

Muon Collider based on positron-driven source: the LEMMA proposal

M. Boscolo (INFN-LNF)

High Energy Seminar, Department of Physics, University of Wisconsin-Madison, USA 6 October 2021

Outline

- Introduction
- Positron driven source
- LEMMA scheme
- Status
- Further studies on key topics
- Conclusion

LEMMA

(Low EMittance Muon Accelerator)

Concept based on a positron driven source for muon beams

 $\mu^{\scriptscriptstyle +}\,\mu^{\scriptscriptstyle -}$ are produced in positron annihilation on $e^{\scriptscriptstyle -}$ at rest

 \rightarrow ~45 GeV e⁺ beam impinging on target

Low emittance overcomes muon cooling

 Low emittance allows operations at very high c.o.m. energy (lower neutrino radiation hazard) LEMMA deals with low muon rates

Muon production

from **proton on target:** p+target $\rightarrow \pi/K \rightarrow \mu$ typically $P_{\mu} \approx 100$ MeV/c (π , K rest frame) whatever is the boost P_{T} will stay in Lab frame \rightarrow **very high emittance** at production point \rightarrow **cooling needed**!

from direct μ pair production:

Muons produced from $e^+e^- \rightarrow \mu^+\mu^-$ at \sqrt{s} around the $\mu^+\mu^-$ threshold ($\sqrt{s} \approx 0.212 \text{GeV}$) in asymmetric collisions (to collect μ^+ and μ^-)

NIM A Reviewer: "A major advantage of this proposal is the lack of cooling of the muons.... the idea presented in this paper may truly revolutionise the design of muon colliders ... "

LEMMA & MAP

Ref. M. Boscolo et al., "The future prospects of muon colliders and neutrino factories", RAST 10 (2019) 189-214 ArXiv.1808.01858

Not really a fair comparison: MAP studies much more advanced LEMMA much simpler in principle but still many key aspects to be fully studied (this talk)

New tunnels and/or new high field magnets (e.g.HTS) and/or new acceleration could provide large benefits to both options ⁵

LEMMA & MAP

huge 6D cooling factor

MICE selected Result

LEMMA concept

Advantages:

- **1.** Low emittance possible: θ_{μ} is tunable with \sqrt{s} in $e^+e^- \rightarrow \mu^+\mu^ \theta_{\mu}$ can be very small close to the $\mu^+\mu^-$ threshold
- 2. Low background: Luminosity at low emittance will allow low background and low v radiation (easier experimental conditions, can go up in energy)
- **3.** Reduced losses from decay: muons can be produced with a relatively high boost in asymmetric collisions
- 4. Energy spread: muon energy spread also small at threshold, it gets larger as \sqrt{s} increases

Disadvantages:

• Rate: much smaller cross section wrt protons (\approx mb) $\sigma(e^+e^- \rightarrow \mu^+\mu^-) \approx 1 \ \mu b$ at most

Possible implementation

- Low energy collider with e⁺/e⁻ beam (e⁺ in the GeV range):
 - 1. Conventional asymmetric collisions (but required luminosity $\approx 10^{40}$ is beyond present capability)
 - Positron beam interacting with continuous beam from electron cooling (too low electron density, 10²⁰ electrons/cm³ needed to obtain a reasonable conversion efficiency to muons)
- Electrons at rest (seems more feasible):
 - 3. e⁺ on plasma target
 - 4. e⁺ on standard target (eventually crystals in channeling)
 - Need Positrons of \approx 45 GeV
 - $\gamma(\mu) \approx 200$ and μ laboratory lifetime of about 500 μ s

Ideally muons will copy the positron beam

Contribution to $\boldsymbol{\mu}$ beam size due to finite target length

The emittance contributions due to muon production angle: $\epsilon_{\mu} = x x'_{max}/12 = L (\theta_{\mu}^{max})^2/12$ ϵ_{μ} completely determined by L and s -by target thickness and c.o.m. energy

Criteria for target design

Luminosity is proportional to $N_{\mu}^2 \ 1/\epsilon_{\mu}$

optimal target: minimizes μ emittance with highest μ rate

- Heavy materials, thin target
 - to minimize ε_{μ} : thin target ($\varepsilon_{\mu} \propto L$) with high density ρ Copper: MS and $\mu^{+}\mu^{-}$ production give about same contribution to ε_{μ} BUT high e⁺ loss (Bremsstrahlung is dominant) so $\sigma(e^{+}loss) \approx \sigma(Brem+bhabha) \approx (Z+1)\sigma(Bhabha) \rightarrow$ $N(\mu^{+}\mu^{-})/N(e^{+}) \approx \sigma_{\mu}/[(Z+1)\sigma(Bhabha)] \approx 10^{-7}$
- Very light materials, thick target
 - maximize $\mu^+\mu^-$ conversion efficiency $\approx 10^{-5}$ (enters quad) $\rightarrow H_2$ Even for liquid targets O(1m) needed $\rightarrow \epsilon_{\mu} \propto L$ increase
- Not too heavy materials (Li, Be, C)
 - Allow low ε_{μ} with small e⁺ loss $N(\mu^{+}\mu^{-})/N(e^{+}) \approx 10^{-6}$

Possible schemes for muon production

Multi-pass scheme

Single-pass scheme

Multi-pass scheme

<u>Goal:</u>

@T ≈ $10^{11} \mu/s$ Efficiency ≈ 10^{-7} (with Be 3mm)→ $10^{18} e^{+}/s$ needed @T → e^{+} "stored" beam with T

need the largest possible lifetime to minimize positron source rate

LHeC like e+ source required rate with lifetime(e+) \approx 250 turns [i.e. 25% momentum aperture \rightarrow n(µ)/n(e⁺ source) \approx 10⁻⁵

- Low emittance and high momentum acceptance 45 GeV e⁺ ring
- O(100 kW) class target in the e⁺ ring for μ⁺ μ⁻ production

and, in common with single-pass scheme:

- High-rate positron source
- High momentum acceptance muon accumulator rings

Low emittance 45 GeV positron ring

MAD-X

100

s [m]

120

140

160

180

80

60

-2

-4 -6

-8

0

20

40

circumference 6.3/27 km: 197 m x 32 cells

Table e+ ring parameters

Parameter	0.7 nm	6 nm	10 nm
Circumference [km]	27	27	27
N. cells	64	32	32
I_b [A]	0.89	0.89	0.89
N _{part} /bunch	$5x10^{11}$	$5x10^{11}$	$5x10^{11}$
N. bunches	1000	1000	1000
Eloss/turn [GeV]	0.12	0.12	0.19
Nat. σ_z [mm]	1.9	3.6	3.8
α_c	2.9×10^{-5}	1×10^{-4}	1.1×10^{-4}
Energy spread	$7x10^{-4}$	$7x10^{-4}$	$9x10^{-4}$
$\tau_{x,y}$ [ms]	68	66	42
Energy acceptance [%]	± 8	± 6	± 2
SR power [MW]	106	109	170

Physical aperture=5 cm constant

no errors

Good agreement between MADX PTC / Accelerator Toolbox, both used for particle tracking in our studies

Beam dynamics e⁺ beam in ring-with-target

More details in: PR-AB 21, 061005 (2018)

e⁺ emittance growth controlled with proper β and D values @ target

After 40 turns $\sigma'_{MS} = 25 \ \mu rad$

Comments on multi-pass scheme

CONS

- High power on target
- Low number of muons per bunch: do not have a realistic scheme for recombination at high energy
- Muon beam almost in CW, not compatible with acceleration by synchrotron
- The same is true for positron beam replacement (source + acceleration + injection)

PROS

✓ muon emittance is small

Single-pass scheme

positron beam passes only once through a $\sim X_0$

- More muons produced per bunch
- Power can be distributed over a long target

- Start-to-end muon particle tracking from production to end of accumulation process performed allowing a realistic estimate of emittance and number of muons/bunch
- Targets considered: solid, liquid jet and compound liquid/solid target

Considerations on μ accumulation

Accumulation must be performed in $\tau_{lab} \sim 500 \mu s$ Ring must be as short as possible with the largest possible E acceptance

X MS contribution on – emittance($\propto \sqrt{X_0 N_T}$)

Possible solutions:

🗸 Multiple IP

Spaghetti/film-like targets
or channeling in crystals

Luminosity of $\mu^+\mu^-$ Collider vs e⁺ beam energy

Optimal working point for $\varepsilon(e^+) \cong \varepsilon(MS) \cong \varepsilon(rad) \cong \varepsilon(prod) \cong \varepsilon(AR)$ and sustainable beam spot on target

 ϵ (prod) and μ intensity \propto positron beam energy:

Need of high energy acceptance µ ring

Target options for best production efficiency

Target material plays a crucial role

The lighter the material, the higher the production efficiency

Most of the muons are produced in the first 3 targets = **0.3X0**

3e11 e+ @45GeV 10 x 0.1X₀

Comparison solid and liquid target

Beam size is proportional to target thickness

Divergence depends mainly on e+ beam energy, dominated by the production kinematics

Production efficiency

We also need to optimize the target choice wrt the muon beam quality after the accumulation process (muons/bunch <u>and</u> muon emittance)

Muon Accumulator Rings

P. Raimondi

- Compact: 140 m circumference with 15 T dipoles
- Chromaticity and high order momentum compaction correction achieved by dedicated families of sextupoles, resulting in a very large energy acceptance [-10%,+15%]
- Since the target region is in common for the positron ad the two muon beams, a septum in the first bending magnet is used to separate the beams
- The ring is made by two symmetric arcs and two straight sections, one for the target insertions and one for the RF cavities

accumulator rings

Muon accumulation vs solid and liquid target

N = $5 \times 10^{11} \text{ e}^+$ /bunch, 1500 bunches $\sigma(\text{e}^+)=20\mu\text{m}$ @Target $\epsilon(\text{e}^+)=0.7\text{nm}$

Advantage: most efficient for μ production: After 1500 turns \approx 1.5 lifetimes, accumulated 3.5 \times 10⁸ μ

muon beam size and divergence increase in the accumulation process due to the multi passages of muons through the target (multiple scattering)

Liquid Lithium Target

 $0.3X_0LLi = 0.465 \text{ m}$ longit. length

We considered the transverse size of the jet much smaller than the stored beam size to preserve muon beam emittance

 $\stackrel{\textcircled{}_{\scriptstyle \bigcirc}}{\stackrel{}_{\scriptstyle \bigcirc}}$ Jet of liquid Lithium mitigates multiple scattering (N²/ ε higher by a factor 30 wrt to Be) $\stackrel{\textcircled{}_{\scriptstyle \bigcirc}}{\stackrel{}_{\scriptstyle \bigcirc}}$ Disadvantage: low X₀ \rightarrow long jet target needed

Liquid Lithium Target with Diamond dust

Best compromise to increase efficiency of liquid Lithium allowing to reduce target length and strongly suppress multiple scattering

10%LLi+90%D: X₀ reduced by a factor 10 wrt Li, but in liquid state and suitable to be film jet

Best solution: 50µm LLi-D film jet target \approx 0.5 X₀ (6.7 cm) with β^* =10 cm \rightarrow N = 0.4×10⁹µ/bunch, $\epsilon(\mu)$ =0.3 µm-rad after 1000 turns

Further optimization

- Further increase of AR energy acceptance would allow higher e^+ energy, increasing muon production (E⁺=50 GeV × 2 in N_µ)
- Further reduction of β^* would reduce muon final emittance.
- With Recombination positron bunch at the target (revolver configuration):

N = 10⁹ μ /bunch, $\varepsilon(\mu)$ =0.1 μ m-rad after 200 turns

Thermo-mechanical issues – solid targets

- Aim at bunch (5x10¹¹ e⁺) transverse size on the 10-20 μm scale: rescaled from test at HiRadMat (5x10¹³p on 100μm) with
 Be-based targets and C-based (HL-LHC)
- Detailed simulation of thermo-mechanical stresses dynamics
 - FLUKA + FTDT

Thermal Study

Positron source requirements

Positron source rate is **independent on the scheme** (multi- or single-pass) Main dependences on **target material** and **recovery system energy acceptance**

Be 0.106m		LH2 2.66m		LLi 0.45m	
ΔN/sec	Power [MW]	ΔN/sec	Power [MW]	ΔN/sec	Power [MW]
4,89E+15	41,43	4,99E+15	42,28	4,82E+15	40,9
4,11E+15	34,88	4,22E+15	35,79	4,06E+15	34,4
3,22E+15	27,33	3,33E+15	28,24	3,23E+15	27,4
	Be 0.1 ΔN/sec 4,89E+15 4,11E+15 3,22E+15	Be 0.106m ΔN/sec Power [MW] 4,89E+15 41,43 4,11E+15 34,88 3,22E+15 27,33	Be 0.10m LH2 ΔN/sec Power [MW] ΔN/sec 4,89E+15 41,43 4,99E+15 4,11E+15 34,88 4,22E+15 3,22E+15 27,33 3,33E+15	Be 0.10m LH2 2.66m ΔN/sec Power [MW] ΔN/sec Power [MW] 4,89E+15 41,43 4,99E+15 42,28 4,11E+15 34,88 4,22E+15 35,79 3,22E+15 27,33 3,33E+15 28,24	Be 0.10m LH2 2.66m LL1 0.4 ΔN/sec Power [MW] ΔN/sec Power [MW] ΔN/sec 4,89E+15 41,43 4,99E+15 42,28 4,82E+15 4,11E+15 34,88 4,22E+15 35,79 4,06E+15 3,22E+15 27,33 3,33E+15 28,24 3,23E+15

Single-pass scheme

To evaluate the number of positrons per second required from the source we assume to have 1500 bunches with 5 $10^{11} e^+$ / bunch on target at 10Hz (total of 7.5 $10^{15} e^+$ /sec) SLC CLIC ILC LHeC LHeC

This is a key issue to be studied

	SLC	CLIC	ILC	LHeC	LHeC
				pulsed	ERL
E [GeV]	1.19	2.86	4	140	60
$\gamma \epsilon_x [\mu m]$	30	0.66	10	100	50
$\gamma \epsilon_{v} [\mu m]$	2	0.02	0.04	100	50
$e^{+}[10^{14}s^{-1}]$	0.06	1.1	3.9	(18)	440

Summary of e⁺ sources projects (<u>all very aggressive</u>): In [F. Zimmermann, et al., '**POSITRON OPTIONS FOR THE LINAC-RING LHeC'**, WEPPR076 Proceedings of IPAC2012, New Orleans, Louisiana, USA]

Potential Key MC R&D items

- Beam production target complex
- Acceleration complex design (important cost driver)
 - Fast ramping magnets (for RCS), magnet powering scheme
 - High-field superconducting magnets
 - Beamline design
 - Collimation
- Collider ring design (important parameter and cost driver)
 - High field superconducting magnets, minimal gap
 - Radiation hazard
- Reuse of existing infrastructure or synergy with future projects (FCC) (potential cost saving)

Conclusion

There is no easy solution to high energy and high luminosity Muon Collider

LEMMA is an elegant concept combined to state-of-the-art high energy acceptance and low emittance rings, aiming at good quality muon beams

The ultimate performance of a muon collider based on this concept is mainly dominated by the muon production target and by the quality and intensity of the positron beam. ->

R&D High power target

High-rate positron source (synergy with future e+e- colliders

An FCC- $\mu\mu$, to follow FCC-ee and FCC-hh, is an attractive option worth to be investigated, see for example:

F. Zimmermann, Proc. IPAC18, MOPMF065

R&D on high rate positron source

- R&D on this topic can take advantage of significant synergies with future collider studies as FCC-ee, ILC and CLIC.
- The required intensity for LEMMA is strongly related to the beam lifetime, determined by the momentum acceptance and the target material.
- So, also optics and beam dynamics optimization is necessary.

e ⁺ production rates achieved (SLC) or needed							
	S-KEKB	SLC	CLIC (3 TeV)	ILC (<i>H</i>)	FCC-ee (<i>Z</i>)	LEMMA(Be)	LEMMA(LH2)
10 ¹⁴ e ⁺ / s	0.025	0.06	1.1	2	0.05	100	40

Present: 3 mm Be, 40 turns lifetime(DP/P<6%), ΔN/N=2.5%, P= 247 MW 35 mm LH2, 100 turns lifetime(DP/P<6%), ΔN/N=1%, P= 98 MW

Goal: 3 mm Be, 240 turns lifetime(DP/P<25%), , ∆N/N=0.4%, P=39 MW 35 mm LH2, 625 turns lifetime(DP/P<25%), ∆N/N=0.1%, P= 16 MW

Criteria for target design

Number of $\mu^+\mu^-$ pairs produced per e⁺e⁻ interaction is given by

 $N(\mu^+\mu^-) = \sigma(e^+e \rightarrow \mu^+\mu^-) N(e^+) \rho(e^-)L$

N(e⁺) number of e⁺

 $\rho(e^{-})$ target electron density

L target length

To maximise $N(\mu^+\mu^-)$:

- N(e⁺) max rate limit set by e⁺ source
- ρ(e⁻)L max occurs for L or ρ values giving total e⁺ beam loss
 - e⁻ dominated target: radiative Bhabha is the dominant e⁺ loss effect, giving a maximal $\mu^+\mu^-$ conversion efficiency $N(\mu^+\mu^-)/N(e^+) \approx \sigma(e^+e \longrightarrow \mu^+\mu^-)/\sigma_{rb} \approx 10^{-5}$
 - standard target: Bremsstrahlung on nuclei and multiple scattering are the dominant effects, Xo and electron density will matter $N(\mu^+\mu^-)/N(e^+) \approx \sigma(e^+e \longrightarrow \mu^+\mu^-)/\sigma_{brem}$