Fundamental physics with CMB and galaxy surveys

Moritz Münchmeyer Perimeter Institute for Theoretical Physics

University of Wisconsin, Madison, 28.01.2020

Introduction

The big picture Physical quantities

Observations

Kovetz et. al. 2017

Inflation: 380.000 yrs Cosmic **Primordial Microwave** quantum fields background and interactions **Billions of years** Background expansion (Dark Energy) Galaxy surveys Discover magazine NASA – Hubble deep field **Properties of** γ_d **Spectral** matter and line radiation intensity (neutrinos, Dark mapping Matter etc.) inference

This talk: two new methods

Cosmological collider physics

Inflation

- Inflation Lagrangian $\mathcal{L}_{infl}(\phi, g_{\mu\nu}, m_{\chi}..)$
- Calculate equal time N-point correlation functions of the primordial perturbations φ.

Power spectrum $P(k) \propto \langle \Phi(k) \Phi(k) \rangle$

Non-Gaussianity $\langle \Phi$

$$\Phi(k_1)...\Phi(k_N)\rangle$$

Example: 4-point function "Feynman diagram"

• Can't re-run the experiment.

Cosmic Variance

Particle collisions

• Standard model Lagrangian

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i \bar{\Psi} D \psi + D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - V(\Phi) + \bar{\Psi}_{L} \hat{Y} \Phi \Psi_{R} + h.c.$$

 Calculate scattering amplitudes

• Can get more data.

Non-Gaussianity search with the CMB

• The "primary CMB" is a linear map of the primordial potential.

- Planck satellite results. Akrami, MM et. al., 1905.05697
 - Constrained many theoretically motivated 3-point correlation functions.

 $\langle \Phi_{{f k}_1} \Phi_{{f k}_2} \Phi_{{f k}_3} \rangle \propto f_{NL}$ Constraints on the amplitude f_{NL}.

- Roughly: Non-Gaussianity is constrained to be ~10⁻⁴ smaller than Gaussian part. The minimum possible value is ~10⁻⁷.
- Aside: Something new in CMB non-Gaussianities: large-N-point function searches MM et. al., 1910.00596, PRD

The future of cosmological collider physics

• Sensitivity to primordial physics: σ_{j}

$$T_{f_{NL}} \propto \frac{1}{\sqrt{N_{\rm modes}}}$$

• O(1) fraction of all modes in the primary CMB were measured by Planck.

• Need other probes with more modes.

• Near term goal: Probe multi-field inflation / local non-Gaussianity.

INFLATION \longrightarrow Single field \longrightarrow Gaussian fluctuations $f_{NL} \ll 1$ multi-field \longrightarrow Non-Gaussian fluctuations $f_{NL} \gtrsim 1$ Current constraint $f_{NL} = -0.9 \pm 5.1$ (from Planck) must get 10 times tighter.

- Long term goal: Detect masses, couplings and spins of primordial fields.
 - Ultimate constraints from intensity mapping of the "dark ages": MM et. al., 1610.06559, JCAP

What data will we get next?

Simons Observatory (2021)

Main goals:

- Primordial B-modes (gravitational waves)
- Secondary CMB anisotropies

DESI (spectroscopic, 2021) LSST/VRO (photometric, 2022)

Main goals:

- Expansion history / dark energy (DESI)
- Dark matter, Dark energy, Transients (VRO)

Main goals:

• Establish the technology

CHIME (now), PUMA (2030)

- Map BAO up to redshift 2 (Chime)
- Map all linear modes up to redshift 6 (Puma).

Strong synergy. Focus of my research.

Orange: Collaborations that I am a member of.

The problem of non-linearities

Non-linear gravitational evolution

Complicated astrophysics

IllustrisTNG simulation

- Non-linear evolution and complicated astrophysics are a major problem for cosmological collider physics!
- Generates large non-primordial N-point functions, that we can't fully calculate.

How do we use this data for fundamental physics?

Theory. Part 1 of this talk.

Computation. Part 2 of this talk.

(Non-)linearities at different scales

- Large scales evolve linearly. Easy to use for cosmology.
- Small scales have very complicated astrophysics. Hard to use for cosmology, but MUCH more information.

Approach 1: Theory – A new way to map the universe

Approach 2: Computation – Cosmology with machine learning

CMB anisotropies overview

Primary vs secondary anisotropies

Planck collaboration

- Primary anisotropies from early universe (when electrons and protons combine).
- Secondary anisotropies from gravitational lensing and photon scattering on electrons.

Kinetic Sunyaev-Zeldovich effect

• Thompson scattering of CMB photons on free electrons

observer

• For v_r < 0 CMB photons are blue shifted (hot spot)

What is the kSZ good for?

 Prior to my work: kSZ signal was widely believed to be interesting only for small scale astrophysics (many papers), not cosmology.

Domain of astrophysics, kSZ anisotropy scales, Length scale of galaxy clusters •

What is the kSZ good for?

Now we will see: the kSZ can be used as the best tracer of matter on large scales!

Overview of the method

• **Step 1**: estimate the radial velocity field from kSZ

• Step 2: From reconstructed velocities, we can calculate the matter density perturbations (continuity equation).

$$\hat{v}_r(\mathbf{k})$$
 $\stackrel{\mathbf{v} \propto rac{\delta_m}{k}}{\longrightarrow}$ $\hat{\delta}_r(\mathbf{k})$

Velocity estimator (in pictures)

Velocity estimator (in math)

• Optimal quadratic estimator for large scale velocity field:

$$\hat{v}_{r}(\mathbf{k}_{L}) = \int \frac{d^{3}\mathbf{k}_{S}}{(2\pi)^{3}} \frac{d^{2}\mathbf{l}}{(2\pi)^{2}} W(\mathbf{k}_{S}, \mathbf{l}) \, \delta_{g}^{*}(\mathbf{k}_{S}) T^{*}(\mathbf{l}) \, (2\pi)^{3} \delta^{3}\left(\mathbf{k}_{L} + \mathbf{k}_{S} + \frac{\mathbf{l}}{\chi_{*}}\right)$$
optimal weights
quadratic combinations of CMB and galaxy data

Deutsch, MM et. al., 1707.08129, PRD

• From the estimator we calculate its noise depending on the experimental parameters.

Forecast for upcoming experiments (SO+DESI)

What can we do with it?

A totally new probe of the universe on large scales, with high signal-tonoise for upcoming experiments!

Simulation from Cayuso et. al. 2018.

What is it good for? Lots of possibilities are being explored. e.g.: Neutrino masses, dark energy, statistical anisotropies.

• The "killer application" (so far): primordial non-Gaussianity

 $f_{NL}^{\rm local}$

"multifield inflation target"

Application to non-Gaussianities

Basic idea: use low-noise kSZ measurement to measure power spectrum kink induced by f_{NL} ("scale dependent bias", Dalal et. al. 2008).

Full story: more subtle, involving "sample variance cancellation".

Application to non-Gaussianities

• Forecast (included in SO and CMB S4 science books):

CMB S4 mission + LSST combined $\sigma_{fnl} = 0.4$ Improvement factor 3!

• Comparison: Planck CMB $\sigma_{fnl} = 5.1$

- Multifield inflation target f_{NL}<1 reachable!
- Improvement factor 3 just from smarter analysis (kSZ)!
 - Safe from auto-calibration problems.

(MM et. al., 1810.13424, PRD editors suggestion)

What did we learn and where to go next?

- Entirely new, powerful and unexpected probe of the universe on large scales.
- Combining secondary CMB and galaxies will likely lead to the best constraints on primordial non-Gaussianity.
- Highly non-linear scales used for primordial physics, in a reliable way.
- What needs to be done to apply this method on real data?
 - Study masked sky estimators and foregrounds (with I. Holst).
 - Apply this method to Simons Observatory + DESI (with my group).
- Similar approaches with other secondary CMB effects, e.g. moving lens effect (Hotinli, MM et. al., 1812.03167, PRL)

Approach 1: Theory – A new way to map the universe Approach 2: Computation – Cosmology with machine learning

We need more help from the machines!

• We will get huge amounts of correlated and highly non-Gaussian data. Impossible to understand everything with theory.

Simulation based inference will dominate.

- Even today almost all cosmology analysis uses simulations.
- Problems:
 - Simulations become forbiddingly expensive (computationally).
 - Estimators need to be developed manually. Often also impossibly expensive.

Need to bring the Machine Learning revolution to cosmology.

Machine Learning for precision science

- generic "black box" neural network trained on unreliable simulations
- "parameter estimates" without error bars.
- no idea where the information comes from.

- incremental approach building on established methods
- specific steps in the analysis chain are replaced by specialized machine learning methods
- methods need to incorporate our physics understanding.

- **My contribution** A key element of this program: Neural Network Wiener Filtering.
 - Both practically important and interesting methodology.

Wiener Filtering (in pictures)

Very important method! First step for any optimal statistical analysis.

Wiener Filtering (in math)

Signal covariance matrix. Noise covariance matrix.

- Optimal reconstruction of s given d.
- Data d can have 10⁸ elements. Direct matrix inversion impossible.
- Standard approach: conjugate gradient method. But too slow! Most Planck CMB analysis is suboptimal for this reason.

Neural networks / Supervised learning

Neural network: hierarchical function with many parameters w.

We adapt both network and loss function to the physical task at hand.

WienerNet: neural network architecture

- Crucial: must not induce nonlinearities.
- Construct a neural network that is explicitly linear in the data!

y = M(mask)d

• Nonlinear in mask/noise

Machine learning does not need to be based on "generic functions"!

MM et. al., 1905.05846, NeurIPS 2019

WienerNet: loss functions and training

• **3 possible loss functions** (training objectives) with very different properties:

"naïve loss"
$$J_1(d, y) = \frac{1}{2}(y - y_{\rm WF})^T A(y - y_{\rm WF})$$
Not useful in practice."supervised loss" $J_2(s, y) = \frac{1}{2}(y - s)^T A(y - s)$ Works well in S/N>1 regime."physical loss" $J_3(d, y) = \frac{1}{2}(y - d)^T N^{-1}(y - d) + \frac{1}{2}y^T S^{-1}y$ Works well everywhere. $J_3(d, y) = -\log P(s|d)_{s=y} + \text{const.}$

• All can be analytically shown to be minimized by WF solution, i.e.

Neural networks can be used in low signal-to-noise situations!

Results: Very good and very fast!

Neural network output maps are at least 99% Wiener filtered.

Neural Network Wiener filtering is **1000 times** faster than the exact method!

- Works independent of mask and noise levels.
- Plug into standard analysis pipelines in cosmology.

What did we learn and where to go next?

- We developed a tool to speed up many cosmological analyses massively, using machine learning.
- The generic black box approach does not work here. Need physical architecture and loss!
- Current goal:
 - Use this method for power spectrum analysis (with A. Dimitrou).
 - Bring the WienerNet to Simons Observatory, potentially lowering error bars in cosmological analyses.
- Other maximum likelihood problem in cosmology include:
 - CMB lensing potential estimation (uses a "delensing Wiener filter").
 - Reconstructing the initial conditions from large-scale structure observations.

Conclusion

Outlook: Interplay of theory and computation

• Need to combine physical theory with machine learning methods to fully exploit upcoming data.

Wide open to exciting research!

- Could machine learning discover the kSZ non-Gaussianities method in simulations in explainable form?
- Machine Learning will help automate model testing for high energy theory.
- Learn from ML community: well-documented tools, compiled algebraic expressions for large-scale deployment etc.

Other things I'm interested in include

Astronomy.com

Eurekalert.org

- Physics with Fast Radio Bursts (FRB)
 - FRB are coherent light sources at cosmological distances.
 - My main role in CHIME: machine learning for FRB population studies.
 - Some exciting applications have been proposed and more are to be found!

• Astroparticle physics

 My PhD thesis: measuring and theoretically interpreting large-scale anisotropies of Cosmic Rays with the Pierre Auger Observatory.