al.	2018.

f local

NL

A	totally	new	probe	of	the	universe	
on	large	scales,	with	high	signal-to-
noise	for	upcoming	experiments!

“multifield inflation	target”



Application	to	non-Gaussianities
Basic	idea:	use	low-noise	kSZ	measurement	to	measure	power	spectrum	kink	
induced	by	fNL. (“scale	dependent	bias”,	Dalal et.	al.	2008).

Full	story:	more	subtle,	involving	“sample	variance	cancellation”.



Application	to	non-Gaussianities
• Forecast	(included	in	SO	and	CMB	S4	science	books):

• Comparison:	Planck	CMB	σfnl =	5.1	

CMB	S4	mission	+	LSST
combined	σfnl =	0.4	

Improvement	factor	3!

SO	mission	+	DESI
combined	σfnl =	1.0	
Improvement	factor	

1.6

• Multifield inflation	target	fNL<1	reachable!	

• Improvement	factor	3	just	from	smarter	analysis	(kSZ)!

• Safe	from	auto-calibration	problems.

(MM	et.	al.,	1810.13424,	PRD	editors	suggestion)	



What	did	we	learn	and	where	to	go	next?	
• Entirely	new,	powerful	and	unexpected	probe	of	the	universe	on	large	
scales.

• Combining	secondary	CMB	and	galaxies	will	likely	lead	to	the	best	constraints	
on	primordial	non-Gaussianity.	

• Highly	non-linear	scales	used	for	primordial	physics,	in	a	reliable	way.	

• What	needs	to	be	done	to	apply	this	method	on	real	data?
• Study	masked	sky	estimators	and	foregrounds	(with	I.	Holst).
• Apply	this	method	to	Simons	Observatory	+	DESI	(with	my	group).

• Similar	approaches	with	other	secondary	CMB	effects,	e.g.	moving	lens	effect	
(Hotinli,	MM	et.	al.,	1812.03167,	PRL)	



Approach	1:	Theory	– A	new	way	
to	map	the	universe
Approach	2:	Computation	–
Cosmology	with	machine	learning



We	need	more	help	from	the	machines!
• We	will	get	huge	amounts	of	correlated	and	highly	non-Gaussian	data.	
Impossible	to	understand	everything	with	theory.

• Even	today	almost	all	cosmology	analysis	uses	simulations.	
• Problems:

• Simulations	become	forbiddingly	expensive	(computationally).
• Estimators	need	to	be	developed	manually.	Often	also	impossibly	
expensive.		

Need	to	bring	the	Machine	Learning	
revolution	to	cosmology.

Simulation	based	inference	will	dominate.



Machine	Learning	for	precision	science
• generic	“black	box”	neural	network	trained	on	unreliable	
simulations	

• “parameter	estimates”	without	error	bars.	
• no	idea	where	the	information	comes	from.

• incremental	approach	building	on	established	methods
• specific	steps	in	the	analysis	chain	are	replaced	by	specialized	
machine	learning	methods

• methods	need	to	incorporate	our	physics	understanding.

• A	key	element	of	this	program:	Neural	Network	Wiener	Filtering.
• Both	practically	important	and	interesting	methodology.

My	contribution



Wiener	Filtering	(in	pictures)
mask,	noise Wiener	filter

true	CMB measurement Best	possible	
reconstruction	of	
the	true	CMB

Very	important	method!	First	step	for	any	optimal	statistical	analysis.



Wiener	Filtering	(in	math)
• Common	situation:

• Wiener	filter:

• Optimal	reconstruction	of	s	given	d.	
• Data	d	can	have	108	elements.	Direct	matrix	inversion	impossible.
• Standard	approach:	conjugate	gradient	method.	But	too	slow!	Most	Planck	
CMB	analysis	is	suboptimal	for	this	reason.

data signal noise

Signal	covariance	matrix. Noise	covariance	matrix.

Neural	network	approach



Neural	networks	/	Supervised	learning
Neural	network:	hierarchical	function	with	many	parameters	w.

Training:	

We	adapt	both	network	and	loss	function	to	the	physical	task	at	
hand.

Neural	network

y = fw(x)data : x result : y

Loss	function	minimizationtraining data :

(xi,yi)
@J

@w

best weights : w



WienerNet:	neural	network	architecture
• Crucial:	must	not	induce	non-
linearities.

• Construct	a	neural	network	
that	is	explicitly	linear	in	the	
data!

• Nonlinear	in	mask/noise

Machine	learning	does	not	need	
to	be	based	on	“generic	
functions”!	

y = M(mask)d

MM	et.	al.,	1905.05846,	NeurIPS	2019



WienerNet:	loss	functions	and	training
• 3	possible	loss	functions	(training	objectives)	with	very	different	properties:

• All	can	be	analytically	shown	to	be	minimized	by	WF	solution,	i.e.

Neural	networks	can	be	used	in	low	signal-to-noise	situations!

“physical	loss”

“naïve	loss”

“supervised	loss”

Not	useful	in	practice.

Works	well	in	S/N>1	regime.	

Works	well	everywhere.	

@ hJi
@M

!
= 0



Results:	Very	good	and	very	fast!

• Works	independent	of	mask	and	noise	levels.
• Plug	into	standard	analysis	pipelines	in	cosmology.

CMB	polarization	example:

Neural	network	output	maps	are	at	least	99%	Wiener	filtered.	

Neural	Network	Wiener	filtering	is	1000	times faster	than	the	
exact	method!



What	did	we	learn	and	where	to	go	next?	
• We	developed	a	tool	to	speed	up	many	cosmological	analyses	massively,	
using	machine	learning.

• The	generic	black	box	approach	does	not	work	here.	Need	physical	
architecture	and	loss!

• Current	goal:	
• Use	this	method	for	power	spectrum	analysis	(with	A.	Dimitrou).
• Bring	the	WienerNet	to	Simons	Observatory,	potentially	lowering	error	
bars	in	cosmological	analyses.	

• Other	maximum	likelihood	problem	in	cosmology include:	
• CMB	lensing	potential	estimation	(uses	a	“delensing Wiener	filter”).
• Reconstructing	the	initial	conditions	from	large-scale	structure	
observations.



Conclusion



Outlook:	Interplay	of	theory	and	computation
• Need	to	combine	physical	theory	with	machine	learning	methods	to	fully	
exploit	upcoming	data.	

• Could	machine	learning	discover	the	kSZ	non-Gaussianities	method in	
simulations	in	explainable	form?	

• Machine	Learning	will	help	automate	model	testing	for	high	energy	theory.

• Learn	from	ML	community:	well-documented	tools,	compiled	algebraic	
expressions	for	large-scale	deployment	etc.

Wide	open	to	exciting	research!



Other	things	I’m	interested	in	include
• Physics	with	Fast	Radio	Bursts	(FRB)

• FRB	are	coherent	light	sources	at	
cosmological	distances.	

• My	main	role	in	CHIME:	machine	learning	for	
FRB	population	studies.

• Some	exciting	applications	have	been	
proposed	and	more	are	to	be	found!

• Astroparticle	physics
• My	PhD	thesis:	measuring	and	theoretically	
interpreting	large-scale	anisotropies	of	
Cosmic	Rays	with	the	Pierre	Auger	
Observatory.		

Astronomy.com

Eurekalert.org


