<< April 2010 >>
 
 >>
 >>
 >>
 >>
 >>
Sun Mon Tue Wed Thu Fri Sat
   1   2   3 
 4   5   6   7   8   9   10 
 11   12   13   14   15   16   17 
 18   19   20   21   22   23   24 
 25   26   27   28   29   30   
 
Add an Event Edit This Event

Events at Physics

<< Fall 2009 Spring 2010 Summer 2010 >>
Subscribe to receive email announcements of events
Astronomy Colloquium
"Modeling surface velocity fields from tidal interactions: the one-layer approximation"
Date: Tuesday, April 20th
Time: 3:30 pm
Place: 3425 Sterling Hall
Speaker: Gloria Konigsberger, UNAM
Abstract: Binary stars in eccentric orbits are the clearest example of stars whose equatorial rotation velocity is not synchronized with orbital motion. Under these conditions, the surface velocity field is perturbed from its purely rotational nature, thus modifying the shape of the observationally-detectable photospheric absorption lines on a variety of timescales. Absorption lines are used to derive basic stellar parameters
and to gain a better physical understanding of stars. Although their variability is often interpreted in terms of non-radial pulsation theory, it is important to understand the nature of the surface velocity fields that are induced by the tidal interactions alone, especially under conditions of rapid rotation and large orbital eccentricity where the perturbations can become highly non-linear. We use a time-marching numerical calculation from first principles to compute the surface velocity field due to the tidal interaction (Moreno &amp;amp;amp; Koenigsberger 1999; Toledano et al. 2007). This velocity field is then projected along the line-of-sight to the observer to predict the orbital phase-dependent line-profile variability (Moreno et al. 2005). In this talk, the general characteristics of our model will be described and we'll discuss its predictions for synchronization timescales in very eccentric binaries. In addition, we will show that the general characteristics of the theoretical photospheric line-profiles compare favorably with observational data of the short-period B-type binary system Spica (Harrington et al. 2009). It is interesting to note that because tidal flows are associated with viscous shear energy dissipation, the atmospheric structure of an asynchronously rotating binary star could differ significantly from that of a single star.
Host: Prof John Gallagher
Add this event to your calendar

©2013 Board of Regents of the University of Wisconsin System