<< November 2014 >>
Sun Mon Tue Wed Thu Fri Sat
 2   3   4   5   6   7   8 
 9   10   11   12   13   14   15 
 16   17   18   19   20   21   22 
 23   24   25   26   27   28   29 
Add an Event

Events at Physics

<< Summer 2014 Fall 2014 Spring 2015 >>
Subscribe to receive email announcements of events

Events During the Week of November 2nd through November 8th, 2014

Monday, November 3rd, 2014

Plasma Physics (Physics/ECE/NE 922) Seminar
Metamaterial-enhanced resistive wall amplifiers
Time: 12:00 pm
Place: 2535 Engineering Hall
Speaker: Tyler Rowe, UW ECE
Host: CPTC
Add this event to your calendar
Cosmology Journal Club
An Informal discussion about a broad variety of arXiv papers related to Cosmology
Time: 12:15 pm
Place: 5242 Chamberlin Hall
Abstract: Please visit the following link for more details:
Please feel free to bring your lunch!
If you have questions or comments about this journal club, would like to propose a topic or volunteer to introduce a paper, please email Le Zhang (lzhang263@wisc.edu)
Host: Peter Timbie
Add this event to your calendar

Tuesday, November 4th, 2014

Chaos & Complex Systems Seminar
Organic chromophores for optoelectronic devices
Time: 12:05 pm
Place: 4274 Chamberlin Hall (Refreshments will be served)
Speaker: Trisha Andrew, UW Department of Chemistry
Abstract: Molecular and polymeric organic materials are promising replacements for the inorganic semiconductors in photovoltaic cells due to their large absorption coefficients and easy processing and deposition procedures. Non-traditional nanostructured devices on inexpensive and arbitrary substrates can be fabricated with high throughput using organic materials, leading to vanishingly low module costs. Recent highlights in incorporating organic dyes into photovoltaics devices of varying architectures will be discussed.
Host: Clint Sprott
Add this event to your calendar
Theory Seminar (High Energy/Cosmology)
Stueckelberg U(1)'s and Axions in String Theory
Time: 3:00 pm
Place: 5280 Chamberlin Hall
Speaker: Fang Ye, University of Wisconsin-Madison
Abstract: In this talk, we will discuss several interesting scenarios in which U(1) gauge fields couple to axions through the Stueckelberg mechanism from a string theory perspective. We will first introduce the milli-charged dark matter scenario in which a small electric charge carried by the dark matter particles arise exclusively through kinetic mixing of the photon with some extra massless U(1)'s. We discuss how this apparent contradiction with the "folk theorem" of quantum gravity (that forbids the existence of non-quantized charges) can be resolved when embedded in string theory. Then we will discuss a related scenario - "Stueckelberg Portal" - in which the sizable interactions between Standard Model (SM) and the hidden sectors through heavy Z' bosons arise from a large U(1) mass mixing induced by the Stueckelberg mechanism. Such models present many interesting phenomenological features (e.g. SUSY mediation, hidden valley, no chiral exotics, etc), and are simple and generic in top-down models. We will see how the Stueckelberg Portal can naturally be implemented in string theory. An explicit intersecting D-brane model will be presented. Finally, we will briefly mention some ongoing work on realizing super-Planckian axion decay constants in string theory.
Host: Ran Lu
Add this event to your calendar

Wednesday, November 5th, 2014

No events scheduled

Thursday, November 6th, 2014

R. G. Herb Condensed Matter Seminar
Accurate and efficient simulation of donors in silicon
Time: 10:00 am
Place: 5310 Chamberlin Hall
Speaker: John King Gamble, Sandia National Laboratories
Abstract: For the past sixty years, researchers have studied the electronic structure of donors in silicon using the effective mass approximation, where electronic states are restricted to the vicinity of silicon's six conduction band minima. Despite including central cell corrections and valley-orbit coupling, effective mass theories to date are typically regarded as phenomenological tools, while more computationally-intensive atomistic simulations are more trustworthy.

Here, we present a fully internally consistent effective mass theory that includes
valley-orbit coupling and relies upon only a few approximations. Inspired by recent density functional theory calculations, we include a tetrahedral central cell correction, variationally matching experimentally measured energy levels of phosphorous donors in silicon. When imposing internal consistency, we find both the form of the central cell and the Bloch functions are critically important to obtaining agreement with experiment.

Within this new effective mass framework, we obtain quantitative agreement with the NEMO 3D tight-binding code when calculating the tunnel coupling energy between two phosphorous donors in silicon, a critical quantity for donor-based quantum information processing. We then use our framework, which is several orders of magnitude faster than comparable atomistic simulations, to exhaustively enumerate tunnel coupling over a ~30 nm cube of donor placements, about 1.3 million distinct placements. This high-throughput approach enables the identifications of regions where the tunnel coupling shows little variation among nearby donor positions with high probability, suggesting the feasibility of realistic devices with regular, controllable properties.

This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Host: Mark Friesen
Add this event to your calendar
Astronomy Colloquium
New Windows into Supernova Explosions and Progenitors
Time: 3:30 pm
Place: 4421 Sterling Hall
Speaker: Jennifer Hoffman, UW Milwaukee
Supernovae of all types exhibit time-dependent spectropolarimetric signatures produced primarily by electron scattering. These reveal the presence of aspherical phenomena such as complex velocity structures, changing illumination, and asymmetric morphologies within the ejecta or surrounding circumstellar material. The gradual thinning of the ejecta over time also allows us to probe different scattering regions as the supernova evolves. Interpreting the time variations of spectropolarimetric signatures yields unprecedentedly detailed information about supernova explosion mechanisms, the physical processes that shape the density and velocity distributions of the ejecta and circumstellar material, and the properties of the progenitor star.

I will present an overview of supernova spectropolarimetry, highlighting recent observational and computational results. This versatile technique helps us to constrain explosion mechanisms, connect SNe with their massive progenitors (as well as other high-energy transient phenomena such as GRBs), and investigate the process of stellar evolution in other galaxies.
Add this event to your calendar
Graduate Introductory Seminar
WIPAC: IceCube, HAWC, Cosmic Ray Physics
Time: 4:30 pm
Place: 5280 Chamberlin Hal
Speaker: Halzen, Hanson, Karle, Vandenbroucke, Westerhoff
Add this event to your calendar

Friday, November 7th, 2014

Physics Department Colloquium
CANCELLED - To be rescheduled Spring 2015
Title to be announced
Time: 3:30 pm
Place: 2241 Chamberlin Hall (coffee at 4:30 pm)
Speaker: M. Zahid Hasan, Princeton University
Host: Himpsel
Add this event to your calendar

©2013 Board of Regents of the University of Wisconsin System