311: Classical Mechanics (Dieter Zeppenfeld, Fall 97)

Syllabus: the course will closely follow the textbook
Barger & Olsson, Classical Mechanics, 2nd, McGraw Hill (1995)

One-dimensional motion Newton's laws Forces: gravity, Coulomb, friction Explicit solutions: skydiving Solutions for F = F(x) or F = F(v) Harmonic oscillator, damped & forced oscillator

- 2) Kinetic and potential energy in 1 dimension Small oscillations
 Vector notation, vector algebra, tensors
 Potential energy in 3 dimensions
 2-dimensional motion: pendulum
 Coupled oscillators, normal modes
- Lagrangian methods
 Lagrange function and action Constraints
 Variational principle
 Hamiltonians
- 4) Momentum conservation
 Rockets
 Elastic collisions, c.m & lab frames, inelastic collisions
- 5) Angular momentum
 Central forces
 Planetary motion, Kepler's laws, satellites
 Rutherford scattering
- 6) Rigid body motion
 2-body problem
 Rotation of rigid bodies
 Moments of inertia
 Billiard shots
- 7) Accelerated coordinate frames
 Coriolis force, Foucault's pendulum
 Principal axes, Euler's equations
 Spinning top

- 8) Gravitation
 Newton's theorem
 Tides
 General Relativity elements
 Perihelion advance
- 9) Cosmology Virial theorem Rotation curves, dark matter
- 10) Special relativity
- 11) Chaos