ILS 251 - FALL 1992 - SYLLABUS Prof. - Robert March TA - David Reid

Textbook:

PFP Physics for Poets (3rd Ed.), R. March, Chapters 7-18
Articles in Scientific American:

QP "Quantum Philosopy," John Horgan, July 1992, pp. 94-101

CO "How Cosmology Became a Science," S.G. Brush, Aug. 1992, pp. 62-70 "The Golden Age of Cosmology," Corey S. Powell, July 1992, pp. 17-22

 $\star n - m$ Page reference to supplementary notes in this packet

Dates	Lecture Topics	Readings	Discussion
Sep 3	Newton's predictable world	★ 6 − 7	no meeting
Sep 8	Interference and other wave phenomena	PFP 7	get-acquainted
Sep 10	The Michelson-Morley experiment	PFP 8	
Sep 15	The Postulate of Relativity	PFP 9	Practice problems
Sep 17	Space-time (qualitative)		
Sep 22	Space-time (quantitative)	PFP 10	OPEN
Sep 24	continued	★8 9	
Sep 29	$E=mc^2$	PFP 11	Problem set 1
Oct 1	The twin paradox	PFP 12	
Oct 6	The Principle of Equivalence		OPEN
Oct 8	The worldview of general relativity		
Oct 13	Black holes and the Big Bang	★ 10 − 12	Review for
Oct 15	Chaos out of order	★ 13 − 15	midterm exam
Oct 20	Are atoms "real?"	PFP 13	Discussion of
Oct 22	EXAM		midterm exam
Oct 27	Probing the atom	PFP14	OPEN
Oct 29	Planck, Einstein, and the quantum	PFP 15	'
Nov 3	Bohr's flawed but successul model	PFP 16	OPEN
Nov 5	De Broglie's "matter waves"	PFP 17	
Nov 10	Wave Mechanics		Problem set 2
Nov 12	The probability interpretation	PFP 18	4 - A
Nov 17	Uncertainty and "tunneling"		Interpreting the
Nov 19	Schrödinger's Cat	QP	quantum theory
Nov 24	The Pauli principle and chemistry	★ 16	Thanksgiving
Dec 1	Nuclear physics & astrophysics	★17 − 18	Paper due
Dec 3	The Cosmic Background	СО	
Dec 8	Reactors and nuclear weapons	★ 19 − 23	Review &
Dec 10	Technology in the "New World Order"	★24 − 25	Recapitulate
Dec 15	Final remarks - TAKEHOME DUE		

INFORMATION ABOUT THE COURSE

OFFICE HOURS – Your professor is Bob March. Office hours are held in 4289 Chamberlin Hall Tuesday and Wednesday from 1:30 to 3:30, or call 262-5947 for an appointment at another time. Your TA is Dave Reid, who holds office hours on the third floor of Meiklejohn House (228 N. Charter) Monday 1:15 to 3:00, Tuesday 2:00 to 3:00, telephone 263-3964.

EXAMS – There will be an exam in the lecture hour on Thursday October 22, and a takehome exam due in the final lecture, Tuesday December 15. For the in-class exam, you may bring two sheets (four pages) of notes. A study guide will be distributed a week before, describing the exam in detail. You will have a full week for the takehome.

PROBLEMS – There are three problem sets on p. 4 of this syllabus. The "Practice Problems" will be discussed in class, but are not to be handed in. Problem sets 1 and 2 are due in discussion October 1/2 and November 12/13. You may be called upon to work problems at the board on the due date.

PAPER – Write a paper of length 7 to 14 pages, connecting a concept or discovery discussed in this course to something outside of natural science. The connection may be conceptual (show how they are related, analogous, or antagonistic), historical (discuss the science in its historical and cultural context), or personal (connect them through their impact on your own thinking). It will be judged for creativity more than for scholarship. Due in discussion, December 3/4. Abstracts of some excellent papers are given on the following page. A review of a book or article is acceptable, but it must be a critical review, one that takes and defends a stand on the validity of the author's position.

GRADING – Grades in this course are a performance weighted average of four scores: the two exams, the term paper, and a discussion grade based in part on the problem sets. The best score counts 40%, second best 30%, third 20%, worst 10% of your grade.

SOME UNITS, CONSTANTS, AND SYMBOLS

Quantity	Symbol	Value
speed of light:	С	$3 \times 10^8 \text{ m/s} = 300,000 \text{ Km/s} = 1 \text{ ft/nsec}$
electron-volt:	eV	1.6×10^{-19} joules
Planck constant	h	$4.15 \times 10^{-15} \text{ eV-seconds}$

PREFIXES FOR UNITS

prefix	symbol	l multiplier	prefix	symbol	multiplier
kilo	K	10 ³ (thousand)	milli	m	10 ⁻³ (thousandth)
mega	M	10 ⁶ (million)	micro	μ	10 ⁻⁶ (millionth)
giga	G	10 ⁹ (billion)	nano	n	10 ⁻⁹ (billionth)
tera	\mathbf{T}	10 ¹² (trillion)	pico	p	10 ⁻¹² (trillionth)
peta	P	10 ¹⁵ (quadrillion)	femto	f	10 ⁻¹⁵ (quadrillionth)