

The EIC - a facility to unravel the secrets of nuclear matter

Elke-Caroline Aschenauer (BNL)

Jefferson Lab

Manual V

What is the EIC:

A high luminosity $(10^{33} - 10^{34} \text{ cm}^{-2}\text{s}^{-1})$ polarized electron proton / ion collider with $\sqrt{s_{ep}} = 28 - 140 \text{ GeV}$

What is new/different:

The EIC Accelerator

EIC Machine Parameters

Double Ring Design Based on Existing RHIC Facilities

Hadron Storage Ring: 40 - 275 GeV	Electron Storage Ring: 5 - 18 GeV	
RHIC Ring and Injector Complex: p to Pb	Many Bunches, Large Beam Current - 2.5 A	
1160 bunces @ 1A Beam Current 9 ns bunch spacing	9 MW Synchrotron Radiation	
Light ion beams (p, d, ³ He) polarized (L,T)	Polarized electron beams	
Nuclear beams: d to U	Electron Rapid Cycling Synchrotron	
Requires Strong Cooling: new concept \rightarrow CEC	Spin Transparent Due to High Periodicity	
High Luminosity Interaction Region(s)		
25 mrad Crossing Angle with Crab Cavities		

dimmer.

The EIC: A Unique Collider

collide different beam species: ep & eA

→ consequences for beam backgrounds

EIC

- → hadron beam backgrounds,
 - i.e. beam gas events
- → synchrotron radiation

asymmetric beam energies

→ boosted kinematics

 \rightarrow high activity at high $|\eta|$

Small bunch spacing: >= 9ns

crossing angle: 25mrad

wide range in center of mass energies→ factor 6

electron beam follows B-factory design parameters but polarized

both beams are polarized \rightarrow stat uncertainty: ~ 1/(P_1P_2 (/L dt)^{1/2}) collide the same beam species: pp, pA, AA

- → beam backgrounds
 - → hadron beam backgrounds,
 - i.e. beam gas events, high pile up

symmetric beam energies

- > kinematics is not boosted
 - most activity at midrapidity

moderate bunch spacing: 25 ns

no significant crossing angle yet (150 µrad now)

LHC limited range in center of mass energies
→ factor 2

no beam polarization \rightarrow stat uncertainty: ~1/(/L dt)^{1/2}

Differences impact detector design, acceptance and possible technologie

What is needed experimentally?

polarization, ion species together with its luminosity and \sqrt{s} coverage makes it a completely unique machine worldwide.

What is needed to address the EIC Physics

The Golden Process:

Deep Inelastic Scattering (DIS):

- As a probe, electron beams provide unmatched precision of the electromagnetic interaction
- Direct, model independent determination of parton kinematics of physics processes

$Q^2 = s \bullet x \bullet y$

- s: center-of-mass energy squared
- Q²: resolution power
- **x**: the fraction of the nucleon's momentum carried by the struck quark (0 < x < 1)
- **y**: inelasticity

large kinematic coverage: \rightarrow center-of-mass energy \sqrt{s} : 20 – 140 GeV

How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon? How do the nucleon properties emerge from them and their interactions?

How do color-charged quarks and gluons, and colorless jets, interact with a nuclear medium? How do the confined hadronic states emerge from these quarks and gluons?

Qs: Matter of Performance and Flamer and

How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions?

What happens to the gluon density in nuclei? Does it saturate at high energy, giving rise to a gluonic matter with universal properties in alloquelei, even

Why are PDFs interesting?

- Two views of the proton
 - three quarks (spectroscopy, quark models)
 - many quarks, antiquarks, gluons (high-energy processes)

How are these two pictures and the underlying concepts related?

- simple (and often quoted) picture of nucleon:
 - three quarks at low resolution scale
 - gluons and sea quarks generated by perturbative splitting

BUT: 1d-PDF fits of Glueck, Reya et al. show that this is too simple

must have gluons and sea quarks at non-perturbative scales

How can we understand their dynamical origin in QCD? How do they relate to the valence quarks?

Gluons in DIS

Gluons manifest themselves through

the behavior of the cross section as function of x and Q^2

$$\frac{d^2 \sigma^{e_{p \to eX}}}{dx dQ^2} = \frac{4\pi \alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]$$

quark+anti-quark gluon momentum momentum distributions

distribution

without gluons the cross section depends only on x, no dependence on $Q^2 \rightarrow F_2(x)$

🤜 Bjorken scaling

The unpolarized Proton PDFs

At x of 0.3 the proton is dominated by gluons and sea quarks they should drive the inner structure of the proton

Why are PDFs interesting?

How can we understand their dynamical origin in QCD? How do they relate to the valence quarks?

GOAL:

explore and quantify features of quarks, antiquarks and gluons in the proton that are suitable to guide theory

- How are quarks, antiquarks and gluons spatially distributed in a nucleon?
- How does this distribution change with momentum fraction x ?
 difference between valence and sea quarks?
- What is the behavior at large transverse distances?
 confinement, chiral dynamics (virtual pion fluctuations)
- What is the connection between transv. spatial distribution and transv. momentum of partons?

IOW X

Why should we care about Spin?

SPIN is one of the fundamental properties of matter all elementary particles, but the Higgs carry spin

Spin cannot be explained by a static picture of the proton

It is more than the number ½! It is the interplay between the intrinsic properties and interactions of quarks and gluons

Despite decades of QCD – Spin one of the least understood quantities

- Consequence very few models, but several physics pictures, which can be tested with high precision data
- □ the pion/kaon cloud model
 - \rightarrow rooted in deeper concepts \rightarrow chiral symmetry
 - Jenerated q-qbar pairs (sea quarks) at small(ish)-x are predicted to be unpolarized
 - \rightarrow gluons if generated from sea quarks unpolarised \rightarrow spatial imaging
 - → a high precision measurement of the flavor separated polarized quark and gluon distributions as fct. of x is a stringent way to test.

the chiral quark-soliton model

- sea quarks are generated from a "Dirac sea" with a rich dynamical structure but excludes gluons at its starting scale
- \rightarrow sea quarks are polarized \rightarrow asymmetry
- a high precision measurement of the flavor separated polarized quark as fct. of x is a stringent way to test

What do We know

Spin Decomposition ala Jaffe-Manohar:

Based on World DIS data and some RHIC pp-data

Current World DIS data \rightarrow no constrain on $\Delta g(x,Q^2)$ need to measure more then just the integrals

Why is separating quark flavors important?

Why is separating quark flavors important?

- nuclear structure is encoded in parton distribution functions
- understand dynamics of the quark-antiquark fluctuations
- flavor asymmetry in the light quark sea in the proton

unpolarized: ubar < dbar Helicity: ∆ubar > ∆dbar TMDs: ?????

shape of polarized sea-quark PDFs critical for quark contribution to spin

Most recent Study

gluon contribution: $dg_1(x,Q^2)/dlnQ^2 \rightarrow \Delta g(x,Q^2)$

Inclusive data: stringent constrain on $\Delta g(x,Q2)$

E.C. Aschenauer

Impact from He-3 DIS Data

Impact from SIDIS Data

Different Contributions to Proton Spin

Can we access the Orbital Angular Momentum

Jaffe-Manohar:

$$\frac{1}{2}\hbar = \left\langle P, \frac{1}{2} | J_{QCD}^{z} | P, \frac{1}{2} \right\rangle = \sum_{q} \frac{1}{2} \sum_{q} S_{q}^{z} + S_{g}^{z} + \sum_{q} L_{q}^{z} + L_{g}^{z}$$

defined in A⁺=0 gauge
 Δq and Δg
 \Rightarrow density interpretation

□ Orbital angular momentum: $\frac{1}{2}$ - ($\Delta\Sigma$ + Δ G)

- > can lead to a misinterpretation as on does not measure ($\Delta\Sigma + \Delta G$) for x 0 to 1
- □ Alternative access orbital angular momentum through twist-3 GPDs
 - ➢ even more complicated then std GPDs → will come with large model uncertainties

<u>Ji:</u>

Can we access the Orbital Angular Momentum

$$= J_q^z + J_g^z = \frac{1}{2} \Delta \Sigma + \sum_q \mathcal{L}_q^z + J_g^z$$

through GPDs
$$\mathcal{L}_z = \frac{1}{2} \int dxx [H(x,0,0) + E(x,0,0)] - \frac{1}{2} \int dx \tilde{H}(x,0,0)$$

As of today:

one can only extract Compton Form factors from data
 unclear there is a unique relations between CFFs and GPDs
 there exists no study how to go from a GPD to L_z and what the model uncertainties would be

Further theoretical work will be absolutely critical to overcome these challenges

Spin as Vehicle to Image Quarks & Gluons

images from semi-inclusive scattering

High precision imaging at EIC at low and high x Golden channel: **DVCS**

2+1d-Imaging in coordinate space Current DVCS data at colliders: 10³ H1- total xsec H1- dσ/dt H1- A_{CU} O ZEUS- total xsec → ZEUS- do/dt = 140 GeV. 0.015 Y. Current DVCS data at fixed targets: γ_L* HERMES- A_{LT} ▲ HERMES- Acu HERMES- A_{LU}, A_{UL}, A_{LL} HERMES- A_{UT} ★ Hall A- CFFs CLAS- A_{LU} ★ CLAS- A_{UL} (\mathbf{Q}^2)

x+ξ

Q²=100 GeV²

Q²=50 Ge\

Planned DVCS at fixed targ.

JLAB12- do/dt, ALU, AUL

Experimental Program Preparation

Yellow Report and EIC Conceptual Design Report are both available and include a reference detector concept.

BNL and TJNAF Jointly Leading Process to Select Project Detector		
2020	Call for Expressions of Interest (EOI) https://www.bnl.gov/eic/EOI.php	May 2020
	EOI Responses Submitted	November 2020
	Assessment of EOI Responses	On-going
2021	Call for Collaboration Proposals for Detectors https://www.bnl.gov/eic/CFC.php	March 2021
	BNL/TJNAF Proposal Evaluation Committee	Spring 2021
	Collaboration Proposals for Detectors Submitted	December 2021
\checkmark	Decision on Project Detector	March 2022

The EIC Users Group: EICUG.ORG Formed 2016, Current Status

1330 collaborators, 36 countries, 267 institutions (Experimentalists 830, Theory 327, Acc. Sci. 159)

Next Steps after DPAP

Great progress over the last months

ECCE is the reference design for an optimization and consolidation phase around a 1.5T solenoid, with goals to:

- integrate new collaborators in a manner that enables them to make contributions that impact the capabilities and success of the experiment in significant ways, including new collaborating individuals and groups into positions of responsibility and leadership
- integrate new experimental concepts and technologies that improve physics capabilities without introducing inappropriate risk
 - Have to consider science impact but also impact on cost, schedule and technical risk. The Project will have to make that call in the end
- advance the Project Detector to CD2/3a in a timely way (this includes starting a phase towards a pre-TDR for CD-2/3a and a TDR at CD-3)

Steps to formation of collaboration:

- Formed ATHENA and ECCE joint leadership team (Silvia Dalla Torre, Bernd Surrow, Or Hen, Tanja Horn, John Lajoie) together with physics and detector working groups
- Finish survey to confirm institutional interest in Detector-1
 - \rightarrow form institutional board (IB) \rightarrow to be finalized by EIC_UG meeting in July
 - IB appoints committee to write collaboration charter
 - After charter is established → elect collaboration management → goal: finalized
 by Oct/Nov 2022

What is needed experimentally?

experimental measurements categories to address EIC physics:

inclusive **DIS**

- measure scattered lepton
- \rightarrow event kinematics

Ldt: 1 fb-1

- \rightarrow e-ID: e/h separation
- → reach to lowest x, Q² impacts Interaction Region design

semi-inclusive DIS

- measure scattered lepton and hadrons in coincidence
- multi-dimensional binning:
 - x, Q², z, p_T, Θ
 - → particle identification over entire kinematic region is critical
 - → Jets: excellent E_T, jet-energy scale 10 fb⁻¹

machine & detector requirements

exclusive processes

- measure all particles in event
- multi-dimensional binning:
 x, Q², t, Θ
- proton p_t: 0.2 1.3 GeV
 - → cannot be detected in main detector
 - → strong impact on Interaction Region design

10 - 100 fb⁻¹

Experimental Equipment

Basis for EIC Project Detector

→ ECCE general-purpose Detector around the BaBar 1.5 T Solenoid

Overall detector requirements:

- Large rapidity (-4 < η < 4) coverage; and far beyond especially in far-forward detector regions
 - \rightarrow Integration into IR from the beginning critical
 - Large acceptance for diffraction, tagging, neutrons from nuclear breakup: critical for physics program Many ancillary detector along the beam lines: low-Q² tagger, Roman Pots, Zero-Degree Calorimeter,
- High precision low mass tracking
 - small (μ-vertex Silicon) and large radius (gaseousbased) tracking
- Electromagnetic and Hadronic Calorimetry
 - equal coverage of tracking and EM-calorimetry
- High performance PID to separate e, π, K, p on track level
 - good e/h separation critical for scattered electron identification
- Maximum scientific flexibility
 - Streaming DAQ \rightarrow integrating AI/ML
 - High control of systematics

luminosity monitor, electron & hadron Polarimetry

What is new/special for a EIC GPD

Vertex detector → Identify primary and secondary vertices, Low material budget: 0.05% X/X₀ per layer; High spatial resolution: 10 µm pitch CMOS Monolithic Active Pixel Second

High spatial resolution: 10 μ m pitch CMOS Monolithic Active Pixel Sensor (MAPS)

 \rightarrow synergy with Alice ITS3

Central tracker → Measure charged track momenta MAPS – tracking layers in combination with micro pattern gas detectors

electron and hadron endcap tracker → Measure charged track momenta MAPS – disks in combination with micro pattern gas detectors

Particle Identification → pion, kaon, proton separation RICH detectors & Time-of-Flight high resolution timing detectors (, LAPPS, LGAD) 10 – 30 ps novel photon sensors: MCP-PMT / LAPPD

Electromagnetic calorimeter → Measure photons (E, angle), identify electrons Crystals (backward), W/SciFi Spacal (forward) Barrel: Pb/SciFi+imaging part or Scintillating glass → cost effective

Hadron calorimeter \rightarrow Measure charged hadrons, neutrons and K_L⁰ challenge achieve ~50%/ \sqrt{E} + 10% for low E hadrons (<E> ~ 20 GeV) Fe/Sc sandwich with longitudinal segmentation

DAQ & Readout Electronics: trigger-less / streaming DAQ Integrate AI into DAQ → cognizant Detector

E.C. Aschenaue

Please join us

E.C. Aschenauer

E.C. Aschenauer

The EIC Project

National Academy of Science Report: AN ASSESSMENT OF U.S.-BASED ELECTRON-ION COLLIDER SCIENCE

"An EIC can uniquely address three profound questions About nucleons—neutrons and protons—and how they are assembled to form the nuclei of atoms:

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise?
- What are the emergent properties of dense systems of gluons?"

DOE Project Decision Process

Preliminary Design ~50-60%; Final Design \geq 85%

CD-2 – Approve **Performance**

Baseline: CD-2 is an approval of the preliminary design of the project and the baseline scope, cost, and schedule. What is most relevant is that CD-2 means there is now a definitive plan that the project will be measured against in cost, schedule and technical performance.

 \rightarrow pre-TDR is required for CD-2

CD-3 – Approve Start of Construction:

CD-3 is an approval of the project's final design and authorizes release of funds for construction. What is most relevant is that projects can now proceed with construction related procurements and activities. CD-3 is sometimes split in CD-3A in a tailored approach to approve start construction for long-lead procurements.

→ TDR is required for CD-3

2nd Detector and IR

Current assumption realization trailing ~3 – 5 years behind EIC Detector-1
 DOE is initiating generic EIC detector R&D program
 focus on complementary technologies for 2nd Detector and future upgrades for Detector-1

111111

World-Wide Interest in EIC Physics

The EIC Users Group: EICUG.ORG

Formed 2016, Current Status

1330 collaborators, 36 countries, 267 institutions (Experimentalists 830, Theory 327, Acc. Sci. 159)

- EICUG has continuously grown since its formation, notably after CD-0 and site-selection
- Growth will as EIC project moves into construction

Location of Institutions

EIC Proto-Collaborations

ATHENA (https://sites.temple.edu/eicatip6/)

- Focus on becoming the "project detector"@IP6
- New 3 T magnet and the YR Reference Detector
- Leadership: S. Dalla Torre (INFN Trieste, B. Surrow (Temple)
- ~117 collaborating institutions from Armenia, Canada, China, Czech, France, Germany, Italy, India, Poland, Romania, UK

CORE (<u>https://eic.jlab.org/core/</u>)

- An EIC Detector proposal based on a new 3 T compact magnet for the 2nd EIC detector @ IP8
- Contacts: Ch. Hyde (ODU) and P. Nadel-Turonski (SBU)
- Smaller-scale effort, ~20-30 active collaborators

ECCE (https://www.ecce-eic.org)

- Project detector @IP6 or the 2nd EIC detector @ IP8 using existing 1.5T "Babar" solenoid
- Leadership: O. Hen (MIT), T. Horn (CUA), J. Lajoie (Iowa State)
 - ~98 collaborating institutions from Armenia, Canada, Chile, Croatia, China, Czech, France, Germany, Israel, Japan, Senegal, Korea, Russia, Slovenia, Taiwan, UK

Detector Proposal Advisory Panel

- Reviewed detector proposals from the three proto-collaborations all three proposals received high marks
- Concluded that ATHENA and ECCE satisfied the requirements
- Noted that many collaborators are involved in multiple proposals and none of the proto-collaborations are currently strong enough to build the project detector
- Strongly encouraged the three proto-collaborations to move forward together based on ECCE as the reference design for the project detector
- Expects the integration of new collaborators and new experimental concepts and technologies to improve physics capabilities, and to prepare the detector as part of the EIC project baseline, the next major DOE schedule milestone
- Enthusiastically supported a second detector as needed to take full advantage of the unique capabilities of EIC facility
- Expects the EIC User Community to come together in support of the project detector as well as a second detector

DOE Led/ signe<u>d</u>

Laboratory Led/signed

Agreements with International Partners

uuuv

We are tracking closely what documents are required and what is in place

ountry, Institution, Funding Agency	Gov. to Gov.	/ Agency to Agency	NP Program to Program Project Annex			St	Statement of Interest		Project-to-Project		DOE collaboration encouragement letter		EIC-Project collaboration encoragement letter		
,															
	needed	existing	needed	in preparation	existing	needed	in preparation	existing	needed	in preparation	existing	requested	provided	requested	provided
Armenia															
rgentina															
vustralia		in preparation													
Irasil										_					
		SC with State initiating S&T agreement, followed by Agency to													
Janada		Agency													
JERN				In preparation											
Jhile															
Jnina				in plan for post phase											
				in proporation											
France-CEA				in preparation											
Sermany															
lungary															
ndia				in plan for next phase											
srael				in plan for next phase											
taly															
lapan				in preparation											
/lexico		May be US-Canada-Mexico - Will check with GC if this can be used.													
Poland				Met with the funding agency											
Romania															
South Korea				in preparation											
Spain		in preparation													
aiwan															
JK 🔤				in preparation											
	HALE I	Mar Dr.										*			

E.C. Aschenauer

6.10.01 Detector

Management

6.10.02 Detect. R&D

Collaboration – Project

6.10

FIC

Detector

Rolf & Elke

We need a control account manager (CAM) at each WBS level. WBS levels go down to where it is meaningful to accumulate cost and schedule variance. There can be many Work Packages below.

Integrating Collaborators:

- In-kind partners integrated into the project delivery organization and responsible for their project deliverables
- Close interaction between the project and the detector collaboration with collaborators taking lead roles on work packages and project deliverables

Fold in users/collaborators as

- L3/L4 point of contacts?
- L3/L4/L5 owners?
- Work Package owners

Why do we need different probes

Complementarity

QCD has two concepts which lay its foundation factorization and universality

To tests these concepts and separate interaction dependent phenomena from intrinsic nuclear properties different complementary probes are critical Probes: high precision data from ep, pp, e+e-

EIC: Access to terra incognita

46

Charge Current:

HOW TO ACCESS PARTONS IN DIS

Detect scattered lepton (DIS) in coincidence with identified hadrons (SIDIS)

- → one can measure the correlation between different hadrons as fct. of p_t, z, η
- needs fragmentation functions to correlate hadron type with parton
- \rightarrow Detector: PID over a wide range of η and p

W-exchange: direct access to the quark flavor no FF – complementary to SIDIS

 \rightarrow Detector: large rapidity coverage and large \sqrt{s}

best observable to access parton kinematics tag partons through the sub-processes and jet substructure

- \rightarrow di-jets: relative p_t \rightarrow correlated to k_t
- → tag on PGF
 - Detector: large rapidity coverage and PID

2.

3.

How to access Gluons in DIS

 Gluons manifest themselves through the scaling violation of the cross section as function of x and Q² dF₂(x,Q²)/dlnQ² → G(x,Q²)

EICUG: Yellow Report (YR) Initiative

The EIC Users Group: EICUG.ORG Report: https://arxiv.org/abs/2103.05419

Detector requirements and design driven by EIC Physics program and defined by EIC Community

Physics Topics → Processes → Detector Requirements

Physics Working Group:

Inclusive Reactions Semi-Inclusive Reactions Jets, Heavy Quarks Exclusive Reactions Diffractive Reactions & Tagging

Detector Working Group:

Tracking + Vertexing Particle ID Calorimetry DAQ/Electronics Polarimetry/Ancillary Detectors Central Detector: Integration & Magnet Far- Forward Detector & IR Integration

Provides critical input for detector proposals

Background/Radiation

Important to note:

- Iow multiplicity per event: < 10 tracks</p>
- η > 2: avg. hadron track momenta @ 141 GeV: ~20 GeV
- > No pileup from collisions 500 kHz @ 10^{34} cm⁻²s⁻¹ \rightarrow coll. every 200 bunches
- \succ radiation environment much less harsh than LHC \rightarrow factor 100 less

The HERA and KEK experience show that having backgrounds under control is crucial for the EIC detector performance

- There are several background/radiation sources :
 - primary collisions
 - beam-gas induced
 - synchrotron radiation

Synchrotron Radiation:

- Origin: quads and bending magnet upstream of IP
- Tails in electron bunches: can produce hard radiation
- Studied using Synrad3D

Background/Radiation

Primary collisions contribute a substantial fraction of the ionizing radiation and low energy neutron fluence in the experimental hall

→ forward EmCal: up to ~5*10⁹ n/cm²
 per fb⁻¹ (*inside the towers*); perhaps
 ~5 less at the SiPM location

→ backward EmCal: ~250 rad/year (at "nominal" luminosity ~10³³ cm⁻² s⁻¹)

Beam-gas interactions are one of the main sources of neutrons that thermalize within the detector hall and cause the damage.

The current FLUKA simulations show that the EIC detector will obtain annual dose of 6*10¹⁰ n/cm² (1 MeV equivalent)

Impact on SiPMs and Silicon Vertex Tracker

suggested tolerance of 10¹⁴ n/cm²

Why a Crossing Angle

- Brings focusing magnets close to IP
 - → high luminosity
- Beam separation without separation dipoles
 - reduced synchrotron radiation
- But significant loss of luminosity

Solution: Crab crossing

- Head-on collision geometry is restored by rotating the bunches before colliding ("crab crossing")
- Bunch rotation ("crabbing") is accomplished by transversely deflecting RF resonators ("crab cavities")
- Actual collision point moves laterally during bunch interaction
- Challenges
- Bunch rotation (crabbing) is not linear due to finite wavelength of RF resonators (crab cavities)
- Severe beam dynamics effects
- Physical size of crab cavities

Progress: Luminosity at lower E_{cm}

Simplest way change focusing scheme of final focusing quads

 \rightarrow Advantage independent of Interaction Region \rightarrow can be done both at IP-6 and/or IP-8

IR-Integration Requirements

Space constrains for ECCE:

- -4.5 m IP +5m not negotiable
 50 cm space to 1st IR-magnet occupied by vacuum pumps, valves,
- IP moved 81 cm towards ring inside compared to RHIC; y: 432 cm above floor

- 9.5 m long detector does not fit through the door
 - Door-Size: 823 cm x 823 cm
 - endcap hadron calorimeters need to stay in collider hall, if detector rolls in assembly hall
- RCS to IP: radial distance 335.2 cm at a height of 372 cm from floor
 - Maximum outer radius ~ 3.2 m
- Detector Solenoidal axis aligned with electron beam
- Fringe field requirements for solenoid under development
- Installation and Maintenance requirements defined

IR-Integration

All far forward and backward subsystems are integrated in the Interaction region lattice

EIC General Purpose Detector: Concept

Tracking/Material Budget

- Vertex + central + forward / backward tracker layout (moderate momentum resolution, vertex resolution ~20 μm)
- At most 3T central solenoid field (maximize B*dl integral at high |η|)
- Low material budget
 - Minimize bremsstrahlung and conversions for primary particles
 - Improve tracking performance at large |η| by minimizing multiple Coulomb scattering
 - Minimize the dead material in front of the high resolution e/m calorimeters

MAPS µVertex

- For primary and secondary vertex reconstruction
- Low material budget: $0.05\% X/X_0$ per layer
- High spatial resolution: 10 µm pitch MAPS \rightarrow ref. Alice ITS3
- Compromise:

20 μ m (or smaller) pixels and ~0.3% X/X₀ per layer

Configuration: Barrel+ Disks for endcaps

Micro Pattern Gas Detectors

- To improve momentum resolution at large rapidities.
- Spatial resolution well below 100 μm
- Large-area detectors possible
- Cost efficient compared to silicon

Electro-Magnetic Calorimeter

Applications:

- Scattered electron kinematics measurement at large |η| in the e-endcap
- Photon detection and energy measurement
- e/h separation (via E/p & cluster topology)
- > π^0/γ separation

Anticipated stochastic term in energy resolution & π suppression

η	[-42]	[-21]	[-1 1]	[1 4]
σ _ε /Ε	~2%/VE	~(4-8)%/√E	~(12-14)%/√E	~(4*-12)%/√E
π suppression	Up to 1:10 ⁻⁴	Up to 1:10 ⁻³ -10 ⁻²	Up to 1:10 ⁻²	3σ e/π

Other considerations:

- Fast timing
- > Compactness (small X_0 and R_M)
- Tower granularity
- Readout immune to the magnetic field

EIC Yellow Report

#	Туре	samp-	fsamp	X ₀	R _M	λ_I	cell	$\frac{X}{X_0}$	ΔZ	$\sigma_E/$	Е,%
		ling, mm		mm	mm	mm	mm ²	110	cm	α	β
1	W/ScFi**	⊘0.47 ScFi	2%	7.0	19	200	25^{2}	20	30	2.5	13
		W powd.									
2	PbWO ₄ ***	-	_	8.9	19.6	203	20^{2}	22.5	35	1.0	2.5
3	Shashlyk***	$0.75 \mathrm{W/Cu}^a$	16%	12.4	26	250	25 ²	20	40	1.6	8.3
		1.5 Sc									
4	W/ScFi**	0.59 ² ScFi	12%	13	28	280	25^{2}	20	43	1.7	7.1
	with PMT	W powd.									
5	Shashlyk***	0.8 Pb	20%	16.4	35	520	40^{2}	20	48	1.5	6
		1.55 Sc									
6	TF1 Pb glass***	-	-	28	37	380	40^{2}	20	71	1.0	5-6
7	Sc. glass ^{*b}	-	-	26	35	400	40^{2}	20	67	1.0	3-4

Crystals

- High resolution EmCal in the electron-endcap for the scattering electron measurements
- PWO where space is tight, and the highest possible energy resolution is required
- Scintillating glass (EIC R&D) otherwise
 - More cost efficient, easier manufacturing \succ
 - Potentially better optical properties

Example: SC1 glass

Homogeneous, projective

Barrel ECal ala ECCE

- 6 imaging layer: AstroPix and Pb/SciFi •
 - AstroPix, monolithic Si sensor, dev
 - Pb/SciFi following KLOE, GlueX
- Reconstruct scattered and secondary electrons
- Separate e/π
- Identify and reconstruct g (also radiated from e)
- Identify π^0 also at high momenta

 γ 's from 15 GeV/c π^0 decay

also >1 λ _ι	
contributing to	
bHCal	

	expected performance					
Energy Resolution	$5.5\%/\sqrt{E}\oplus1\%^a$					
e/π separation	$>$ 99.8% pion rejection with 95% electron efficiency at $p\geq 0.1~{ m GeV/c^b}.$					
E_{\min}^{γ}	$< 100 { m MeV}^c$					
Spatial Resolution	uster position resolution for 5 GeV photons at normal incident angle is below $= 2 \text{ mm}$ (at the surface of the stave $r = 103 \text{ cm}$) or 0.12° . For comparison, e minimal opening angle of photons from $\pi^0 \rightarrow \gamma \gamma$ at 15 GeV is $\sim 1.05^{\circ}$ bout 19 mm – 37 pixels – of separation at $r = 103 \text{ cm}$).					

Barrel – ECal ala ATHENA

Sampling EmCal

- Well established technology
 - HERA-B, ALICE, PHENIX, PANDA, ...
- Medium energy resolution ~7..13%/ \sqrt{E}
- Compact ($X_0 \sim 7$ mm or less), cost efficient

Pb/Sc shashlyk

W/SciFi spacal

Scintillating Fibers embedded in a W/epoxy mix Light collection uniformity can yet be improved

Fe/Sc sandwich

- HCAL in endcap
- Compact LEGO-style design
 - Can be used with a mixed Fe/Pb absorber

E.C. Aschenauer

Fe/Sc (barrel)

- Similar as used in sPHENIX
 - Solid 32-sector steel frame, but only ~3.5 λ_I
 - Moderate energy resolution

20

10

30

40

0 50 60 Input Energy [GeV]

Scintillator plate with embedded WLS fiber

0

EIC PID

needs are more demanding then your normal collider detector

EIC

needs absolute particle numbers at high purity and low contamination

- Electrons from photons $\rightarrow 4\pi$ coverage in tracking
- Electrons from charged hadrons \rightarrow mostly provided by calorimetry
- Charged pions, kaons and protons from each other \rightarrow Cherenkov detectors
 - Cherenkov detectors, complemented by other technologies at lower momenta

Challenges:

- photon sensors in high magnetic field \rightarrow SiPMs impact on streaming DAQ
- high performance aerogel radiator

1.0 - 3.5

50 GeV/c

100 MeV/c

20 GeV/c

Hadron PID

Barrel

REFERENCE

hpDIRC (High Performance DIRC)

- Quartz bar radiator, light detection with MCP-PMTs
- Fully focused
- p/K 3s sep. at 6 GeV/c
- Reuse of BABAR DIRC as alternative
- Integration into a 4π detector can be challenging

dE/dx from gaseous tracker, i.e. TPC complementary STAR: ~ similar resolution expected

Backward Endcap

Geant4 Simulation

REFERENCE

mRICH (Modular RICH)

- <u>Aerogel</u> Cherenkov Det.
- Focused by Fresnel lens
 - e, pi, K, p
- Sensor: <u>SiPMs/ LAPPDs</u>
- Adaptable to includeTOF
- π/K 3 σ sep. at 10 GeV/c

Everywhere

TOF with short lever arm

Forward Endcap

Aerogel and C-F gas radiators

Full momentum range

Sensor: Si PMs(TBC)

windowless RICH

- Gaseous sensors (MPGDs)
- CF₄ as radiator and sensor gas

Low p complements required:

TOF ~ 2.5m lever arm / Aerogel (mRICH)

HP-RICH (high pressure RICH)

- Eco-friendly alternative for dRICH/windowless RICH
- Ar @ 3. 5 bar \leftrightarrow C₄ F₁₀ @ 1 bar
- Ar @ 2 bar \leftrightarrow C F₄ @ 1 bar

LGAD (Low Gain Avalanche Detector)

- Silicon Avalanche
- 20-35 psec
- Accurate space point for tracking
- Relevant also to central barrel
- R&D and PED by International consortium HEP & NP

LAPPD (Large Area psec Photon Detector)

MCP, Cherenkov in window

REFERENCE

dRICH (dual RICH)

- 5-10 psec
- → supported by DOE SBIR program

listic material optical properties

High resolution timing technologies

Expecting affordable detectors with <10ps timing on the EIC CD-2 time scale

Detectors can provide <20ps / layer

AC-coupled variety gives 100% fill factor and potentially a high spatial resolution (dozens of microns) with >1mm large pixels

Additional e⁻IP

- To improve e-identification for leptonic/semi-leptonic decays.
- In addition to Calorimeters and Cherenkov detectors in the hadron-endcap considering TRD.
- GEM -TRD/Tracker :
 - e/π rejection factor ~10 for momenta between 2-100 GeV/c from a single ~15cm thick module.

Very precise Tracking segment behind dRICH:

Streaming Readout Architecture

IR Requirements from Physics

	Hadron	Lepton
Machine element free region	High Luminosity → beam elements need to be close to IP EIC: +/- 4.5 m for main detector beam elements < 1.5° in main detector volume	
Beam pipe	Low mass material i.e. Beryllium	
Integration of Detectors	Local Polarimeter	Low Q ² -tagger Acceptance: Q ² < ~0.1 GeV
Zero Degree Calorimeter	60cm x 60cm x 2m @ ~30 m	
scattered proton/neutron acc. all energies for ep	Proton: 0.18 GeV < p_t < 1.3 GeV 0.5 < x_L < 1 ($x_L = E'_p/E_{Beam}$) Neutron: p_t < 1.3 GeV	
scattered proton/neutron acc. all energies for eA	Proton and Neutron: $\Theta < 6 \text{ mrad } (\sqrt{s}=50 \text{ GeV})$ $\Theta < 4 \text{ mrad } (\sqrt{s}=100 \text{ GeV})$	
Luminosity	Relative Luminosity: R = L ^{++/} /L ^{+-/-+} < 10 ⁻⁴ → Flexible spin patters for both beams 1: +-++-+++	
		γ acceptance: +/- 1 mrad $\rightarrow \delta L/L < 1\%$
most demanding		

1101

With these requirements, the rejection power is found to be not enough to reach the three minimum positions.

Beam pipe design and material critical to vetoing power

Vetoing Incoherent Events

Veto.1:

no neutron in ZDC

Veto.2:

Veto1 + no proton in Roman Pots

Veto.3:

Veto2 + no proton in off-momentum detector Veto.4:

- Veto3 + no proton in B0 Veto.5:
- Veto4 + no anything in preshower Veto.6:
- Veto5 + no photon *E>50MeV* in ZDC Veto.7:
- Veto6 + no activities

 $(|\eta| < 4.0 \& p_T > 100 \text{ MeV/c } \& E > 50 \text{ MeV})$ other than e- and J/ψ in the main detector

Far-forward physics at EIC

Far forward (hadron going) region

Far-forward detectors

B0-spectrometer ($5.5 < \theta < 20.0 \text{ mrad}$)

- Warm space for detector package insert located inside a vacuum vessel to isolate from insulating vacuum.
- Higher granularity detectors needed in this area (MAPS) with layers of fast-timing detectors (LGADs)
- Shape and coverage of B0 tracker needs to be further evaluated Space for

Roman-Pots and Off-momentum detectors 0.0^* (10 σ cut) < θ < 5.0 mrad Off-Momentum Detectors Roman Pots BO Beam Pipe ZDC Low Pt particles Pt < 1.3 GeV</p> RPs: movable, integrated into the vacuum system Fast Timing and moderate granularity $(500 \times 500 \mu m^2)$ AC-LGADs $\sigma(z) = \sqrt{\varepsilon} \cdot \beta(z)$

Complementarity for 1st-IR & 2nd-IR

Since CD-1 we made significant progress in the preliminary design for the 2nd IR with a focus on complementarity

	1 st IR (IP-6)	2 nd IR (IP-8)
Geometry:	ring inside to outside	ring outside to inside
	tunnel and assembly hall are larger	tunnel and assembly hall are smaller
	Tunnel: 🚫 7m +/- 140m	Tunnel: \bigotimes 6.3m to 60m then 5.3m
Crossing Angle:	25 mrad	35 mrad secondary focus
	differe	ent blind spots
	different forward o different accept	letectors and acceptances ance of central detector
Luminosity:	more lumi	nosity at lower E _{CM}
and	→ impact of far	forward p_T acceptance
Experiment:	1.5 Te	esla pr 3 Tesla
	different sub	detector technologies
78		E.C. Aschenauer

2ndDetector: Complementary is Key

What do we want from "Complementary"

Cross-checking important results (obvious!)

- Many examples of wrong turns in history of nuclear and particle physics.
- Independent cross checks (detector, community, analysis tools) are essential for timely verifications and corrections

Cross Calibration

- Combining data gave well beyond the √2 statistical improvement …
- Different dominating H1, ZEUS systematics...
- Effectively use H1 electrons with ZEUS hadrons ... not all optimal solutions have to be in one detector...

Technology Redundancy

... by applying different detector technologies and philosophies to similar physics aims

- mitigates technology risk vs. unforeseen backgrounds
- differently optimizes precision and systematics

Different primary physics focuses

... EIC has unusually broad physics program (from exclusive single particle production to high multiplicity eA or γA with complex nuclear fragmentation)

Impossible to optimize for the full program in a single detector.

Impact on IR design)

P-6) Progress – Interaction Region 2nd IR (IP-8)

1st IR (IP-6)

IR Highlights and Challenges

- □ High Luminosity \rightarrow High current (~ 2.5 A)
- □ High number of bunches (1160, ~10 ns separation)
 - Avoid parasitic collisions at IR
 - Crossing angle
 - Both focusing elements close to IP
- □ Small β^* values (h: 80/7.2 cm, e:45/5.6 cm)
 - Strong final focus magnets close to IR
 - Aperture: challenging magnet designs
- Polarization
 - Lattice constraints to enable polarized beams
 - Polarized hadrons / electons
 - Polarimetry (local and global)
 - Spin rotators & Snakes
 - electrons: Frequent on-energy bunch replacements
 - Experimental detector
 - Forward detectors
 - Experimental solenoid & compensation

- The same highlights and challenges as IP-6
 Different: pre-conceptual design with 35mr crossing angle and secondary focus for science complementary checks.
- □ Further study needed for the feasibility of the IR magnets → Nb3Sn magnets are being evaluated as an option.

2nd focus enables:

enhanced low P_T acceptance, DVCS on nuclei, Light ion tagging, Diffraction, improved Gluon imaging by detection of (A-1) nuclei

Enhance 2nd IR complementarity: Nb₃Sn-Magnets

2nd IR: 35 mrad crossing angle & secondary focus Investigate Nb₃Sn magnets:

allow higher gradients \rightarrow shorter L* \rightarrow higher luminosity \rightarrow compact IR

- \rightarrow easier matching to existing RHIC arcs
- → technology challenge
 - Crosstalk: Greater crossing angle but shorter quadrupoles and stronger fields. NbTi version has 4 magnets at nearly full strength.

2nd IR pre-conceptual design – v1 Nb₃Sn - Magnets

Split ionQFFDS01A in 2 → Three magnets working as a doublet with the third powered off at low energy operation.
 Can reach smaller β* with same β_{max} at low energies due to shorter focal length.

Allows to tailor the apertures for acceptance better. E.C. Aschenauer