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Structure of Grav. EFTs

¢ At low energies (i.e. E<M; ) Gravity is well-described by an Effective Field Theoy (EFT)

Sert (9] = 53 f d'z/=g (R — 2Ac.) .

# Beyond the two-derivative Einstein-Hilbert action one expects further terms  [e.g., Donoghue 94]

S U = dizv/—g | R — 2A... Higher-curv. ops. are
e (g 2K 2/ ) ( +; Adc ’ )«J"\J sufpressedbngscald

?
# The derivative expansion is controlled by the Quantum Gravity scale Aqq ~ Mp

[v. d. Heisteeg, Vafa, Wiesner, Wu 22-23
AC, Herraez, Ibanez *23, J. Calderon, AC, A. Herraez 25]



Structure of Grav. EFTs

¢ Top-down evidence (i.e. higher dim., strings, etc.) tells us this is not the end of the story!
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#Top-down evidence (i.e. higher dim., strings, etc.) tells us this is not the end of the story!
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# The scale M is usually associated to (milder) EFT breakdown (mass states, KK modes, etc.)

[J. Calderon, AC,

# This has nice implications for S-matrix bootstrap and gravitational amplitudes " “" 351



Structure of Grav. EFTs

#Top-down evidence (i.e. higher dim., strings, etc.) tells us this is not the end of the story!

| S /=g
SEFT,dDQ_’{g‘/dIV_g( —2Acc+z ;:2) /d Zrund

n>2 n>2

# The scale M is usually associated to (milder) EFT breakdown (mass states, KK modes, etc.)

[J. Calderon, AC,

# This has nice implications for S-matrix bootstrap and gravitational amplitudes " “*" 351

# Question 4 today: How do black holes know about these two (very ditferent) scales?




Black Holes & Hidden Scales
# Consider a simple scenario exhibiting two such different scales: Decompact. Limit

fatoa (R DB+ faryy 3 %0 @

1>2

# In a KK theory, M is the KK scale whereas Aqg is given by higher-dim Planck mass
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Black Holes & Hidden Scales

# Consider a simple scenario exhibiting two such different scales: Decompact. Limit

MxC
SEFT,d O 22 /ddT\/ R‘*’Z - 2 /
2K UPl D

dz\/—¢ Z

n d
n > 2 II<K

# In a KK theory, M is the KK scale whereas Aqg is given by higher-dim Planck mass

# Question 1: Do neutral black holes know about M2 ~~~ Answer: Yes! [Gregory, Laflamme 03]
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Black Holes & Hidden Scales

# Consider a simple scenario exhibiting two such different scales: Decompact. Limit

e e e e

n d
>2 ‘[KK

n>2

# In a KK theory, M is the KK scale whereas Aqg is given by higher-dim Planck mass

# Question 2: How does QG scale aftect black hole sols? «~~ Answer: Minimal BH (entropy)!

Hawking
radiation

. [Dvali, (Redi) ‘07]
M M~
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Black Holes & Hidden Scales

# Consider a simple scenario exhibiting two such different scales: Decompact. Limit

o e o) g

[n d
>2 n>2 KK

# In a KK theory, M is the KK scale whereas Aqg is given by higher-dim Planck mass

# Question 2: How does QG scale affect black hole sols? «~~~» Answer: Minimal BH (entropy)!

Hawking
radiation

;
e [Dvali, (Redi) ‘07]
D i . R
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Black Holes & Hidden Scales

# Consider a simple scenario exhibiting two such different scales: Decompact. Limit

o e o) g

[n d
>2 n>2 KK

# In a KK theory, M is the KK scale whereas Aqg is given by higher-dim Planck mass

# Question 2: How does QG scale affect black hole sols? «~~~» Answer: Minimal BH (entropy)!

® [Dvali, (Redi) 07]
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In This Talk...

# Main goal: [llustrate these expectations in a controlled setup
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# Main goal: [llustrate these expectations in a controlled setup
¢ We consider supersymmetric theories and BPS objects «~~+ Extremal BHs

#n particular, we focus on 4d N=2 theories and investigate how these two scales show up in

the quantum-corrected BH entropy
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In This Talk...

# Main goal: [llustrate these expectations in a controlled setup
¢ We consider supersymmetric theories and BPS objects «~~+ Extremal BHs

#n particular, we focus on 4d N=2 theories and investigate how these two scales show up in

the quantum-corrected BH entropy

1. When Rpy ~ My the low-dim EFT no longer provides a good estimate of BH entropy (EFT transition)

2. The minimal BH entropy is attained for quantum ‘effective’ areas of O(Agg;)

17
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I. Review: 4d N=2 BPS Black Holes

II. Gluing Entropies Across Dimensions

i. ~ The DO-D2-D4 System
ii.  Perturbative Corrections and Non-Local Resummation

iii. Leading Non-Perturbative Effects

[II. The Fate of Other BPS Systems

i.  The D2-D6 System

ii. A closerlook @ non-perturbative effects

IV. Summary and Outlook
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Part 1

Review: 4d N=2 BPS Black Holes



4d N=2 Theories: The Lagrangian

# Consider 4d theories preserving 8 supercharges. E.g., take Type IIA on CY 3-fold

¢
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4d N=2 Theories: The Lagrangian

# Consider 4d theories preserving 8 supercharges. E.g., take Type 1A on CY 3-fold

# The bosonic action reads (@ 2-derivative level)
1
D

1
—= / Gop dz* A *dz" + hyg dg? A *dg?
4

1 1
Sk = /R* 1+ iReNABFA NFB 4 §ImNABFA A+ FB

# The moduli space factorizes between vector and hypermultiplets

Mipnoa = Mym X Muu
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4d N=2 Theories: The Lagrangian

# Consider 4d theories preserving 8 supercharges. E.g., take Type 1A on CY 3-fold

# The bosonic action reads (@ 2-derivative level)

1
S4d -

1
_’i—z/Gabdza/\*dfb+hpqdqp/\*dqqa

1 1
/R* > EReNABFA AFB 4 §ImNABFA A *xF'8

# The moduli space factorizes between vector and hypermultiplets

Mioa = Mvym X(Mpw

#n what follows we will restrict to the vector multiplet sector
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4d N=2 Theories: The Lagrangian

# The vector multiplet sector is a projective special Kihler manifold

G, = 0,0,K, with K = —logi (XA(E).FA(Z) — X4(2)Fa(2)) ,

<

a

X(Jl
~ X0
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4d N=2 Theories: The Lagrangian

# The vector multiplet sector is a projective special Kihler manifold

Gy = 0,0, K, with K = —logi (XA(Z).FA(Z) — X4(2)Fa(2)) ,

# The latter is completely determined by the prepotential

F = %XA]:A, where F4 = OxaF

<

a

X(Jl
~ X0
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4d N=2 Theories: The Lagrangian

# The vector multiplet sector is a projective special Kihler manifold

X(I

Gup = 0.05K, with K = —logi (X*(2)Fa(z) — X4(2)Fa(2)) , 2*= X0

# The latter is completely determined by the prepotential

1
F = §XA]:A, where Fjy = OxaF

# Moreover, N=2 supersymmetry fixes the gauge kin. matrix in terms of previous quantities

- Im F) 4c X (In XP
NAB — .FAB + 2i( - )ggilm})lzj}{)'iD ’ with ]:KL — (?XI<8XL.F
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4d N=2 Theories: The Lagrangian

#Beyond two derivatives, there exist interesting higher-dimensional BPS operators

Lynq D Z f d*e ]—'Q(XA) (Wijwij)g + h.c. [Antoniadis, Gava, Narain, Taylor ‘05|

g=1
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4d N=2 Theories: The Lagrangian

#Beyond two derivatives, there exist interesting higher-dimensional BPS operators

Lia D Z ] d%e ]—'Q(XA) (Wijwij)g + h.c. [Antoniadis, Gava, Narain, Taylor ‘05|

g=1

# This includes higher-curvature/derivative ops of the form

Loa O Y FfXHYR2W*? + he.,

g>1 /

Scalars Graviton & graviphoton (anti-self-dual)

28



4d N=2 Theories: The Lagrangian

#Beyond two derivatives, there exist interesting higher-dimensional BPS operators

Lia D Z ] d%e ]—'Q(XA) (Wijwij)g + h.c. [Antoniadis, Gava, Narain, Taylor ‘05|

g=1

# This includes higher-curvature/derivative ops of the form

Loa O Y FfXHYR2W*? + he.,

g>1 //

Scalars Graviton & graviphoton (anti-self-dual)

# There are further terms linear in Riem and quadratic in W, which are also important

€

Wia=rV WH=c e, with W, = 2ieX Im N pXAFB~ Wi = W

Hp [z pv o0 [z 2 pv
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4d N=2 Theories: BPS BHs

# An interesting class of objects are BPS (extremal) black holes

AdS, x §? R
2 2U(r) 12, —2U(r) 232 | 2302 ey AR
ds? = =2V dt? + =2V (g(r)"2dr? 4 r2dQ2) [ >
A
T ~Tp T — OO

# Physical properties characterized by gauge charges (attractor mechanism) [Ferrara, Kallosh, Strominger 95
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4d N=2 Theories: BPS BHs

# An interesting class of objects are BPS (extremal) black holes
AdS, x §? RM

e ""',7‘;»1**"’/f\‘
5 = O 4 O (et s a) () - 2
\\/_/_7-_&\_‘-% =

T T r — 00

# Physical properties characterized by gauge charges (attractor mechanism) [Ferrara, Kallosh, Strominger 95

#This can be generalized to include higher-derivative corrections!  [Lopes-Cardoso, Wit, Mohaupt '98-99]
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4d N=2 Theories: BPS BHs

# An interesting class of objects are BPS (extremal) black holes

AdS, x §? R
2 2U(r) 12, —2U(r) 232 | 2302 /'/r/([\ _________
ds® = —e*"\"dt* + e (g(r)~2dr® + r*dQ3) Sava B >
e
T ~Tp T — OO

# Physical properties characterized by gauge charges (attractor mechanism) [Ferrara, Kallosh, Strominger 95|
#This can be generalized to include higher-derivative corrections!  [Lopes-Cardoso, Wit, Mohaupt '98-99]

#We introduce rescaled variables and (symplectic) generalizations thereof

A_ K/27vA
Y = € _ZX Wlth |Z|2 = pAFA(Y, T) . quA
T = 5 222 e = iXAF (X, W?) —iX Fy(X,W?)
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4d N=2 Theories: BPS BHs

# The new central quantity is the generalized prepotential [Ooguri, Vafa, Strominger 04]
/ Higher derivative BPS effects included!

F(X, W3 =) F(XYW¥  with F,(Y*) = (-1)92"%F,(Y*)

NE

Il
o

g
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4d N=2 Theories: BPS BHs

# The new central quantity is the generalized prepotential [Ooguri, Vafa, Strominger 04]
/ Higher derivative BPS effects included!

F, (XYW  with F,(Y*) = (-1)927%F,(Y*)

NE

F(X,W?) =

Il
o

g

#In terms of this the attractor equations read as usual  [Behrndeet al 98]

ipt =Y Y4 gy =FaY,T) - Fa(Y,Y)  with T =—64

34



4d N=2 Theories: BPS BHs

# The new central quantity is the generalized prepotential [Ooguri, Vafa, Strominger 04]
/ Higher derivative BPS effects included!

F(X, W3 =) F(XYW¥  with F,(Y*) = (-1)92"%F,(Y*)

NE

Il
o

g

#In terms of this the attractor equations read as usual  [Behrndeet al 98]
ipt =Y Y4 gy =FaY,T) - Fa(Y,Y)  with T =—64

# The quantum-corrected entropy formula can also be determined to be

‘SBH =T [|Z|2 + 4Im (T@TF(}/, T))] [Lopes-Cardoso, Wit, Mohaupt "99]
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The Large Volume Regime

# Up to now we have kept things general (i.e. model-independent)

#To answer our original question, we henceforth focus on the large radius singularity
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The Large Volume Regime

# Up to now we have kept things general (i.e. model-independent)
#To answer our original question, we henceforth focus on the large radius singularity

#There, the generalized prepotential reads as Topological data

. ’\\ Dabc — _élcabc
T+GY°T) + O (™) 11

da — e S

24 64

DY ¢YY® ¥e
F(K T) — YO ‘|‘ da W
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The Large Volume Regime

# Up to now we have kept things general (i.e. model-independent)
#To answer our original question, we henceforth focus on the large radius singularity

#There, the generalized prepotential reads as

D K
Dy Yeybtye ye . abe = T g Mabe

F(Y,T) = =0 fday TG 0) + O () L 11
@ = T9164 20
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The Large Volume Regime

# Up to now we have kept things general (i.e. model-independent)
#To answer our original question, we henceforth focus on the large radius singularity

#There, the generalized prepotential reads as

1
Dabc __]Cabc

DachaYbYc Y 0 2miz® 6

P(Y,T) = = fda g L+ GO X) + O () P

© 2464 "

e Higher-derivative corrections 6

&
#The (universal) leading quantum correction (due to constant maps) is given by
G, T) = — (22)3 xe(Xs) (Y02 ST & a¥ ...
9=0,2,3,... Expansion parameter
Asymptotic growth ~__ e P P
S (2m)20 7 64 (Y0)2
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The Large Volume Regime

# Up to now we have kept things general (i.e. model-independent)
#To answer our original question, we henceforth focus on the large radius singularity
#There, the generalized prepotential reads as

[ 5. Y &Y 0¥e Y . o
== G A O (e*™=
yo thage THEARD 5 0 (™) oo L1,

F(Y,T) =

#The attractor solutions simplify considerably. For instance, the entropy yields

(Y Y [ LOG(YP,T)  _OG(YO,T)
L 2 . . . ’ . )
SBH =T |:|Z| QZda (—YOT —}—/0 T) 21 (T—aT T—aT

[Lopes-Cardoso, Wit, Mohaupt "99]
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The Large Volume Regime

# Up to now we have kept things general (i.e. model-independent)
#To answer our original question, we henceforth focus on the large radius singularity
#There, the generalized prepotential reads as

DY eYPYe Y® >
- D () (27
o tage LHEARD 5 0 (™) P

P(Y,T)=

#The attractor solutions simplify considerably. For instance, the entropy yields

471' XE(XS)

0Z(«)
T 2

SBH — SBH Ber

Y°?Re |Z(a) — Re(a)
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11.

Outline

Gluing Entropies Across Dimensions

i. ~ The DO-D2-D4 System
ii.  Perturbative Corrections and Non-Local Resummation

iii. Leading Non-Perturbative Effects
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Part 11

Gluing Entropies Across Dimensions
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The D0-D2-D4 BH System

# Consider BPS BHs with no D6-brane charge

# The two-derivative attractor solution is well known. We thus impose -
p-branes

W2 =0, F(X4W?) = F(XY

4d BH

44



The D0-D2-D4 BH System

# Consider BPS BHs with no D6-brane charge

# The two-derivative attractor solution is well known. We thus impose -
g p-branes

W2 =0, F(X4W?) = F(XY

#The solution reads  [Shmakova 96] .

1 ) 1 D .p® bt
CX* = choDabC]b + %Pa (CX")? = Z—b A (2")? 4d BH
do
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The D0-D2-D4 BH System

# Consider BPS BHs with no D6-brane charge

# The two-derivative attractor solution is well known. We thus impose
W2 =0, F(X4W?) = F(XY

#The solution reads  [Shmakova 96

1 : ]-Dac a b
CX9 = échDabe+ %pa (CXO)2 — Z b 13 pp — (CL‘O)Q
qo

‘ g Dp-branes

4d BH

¢ From here one may easily determine both the radius and the entropy of the BH system

2

ry B\ (2 Dabcpapbpc \/ L.
|7 — — Di | — ICa c ambmc
a. 1Z(qa,p”)] X0 g Gl Kaep"p°p

. 1.
Seu(qa,p”) = —4nCX Gy = 2%\/ glc_ml (Kapeppp°)
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The D0-D2-D4 BH System

#We assumed large vol approximation .~~~ need to ensure that the solution is consistent!
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The D0-D2-D4 BH System

#We assumed large vol approximation «~~» need to ensure that the solution is consistent!
# Due to monotonicity of BPS flow, we only have to worry about the horizon locus [Ferrara95-97]
¢ Compute stabilized volumes:

oo [CX°
h = M o

i
Vh = ge_K ‘X0|_2

- pa 6|q\0|
hor K abcP ap bp o
1 |zZr 6/qo
- 8|CXO2 N Kapepp®p©

3

hor
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The D0-D2-D4 BH System

#We assumed large vol approximation «~~» need to ensure that the solution is consistent!
# Due to monotonicity of BPS flow, we only have to worry about the horizon locus [Ferrara95-97]
¢ Compute stabilized volumes:

oo [CX°
h = M o

i
Vh = ge_K ‘X0|_2

- pa 6|q\0|
hor K abcP ap bp o
1 |zZr 6/qo
- 8|CXO2 N Kapepp®p©

3

hor

# Thus we need to impose the following charge hierarchy

D GialinC
P 0 > | P

= |¢"| > p°
qo

"N Wedo not specify x, 0



Including Perturbative Quantum Corrections

# Taking now the generalized prepotential with the leading quant. corrections yields

%Dabcpapbpc - dapaT aG(Yoa T)

Y92 = - ith Gy =
) Go+i(Go — Gy) b 0 oY

[Lopes-Cardoso, Wit, Mohaupt "99]

1 ?
Y4 = EYODabqb + ipa ~~~  Same as before!
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Including Perturbative Quantum Corrections

# Taking now the generalized prepotential with the leading quant. corrections yields

%Dabcpapbpc ik dapaT
go + i(GO — Go) ’

AG(Y?,T)

0N2

with Gp =

[Lopes-Cardoso, Wit, Mohaupt "99]

1 ?
Y4 = EYODabqb + ipa ~~~  Same as before!
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Including Perturbative Quantum Corrections

#Taking now the generalized prepotential with the leading quant. corrections yields

Dac a,.b c_da a Yo 3 &
" DD~ dap"L g, = 2605 T)
do + 1(Go — Go) oYY

1

0y2 _ 4
) =

[Lopes-Cardoso, Wit, Mohaupt "99]

1 i
Y* = EYODGI)% + ipa ~~~  Same as before!
# Notice that in order to recover the previous classical solution we need to impose

Qo] > p* > 1, |Go| > [i(Go — Go)|

# One can thus find an iterative solution of the form

GO(yoa T) - Gﬂ(got T))
G0

(Y°)? = (3°)° (1 48 + ) with (3°)? = (2°)? (1 — 4dup®Y / Dyeep"p°p°)
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Including Perturbative Quantum Corrections

# The corrected black hole entropy and radius read as  [Lopes-Cardoso, Wit, Mohaupt 99

1.
|2 = 2\/6\QO|]Cabcp“pbpc + ..

1, . =
Spa = 27T\/6|(]0‘ (]Cabcpapbpc + Coq pa) — 2m1 (G(y07 T) - G(y(]’ T)) +..
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Including Perturbative Quantum Corrections

# The corrected black hole entropy and radius read as  [Lopes-Cardoso, Wit, Mohaupt 99

1.
|2 = 2\/6\QO|]Cabcp“pbpc + ..

1, . )
Spa = 27T\/6|(_IO‘ (]Cabcpapbpc . pa) — 23 (G(yoa T) - G(y0> T)) +e
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Including Perturbative Quantum Corrections

#The corrected black hole entropy and radius read as  [Lopes-Cardoso, Wit, Mohaupt 9]

1.
|2 = 2\/6\QO|]Cabcp“ppr + ..

i . =
Spu = 27T\/6|QO‘ (Fabep 0 + 2,0 p*) — 27i (G(yga T) -G, T)) +...
#We can understand the condition |G| > |i(Go — Go)| by evaluating the series

X3)

, X
i (Go— Go) = — (EQ(7T)3 e (2—2g)cg_1a29+...
9=0,2,3
xE(X3) 1/2 3 2g—1
- |T| (2—2g9)c, o™ +...
8(2m)? 9=0,2.3,... "

#We are forced to refine the previous charge hierarchy as follows

> 1,  with [§°], p*>1

A a Dabcpapbpc
@) (> \ L

"L Nowwe require large values for x,,
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The Transition Regime

# Including the leading quant. corrections yields sensible answers for certain hierarchies
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The Transition Regime

# Including the leading quant. corrections yields sensible answers for certain hierarchies

#The latter are controlled by a series expansion that is asymptotic (for o < 1)

’i oo
2@y X Xs) (YO2) ¢ o with ¢&_, ~ (2k — 3)!
k=0

GY'T) ~ —

2
#The optimal truncation can be determined to behave as », ~ % (1 + 4%)
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The Transition Regime

# Including the leading quant. corrections yields sensible answers for certain hierarchies

#The latter are controlled by a series expansion that is asymptotic (for o < 1)

oo

xe(Xs) (Y)Y ¢ o with ¢&_, ~ (2k — 3)!

k=0

2(2m)3

GY'T) ~ —

2
#The optimal truncation can be determined to behave as », ~ % (1 + 4%)

¢ Thus, the series is invalidated for « Z O(1) <~~~ Interpretation? Im G(a)

#The attractor egs actually tell us the physical meaning of

o] = L N )
-8 |X0lek2|1Z] 2]

since Mpg = V8| X°|eX? /ky, 1, = | Z|ka/ V8T 1



The Transition Regime

#The EFT fails to capture the relevant BH observable (i.e. entropy) when r, < rgg

QQ w'.%DQZ
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The Transition Regime

#The EFT fails to capture the relevant BH observable (i.e. entropy) when r, < rggk

QQ w'.O@PQ:

# Question: How does the higher-dim (dual) EFT resolve this issue?

60



Non-Iocal Resolution & EFT Transition

# Key observation: use the Gopakumar-Vata representation of the topological free energy
|Gopakumar, Vafa 98]

GV, 1) = g (Xa) (VO T / e = G0 (a) + G (a)
0

+ s sinh®( 7TTLO./S)

61



Non-Iocal Resolution & EFT Transition

# Key observation: use the Gopakumar-Vafa representation of the topological free energy
|Gopakumar, Vafa 98]

6—471' n?is — G(p( ) + G(np)(a)

G, T) = g ) ) Z/o

+ s sinh®( 7TTLOAS)
N Schwinger 1-loop integral for DO-branes
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Non-Iocal Resolution & EFT Transition

# Key observation: use the Gopakumar-Vata representation of the topological free energy
|Gopakumar, Vafa 98]

6—471' n?is — G(p( ) + G(np)(a)

G, T) = g ) ) Z/o

+ s sinh®( 7TTLO./S)
— Schwinger 1-loop integral for DO-branes

# Considering just the perturbative piece, one can resum the series as follows
Im G(a)

1/a? i

GP(Y° 1) =

2] ye(X3) (Y9 a ;nLl e ")

I ~
4d EFT! 5d EFT

(.vzz.‘s_c:}PE(f /2)




Non-Iocal Resolution & EFT Transition

# Key observation: use the Gopakumar-Vata representation of the topological free energy
|Gopakumar, Vafa 98]

() (Y02 53 [ e GO)(a) 1 GOV ()
0

+ s sinh®( 7m045)

GY', ™) = 2(2 E

N Schwinger 1-loop integral for DO-branes

# Considering just the perturbative piece, one can resum the series as follows
Im G(«)

) =T . 2 i
G@”(Y”;T)”WXE( )C(3)( )a Goes a0 YO\ e Small o

I
4d EFT : 5d EFT

(.vzz.‘s_c:}PE(f /2)




Non-Iocal Resolution & EFT Transition

# Key observation: use the Gopakumar-Vata representation of the topological free energy
|Gopakumar, Vafa 98]

() (Y02 53 [ e GO)(a) 1 GOV ()
0

+ s sinh®( 7m045)

GY', ™) = 2(2 E

N Schwinger 1-loop integral for DO-branes

# Considering just the perturbative piece, one can resum the series as follows
Im G(«)

_ s o N\ Large o
i , a*csch” (o /2) O\
— 0, as a — 00 : S /
5d EFT

(®) (0 .y
GOV, T) ~ 5o v

X3) (Y°)

4 4d EFT
]

(.vzz.‘s_c:}PE(f /2)




Non-Iocal Resolution & EFT Transition

# Key observation: use the Gopakumar-Vata representation of the topological free energy
|Gopakumar, Vafa 98]

6—471' n?is — G(p( ) + G(np)(a)

G, T) = g ) ) Zfo

+ s sinh®( 7mozs)

#The BPS quantum extropy would then read as

(27)%|4ol

+ X}i(;?(:s (Z n Li; + (Y9~ Z n? Lig (e_‘m))

~1/2
I, Xa) ¥ %02 — .
Spn = 27T\/a’£]0’ (Kabepp"p° + C2,ap%) (1 g ;1) Z n® Lig (e ))
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Explicit Gluing with 5d Black Strings

#What are we getting in the 5d limit (5 > )2

O
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Explicit Gluing with 5d Black Strings

#What are we getting in the 5d limit (5 > )2
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Explicit Gluing with 5d Black Strings

#What are we getting in the 5d limit (5 > )2
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Explicit Gluing with 5d Black Strings

¢ What are we getting in the 5d limit (r5 > r)?

#The 4d BH lifts to a 5d black string wrapped on M-theory circle

1.
Sgu = 27r\/ é\qol (Kabep™p"p° + ¢4 p*)

# What we obtained is nothing but the IR regulated infinite black string entropy!
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Explicit Gluing with 5d Black Strings

# What are we getting in the 5d limit (r5 > r)?

#The 4d BH lifts to a 5d black string wrapped on M-theory circle

a—r00

L.,
Spy —— 27r\/ 5 %0] (Kabep™p"p® + 24 17)
# What we obtained is nothing but the IR regulated infinite black string entropy!

#This matches perfectly the microscopic counting result [Maldacena, Strominger, Witten 97, Vafa 7]

|(j0|CL
6

a b _c

p'p° + o0 p”

Smicro = 27 Cp, = ]Cabcp

# Remarkably, it includes the QG correction due to the R2 [Sen 05, Kraus, Larsen 05, Castro et al 07]
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Explicit Gluing with 5d Black Strings

# What are we getting in the 5d limit (r5 > r)?

#The 4d BH lifts to a 5d black string wrapped on M-theory circle

a— 00 ]- A
Spi ——— 27r\/ 5 %0] (Kabep™p"p® + 24 17)
# What we obtained is nothing but the IR regulated infinite black string entropy!

#This matches perfectly the microscopic counting result [Maldacena, Strominger, Witten 97, Vafa 97]

|‘§O|CL
6

a b _c

Smicro =27 Cr = ]Cabcp pp + C2.a pa

# Remarkably, it includes the QG correction due to the R2 [Sen 05, Kraus, Larsen 05, Castro et al 07]

# Notice that the minimal BH entropy arises when cubic and linear pieces compete!!

Mp
AQG

[Cribiori, Lust, Staudt 23,

2
) with Aqc = Mps Calderon, Delgado, Uranga 23] 2

SBHZ(



Including Non-Perturbative Effects

#n the previous discussion we focus only on (resummed) perturbative quantum corrections

# Question: Do non-perturbative effects spoil our analysis/conclusions?
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Including Non-Perturbative Effects

#In the previous discussion we focus only on (resummed) perturbative quantum corrections

# Question: Do non-perturbative effects spoil our analysis/conclusions?

# Come back at Schwinger integral

7; 0{2 OOdS 1 219

2(27)3 xe(X3) (Y9)?Z(a) I(a) = — Z —tnais

4 o= Jor s sinh® (mnas)

G0 =
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Including Non-Perturbative Effects

#In the previous discussion we focus only on (resummed) perturbative quantum corrections

# Question: Do non-perturbative effects spoil our analysis/conclusions?

# Come back at Schwinger integral

0 o 0\2 _ o / ~ds 1 —4nntis
GY",T) = 2(27)? xe(Xs3) (YY) " I(a) I(a) = 4 ZZ o+ S sinh?® (mnas) c

# One should be careful when evaluating the integral for positive/negative charged states

Im (s)
A

052 oC dS 6—271'75713
Toso (@) = — ) f S —
n20 (@) >0 J0t s sinh? (%)

2
&2 —00 dS 627rz‘ns Fant > Re (s)
Tneo (o) = — E —
n>1+0

_ s sinh? (%)

poles at s = —
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Including Non-Perturbative Effects

#In the previous discussion we focus only on (resummed) perturbative quantum corrections

# Question: Do non-perturbative effects spoil our analysis/conclusions?

# Come back at Schwinger integral

GIY,T) = —— xp(Xs) (Y°)* (a) @) = Y [T e

2(2m)3 = Jo+ 8 sinh® (mnos)

# One should be careful when evaluating the integral for positive/negative charged states

Im (s)

Tnso (@) i? _ /Oo % an? e—jwin(s—ioﬂ _ /OO % 1. | | .
> o o+ 8 sinh” (%) or 5 1 —e72mils=i07) ginh? ()

Tneo (@) % _ /_OO % Zn>1 eiﬂin(s—o-ioﬂ _ /0— % 1. | | ) -
a - @& sinh® (%) o 8 L= e 2meH0T) gipp? (22)
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Including Non-Perturbative Effects

#In the previous discussion we focus only on (resummed) perturbative quantum corrections

# Question: Do non-perturbative effects spoil our analysis/conclusions?

# Come back at Schwinger integral

GIY,T) = —— xp(Xs) (Y°)* (a) @) = Y [T e

2(2m)3 = Jo+ 8 sinh® (mnos)

# One should be careful when evaluating the integral for positive/negative charged states

Im (s)

a? [ ds 1 1
T(a) =2 ¢ =22 .
=T P T ()

Re (s)

2min

. poles at s=*Fk,& s =
[see also Hattab, Palti 24|

77




Including Non-Perturbative Effects

#In the previous discussion we focus only on (resummed) perturbative quantum corrections

# Question: Do non-perturbative effects spoil our analysis/conclusions?

# Come back at Schwinger integral

GIY,T) = —— xp(Xs) (Y°)* (a) @) = Y [T e

2(2m)3 = Jo+ 8 sinh® (mnos)

# One should be careful when evaluating the integral for positive/negative charged states

Im (s)

a? [ ds 1 1
T(a) =2 ¢ =22 .
W=7 P T e ()

- a7 o » Re(s)

2min

. poles at s=*Fk,& s =
[see also Hattab, Palti 24|
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Including Non-Perturbative Effects

#In the previous discussion we focus only on (resummed) perturbative quantum corrections

# Question: Do non-perturbative effects spoil our analysis/conclusions?

# Come back at Schwinger integral

GIY,T) = —— xp(Xs) (Y°)* (a) @) = Y [T e

2(2m)3 = Jo+ 8 sinh® (mnos)

# One should be careful when evaluating the integral for positive/negative charged states

Ina(s)

a? [ ds 1 1
T(a) =2 ¢ =22 .
=7 P 5 T2 (@)

Re (s)

2min

. poles at s=*Fk,& s =
[see also Hattab, Palti 24|
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Including Non-Perturbative Effects

# The non-perturbative correction is now easily determined

n . > mn _47r2km, &
7P () = —2mic Z € ° (l-l— 47r2kn)

n,k=1

= —2maZ(nL11( )4‘@&2( %))

# Notice the problematic growth for a > 1

ReG(a)
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Including Non-Perturbative Effects

# The non-perturbative correction is now easily determined

n . ka mn _47r2km, &
7P () = —2mic Z € ° (l-l— 47r2kn)

n,k=1

= —2maZ(nL11( )4‘@&2( %))

# Notice the problematic growth for a > 1

# Crucially, this has a different complex phase, and it does not enter the att. eqs nor BH obvs!

Dapep™pp° — 2dp* Y

2 _ A0 ~
(YO)2 _ %Dabcpapbpc — C{apaT |Z‘ - YO -+ ?/Y (GO — GO)
go +i(Go — Gy) Spy = —41Y % — i (SYOGO TGy — h.c.)
Attractor eq.

BH entropy and radius a1



Outline

[II. The Fate of Other BPS Systems

i.  The D2-D6 System

ii. A closerlook @ non-perturbative effects
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Part II1

The Fate of Other BPS
Black Hole Systems



The (Classical) D2-D6 BH System

#We would now like to study other BPS solutions which include D6-brane charge

s /
Dp-branes g

4d BH
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The (Classical) D2-D6 BH System

¢ We would now like to study other BPS solutions which include D6-brane charge
# At 2-derivatives the problem is hard: we must deal with a quadratic alg. system Dp-branes g

#We focus on a particularly simple system, i.e. the D2-D6 BPS black hole .

4d BH
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The (Classical) D2-D6 BH System

¢ We would now like to study other BPS solutions which include D6-brane charge
# At 2-derivatives the problem is hard: we must deal with a quadratic alg, system ~ Dp-branes g

#We focus on a particularly simple system, i.e. the D2-D6 BPS black hole .

¢ Having no D4 charge implies 4d BH

0

CX°=ReCX’+i  CX"=CX*=ReCX"
#The attractor equations read

Dape (CXY)(OX) = — L2 10 X0

~ 2p°Re CX° (Dase (CX*)(CXP)(CX)) 2 Re X (¢.CX")
= [CXO4 N 3|C X2
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The (Classical) D2-D6 BH System

¢ We would now like to study other BPS solutions which include D6-brane charge
# At 2-derivatives the problem is hard: we must deal with a quadratic alg, system ~ Dp-branes g

#We focus on a particularly simple system, i.e. the D2-D6 BPS black hole .

¢ Having no D4 charge implies 4d BH
0
CX° = R><XO +is-  CX"=CX*=ReCX"
# The attractor equations (imposing no DO charge) read

Dape (CX®)(CX®) = —BQ—;OIOXOF

go x CX° =0

87



The (Classical) D2-D6 BH System

# Defining the variables

3
= Dabcxbxc = _Q_a

% = Re CX* CXOP 0
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The (Classical) D2-D6 BH System

# Defining the variables

6
— Dabcxbxc - _Q_a

% = Re CX* CXO2 0

#One can easily write the physical properties of the BHs such as the central charge

4
2P = -2 (@.CX?)
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The (Classical) D2-D6 BH System

# Defining the variables

3 b_c qa
CX0? = Dgex’a" = ~5

% = Re CX*

¢ One can easily write the physical properties of the BHs such as the central charge

4
2P = -2 (@.CX?)

..as well as the relevant volumes (implying the hierarchy ¢, > p”)

B 2CXa_ 1p*CX®
hor P 2|CX02

h_

1 2P 2(-q.CX") _DuCX°CX'CX . (CX®
8[CXO 3 (p°)?2  §(CX0)° h T Oxo
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The (Classical) D2-D6 BH System

# Defining the variables

3 b,.c Qa
CX0? = Dgex’a" = ~5

% = Re CX*

¢ One can easily write the physical properties of the BHs such as the central charge

4
2P = -2 (@.CX?)

# _.as well as the relevant volumes (implying the hierarchy ¢, > p")

B 2CXa_ 1p*CX®
hor P 2|CX02

h_

1 2P 2(-q.CX") _DuCX°CX'CX . (CX®
8[CXO 3 (p°)?2  §(CX0)° h T Oxo

# .and the classical (i.e. Bekenstein-Hawking) entropy

4
SBH = —Wg(qaCXa)
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The (Quantum) D2-D6 BH System

# The quantum corrected attractor solution reads
3D YY" = — L yOP _ g1
p

o _ 2°ReY® (DueY YPY* + d,Y°T)
- Yot

—i(Go— Go)
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The (Quantum) D2-D6 BH System

# The quantum corrected attractor solution reads
3D YY" = — L yOP _ g1
p

o _ 2°ReY® (DueY YPY* + d,Y°T)

Y0]4 —1 (GO - GO)
#The formal series of corrections is now alternating
0 _ ¢ 02 3 2
G(Y",T) = 22y xe(Xa) YO ) (=10 |of*
9=0,2,3,...
oG(Y°, T xe(X3)
o = zfz(wfé YD (=172 - 29)c)q [l

g=0,2,3,...
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The (Quantum) D2-D6 BH System

# The quantum corrected attractor solution reads
3D YY" = — L yOP _ g1
p

o _ 2°ReY® (DueY YPY* + d,Y°T)

Y0]4 — (GO - GO)
#The formal series of corrections is now alternating
Y0 _ ¢ 02 _1)9,3 29
G( :T) 2(271_)3 XE(X?)) ’Y | g_é ( 1) Cg—1 ’a|
G(YO, Y x£(Xs3) Gy is purely real!
E?YO ) - 2?2(77)?;} Y? Z (—=1)%(2 —29)03—1 |l i

g=0,2,3,...
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The (Quantum) D2-D6 BH System

#The quantum corrected attractor solution reads
3D YY" = — L yOP _ g1
p

o _ 2°ReY® (DueY YPY* + d,Y°T)

Y0]4 — (GO - GO)
# The formal series of corrections is now alternating
YU — l X 02 —1)9 3 2g
G( ﬂT) 2(271_)3 XE( 3) ’Y | g_é ( ) Cg—l ’a|
G(YO, Y x£(Xs3) Gy is purely real!
E?YO ) - 2?2(77)?;} Y? Z (=1P(2= 29)03—1 |l i

g=0,2,3,...

#The solution is not spoiled! The relevant BH quantities are given by

4 1
2 _ a 0
1Z|* = —3Y (qa = 12p0cQa> +p ReGo
& oru 1 xe(Xs)(@")? 3 2
S = —3m¥ (q“ * @) a2 CUC-29)¢ ol

9=0,2,3,...
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No Genuine 5d Regime

# Interestingly, o = i|«|is upper bounded due to charge quantization

2

a=—il|af o] = —
0
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No Genuine 5d Regime

# Interestingly, o = i|«|is upper bounded due to charge quantization

ol o=
a=—i|a o = —
pD

# From M-theory this is easily understood geometrically

# The BH can be understood as a 5d BH at the center of a Taub-NUT
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No Genuine 5d Regime

# Interestingly, o = i|«|is upper bounded due to charge quantization

ol o=
a=—i|a o = —
pD

# From M-theory this is easily understood geometrically
#The BH can be understood as a 5d BH at the center of a Taub-NUT

#Still, one may explore the r, 2 75 regime

# The quantum series diverges, and we need a 5d regularization
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Non Local and Non Perturbative Effects

#We resort again to the GV prescription, using that now a = i|a/
/)
G(Y",T) = —m XE(X3) Y Z(|al)

|Og| |O{‘22] 6—471'2?12@3
+ s sin? 7rn]a|)
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Non Local and Non Perturbative Effects

#We resort again to the GV prescription, using that now « = ifa/

0 . _L 02
G(Y",T) = 2(27)? xE(X3) Y77 Z(|al) \- Grav. analogue of

2 magnetic self-dual bckgrd
|Og| |O{‘ Z] 6—471'2?127,3
+ 8 sin? 7rn]a| )
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Non Local and Non Perturbative Effects

#We resort again to the GV prescription, using that now « = ifa/
/)
CELT) = - 2(2n)3 x5 (Xa) [V Z(Ja) \- Grav. analogue of

2 magnetic self-dual bckgrd
|Og| |O{‘ Z] 6—471'2?127,3
+ 8 sin? 7rn]a| )

¢ Now we can freely deform the contour of integration without picking poles!

# The resulting integral can be performed numerically

1.202

7(0)=¢(3)

1.200

47ns
|af? /OO ds e Tal ( 1 il 1)
I - 3 — I — = + = 1198}
(Jal) =¢(3) 2 J, s 1_6_%5 TiihZ (s) 2 3

1.196 I(2)=1.19658...

Z(lal)

0.0 0?5 1j0 1?5 2‘.0 |“|
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Non Local and Non Perturbative Effects

#We resort again to the GV prescription, using that now a = i|a/
/)
CELT) = - 2(2n)3 x5 (Xa) [V Z(Ja) \- Grav. analogue of

2 magnetic self-dual bckgrd
|Og| |O{‘ Z] 6—471'2?12@3
+ 8 sin? 7rn]a| )

# Now we can freely deform the contour of integration without picking poles!

# The resulting integral can be performed numerically

7(0)=¢(3)

1.202

1.200

47s
o /OO ds e Tel ( 1 i 1) e
I (87 = 3 e - - T A + =i 1.198
(‘ |) C( ) 2 . S 1 _ e_TZT Sinh2 (8) 82 3

1.196 - T(2)=1.19658...

0.0 0?5 1?0 1?5 2‘.0 |“|

#The entropy is finite in the transition regime and there are no non pert. effects
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Challenges with the Cauchy Formulation

# Question: Can we always use the simple Cauchy formula?  [sce also Hattab, Palti 4]

a? [ds 1 il -
I = — —_ - — 0 - C
(Ck) 4 s 1— e—27rzs Siﬂh2 (OcQS) o ]a|e
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Challenges with the Cauchy Formulation

# Question: Can we always use the simple Cauchy formula?  [sce also Hattab, Palti 4]

d 1 1 .
f—s a = |ale® € C

s 1— e—27ris Siﬂh2 (%)

T(a) = %2

#The non perturbative poles are now rotated. They arise at

2
= exp (im/2 — i6,,), n € Z

[
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Challenges with the Cauchy Formulation

# Question: Can we always use the simple Cauchy formula? [sce also Hattab, Palti24]

d 1 1 :
jt{—s R a = |ale® € C
s 1— e—27r18 sinh (%) Im (s)

T(a) = %2

2

#The non perturbative poles are now rotated. They arise at

2
= exp (im/2 — i6,,), n € Z

[

4o 49 LD e

# The series of residues behave as

— 1
70 (a) ~ QQZEekO‘
k=1

4RW2

=1
%) (o) ~ —2mia E —e o
n
n=1

#Whenever a = i|a| both sets of poles appear along the real axis!
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Challenges with the Cauchy Formulation

#In that case the asymptotics changes dramatically

> 1

o1 4k sin? (ch1|) _ e oo—L3 Re (5)
a = i|a -

I(p)(oz) ~ —a?

= 1
") () ~ 2mic Z -
= 4An Sin2 (271,71' )

||
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Challenges with the Cauchy Formulation

#In that case the asymptotics changes dramatically

oo 1 o

I(p)(&) ~ —a2

9 ka|) e S N e o Re (s)

r—1 4k sin (T o — 3|Qg|

= 1
") () ~ 2mic Z -
- An Sin2 (271,71' )

||

# They badly diverge for two reasons:
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Challenges with the Cauchy Formulation

#In that case the asymptotics changes dramatically

o0 1 O,

I(p)(a) ~ _Od2 e, M R

o1 4k sin? (ch1|) _ %Y oo—L3 Re (s)
a = i|a

= 1
") () ~ 2mic Z -
- An Sin2 (271,71' )

||

# They badly diverge for two reasons:

1. The series are lower bounded by the harmonic one
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Challenges with the Cauchy Formulation

#In that case the asymptotics changes dramatically

I(p)(&) ~ —a2

a = i|o|

") (@) ~ ZWi(IZ -
- An Sin2 (271,71' )

||

# They badly diverge for two reasons:

1. The series are lower bounded by the harmonic one

2. The series of residues are dominated by quasi-poles |Apostol '12: Dirichlet’s approx. theorem |

LA

e

LA

Im (s)
a~

o
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Challenges with the Cauchy Formulation

Im (s)
#In that case the asymptotics changes dramatically

o0

IO (a) ~ —a? 1 Y
w1 4k sin? (k—al)

2

70, M 9, W 9.\

T 7 Re (s)
N o =i ;
1
") () ~ 2mic E -
=1 4nsin® (2”” )

o
# They badly diverge for two reasons:

L

The series are lower bounded by the harmonic one

2. The series of residues are dominated by quasi-poles [Apostol 12: Dirichlet’s approx. theorem|

There are infinitely many integer pairs satistying

0<"}f& =

1 1 1
——
Oy

— - ~J > qTr NS —
¢ sin®(pr) |7 — pal? 2
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Challenges with the Cauchy Formulation

Im (s)
#[n that case the asymptotics changes dramatically

o0

I(p)(a) ~ —0fR 1 0
w1 4k sin? (k—al)

2

70, M 9, W 9.\

. o =il 1
Z0w) () ~ 2mi
(@) e ; 4n sin? (2””2)

o
# They badly diverge for two reasons:
1

The series are lower bounded by the harmonic one

2. The series of residues are dominated by quasi-poles [Apostol 12: Dirichlet’s approx. theorem|

# There are infinitely many integer pairs satistying : :

1
0<‘f}f& <= =

dy

#One cannot simply add the arc at infinity, but rather integrate over the imaginary axis

- e 2 gy
¢ sin®(pr) |7 — pal?

o
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Part IV

Summary and Outlook



Summary & Outlook

¢ We have illustrated how extremal BHs can probe the multi-scale structure of gravity

# At curvatures/energies around M there is an EFT transition

Uv
1. The EFT gives wrong/misleading predictions for BH observables \
2. This can be cured by resuming the quantum corrections ®
# At curvatures/energies around Agg we reach the minimal BH entropy IR

¢ We illustrated this in 2 particular examples: DO-D2-D4 and D2-D6 systems
1. Asymptotic series breaks down at dual M-theory circle scale
2. Non-local effects allow to resum and dilute the corrections in the 5d regime
3. Only the QG suppressed effects survive

4. Non-perturbative phenomena do not spoil the analysis
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Conclusions & Outlook

# There are many possible extensions of our work
1. Going beyond large volume (e.g. include WS instantons)
2. BHs probing the F-theory limit in elliptic CYs [WIP]

3. BHs probing weakly coupled string phases [WIP]
4. Small BHs [WIP]

#1t is also important to understand the fate of non-pert. effects in the general case [WIP]

# One should also revisit the GV computation in AdS,xS2 [WIP]

\.b

# Stay tuned!

2\

L
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The Species Scale

# Gravity is non remormalizable

SEH [g,uv] 2 Q/dd,f[) (R 2A-CC) _':—:E::E:E.é :._:_:E:::::-

# Recall that Gy is precisely the coupling constant

2 6Smatter
V=g 09"

#The most natural guess for Aqq is thus the energy scale associated to Gy

1
RMV _ 59[.“’/72’ + AC.C. g,uy — SWGNTHL' Wlth T,LI,I/ — —

1

AQG — f‘%d = M Pl;d
#Hence, the EFT expansion for gravity should read as [c.g. Donoghue 94]

Higher-curv. ops. are Planck

Pld )4""/ suppressed!

SEFT [QW] /ddﬂf\/_ (R 2. + Z
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The Species Scale

#1et’s test this idea using well-motivated gravity principles [AC, Herraez, Thanez 21-24]

# Consider a spherical box in d spacetime dim
P P

N =0(1)

# How many field/metric configurations?

F = ¢ R&IT? 1 A
5 = Co (RT)d_l

[Bekenstein 72,
Bousso ‘99]

E d-3
R\ 7= No collapse condition
Mg

# Well-established entropy bounds impose that minimal size is reached for A = O(1)



The Species Scale

# But what if N is very large? [AC, Herracz, Thanez 21-24]




The Species Scale

# But what if N is very large? [AC, Herracz, Thanez 21-24]

# Repeating the same exercise now yields

N>1

E =¢ NR&1T

= S
S=¢N (RT)!

E -3
BRe ==
"R"‘[}r’l:(;

#To avoid violation of entropy bounds we need to impose N < A!

IA
=] s 9

(N Ad—l)i

IA
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The Species Scale

#But what if N is very large? [AC, Herracz, Thanez 21-24]

# Repeating the same exercise now yields

N>1

E = ¢ NR&I T
5 = C2N (RT)d_l B

5 =3
R | o=rg
A[]gl;d

# Minimal length in gravity is actually

A > N= Emin — Esp = fplNdT12
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The Species Scale

#We thus define (asymptotically) the species scale as follows [Dvali, Redi 07; Dvali, Gomez 10|

l

f B
o
A

=

=

M
Negp 12

# Notice that when N grows, Ay, and Mp,.q decouple!
#This is particularly interesting in light of Swampland conjectures

# There exist various arguments to arrive at the conclusion Aqa = Agp [Dvali 07]
1. Perturbative (graviton series) N

2. Non-perturbative (Black holes) G Ypo
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The Species Scale

#We thus define (asymptotically) the species scale as follows [Dvali, Redi 07, Dvali, Gomez ‘10]

L
|2
2
A
=
3

M
Negp 12

# Notice that when N grows, A, and Mp,.4 decouple!
#This is particularly interesting in light of Swampland conjectures

# There exist various arguments to arrive at the conclusion Aqa = Agp

+ (matter)

Lerra O V-9 [ ( Z )

[v. d. Heisteeg, Vafa, Wiesner, Wu 22-23
AC, Herraez, Ibanez 23]
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One Scale to Rule them All

# Actually, from string theory, the fact that Aqc # Mp1.q is not that surprising

#In fact, Mp1q typically depends on the starting theory & details of the compact.

MxC

.

1. Indecompact. limits one obtains Ag, ~ Mpy. g1k 4““

P g
2. For weak coupling points we find Agp ~ /T D

|AC, Herraez, Ibanez 21-24|

#Both limits are thus understood under the same concept within QG

# Moreover, it suggests that the appearance of light towers is the universal mechanism for

quantum gravity ‘phase transitions’
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What do we mean by Entropy?

[Lopes-Cardoso, Wit,

P . . . : .
The previous formula arises by using Wald’s formalism in a truncated theory Mohaupt '00]
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What do we mean by Entropy?

[Lopes-Cardoso, Wit,

P . . . : .
The previous formula arises by using Wald’s formalism in a truncated theory Mohaupt 00]

# Essentially, one ignores D-term-like and hypermultiplet contributions

# Some of these were shown to give vanishing corrections  [Lopes-Cardoso et al. 00, Murthy, Reys ‘13]
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What do we mean by Entropy?

[Lopes-Cardoso, Wit,

P . . . : .
The previous formula arises by using Wald’s formalism in a truncated theory Mohaupt '00]

# Essentially, one ignores D-term-like and hypermultiplet contributions
# Some of these were shown to give vanishing corrections  [Lopes-Cardoso et al. 00, Murthy, Reys ‘13]

#1t is believed that what we actually compute is a grav. index  [Ooguri, Vafa, Strominger ‘04]

Spu = log Zindex — 1q¢ with  Zipgex = Tr [(—1)F6iq¢:| = Z(—l)FQ(p, q) i

susy q

#In the large charge expansion one would have

Zindex ~ Z —— Smicro = 10g Q(p7 Q) ~ SBH [Zaffaroni 19
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Details on Gopakumar-Vafa

> A o

130



Higher genus free energies

# Beyond two derivatives, there exist interesting higher-curvature BPS operators in 4d N=2

Sia D / d*x /=g (ZIQ(XA)Rﬁ_ Fig—Z) + h.c.

g>1 /

Scalars Graviton & graviphoton (self-dual)

#The Wilson ‘coefficients’ are computed by topological string theory [Antoniadis, Gava, Narain, Taylor ©05]

1 [>dr 1 2
2g-2 -~ e 2 —Tm
Z’FQF+ o 4/0 2 TR Z
2

g>0 s T sin
1 [*dr 229(2g — 1) N _z
B Z/m ?QZ; (29)! (=1)7 By 9 & + 0 (e F+) | Gopakumar, Vafa ‘O8]

# Alternatively, one may use Gopakumar-Vata prescription: integrating-out procedure

131



Higher genus free energies

#The latter approach makes manifest the UV behaviour [AC, Herraez, Ibanez 23]

JFy B / dr 127 3¢~ ™4 = 72729129 — 2,e7) with € = Agy
€

Central charge

#For g > 2 the loop integral converges, whereas for g = 0,1 one needs to properly regularize!
#1 et us briefly consider the case g =1, corresponding to the R? operator

#\World-sheet computation: [Cecotti, Fendley, Intriligator, Vafa ‘93]

1 [d*r F omiHy —2miH
I = 5 — 1 ((—1) Fr Fre e 0) It is an index!
T2
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Higher genus free energies

#This can be integrated exactly [Bershadsky, Cecorti, Ooguri, Vafa ‘93]

XE(XS)
12

1
Fi=3 (3+h1’1—

1
) Ky + 3 log det G5 + log | f|?

# For any infinite distance boundary one indeed finds  [v.d Heisteeg, Vafa, Wiesner, Wu 23]

2
L~ A In agreement with expectations!
Sp

#E.g., for Enriques CY (K3 x T?) /Zs we find (@ large torus volume)

2
MP1;4

NS5, str

/

Dual heterotic string

Fi1 = —6log (To|n(T)|*) + const. = 2715 + O (log T3) ~
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Higher genus free energies

#For g > 2 the situation is different (and more interesting)

#We find the same behaviour for all 3 diff. kinds of limits: decomp. To M/F-theory or

emergent string limits [AC, Herrdez, Ibanez 23]
# For illustration purposes, we focus on the simplest one: the M-theory (large vol) limit

# The dominant contribution to F,~; comes from DO-brane tower

m
My, = 27|n) g—s = |n| mpo Vn €7
S
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Higher genus free energies

#For g > 2 the situation is different (and more interesting)

#We find the same behaviour for all 3 diff. kinds of limits: decomp. To M/F-theory or

emergent string limits [AC, Herrdez, Ibanez 23]
# For illustration purposes, we focus on the simplest one: the M-theory (large vol) limit

# The dominant contribution to F,~; comes from DO-brane tower

72, = IS [ o
nez
20 — 1 1
- XE(XS)( g (QW))C( )F(ZQ — 2)mp, 2 o2
_ 2(29 — 1)¢(29)I'(2g — 2) ((2g — 2)
= xe(Xs3) (2729 m]2:)go 2
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Higher genus free energies

#For g > 2 the situation is different (and more interesting)

¢ We find the same behaviour for all 3 diff. kinds of limits: decomp. To M/F-theory or

emergent string limits [AC, Herrdez, Ibanez 23]
# For illustration purposes, we focus on the simplest one: the M-theory (large vol) limit

# The dominant contribution to F,~; comes from DO-brane tower

T
nez
2g — 1 1
- XE(XS)( 2 (QW))C( )F(QQ — 2)mp, 2 o2
_ 2(2g — 1)¢(29)I'(29 — 2) ((2g — 2)
= x5(X3) (27)29 m%go 2
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Extending Some Results

> A o
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