Phys 448 HW 7

- 1) BD 6.1
- 2) BD 6.2
- 3) An atom has two states \ket{g} and \ket{e} , resonantly (*i.e.* the

frequency of the light is equal to the Bohr frequency between the two states) coupled by light, giving an effective interaction

 $V = \frac{\varepsilon}{2} |g\rangle \langle e| + \frac{\varepsilon}{2} |e\rangle \langle g|.$ Find the eigenvectors and eigenvalues of the light-atom system. Find the wavefunction as a function of time, for an arbitrary initial wavefunction, that is find the time evolution matrix U(t) such that $\psi(t) = U(t)\psi(0)$. Show that after a time $\varepsilon t = \pi$ (a " π " pulse) an initial state $\psi(0) = |g\rangle$ evolves to $\psi = -i|e\rangle$ and that after a 2π pulse $\psi = -|g\rangle$. How long must you wait for $\psi(t) = \psi(0)$?

- 4) With the light turned off, the effective atomic Hamiltonian is $H_0 = \hbar(\omega_0 \omega) |e\rangle \langle e|$. Find the evolution matrix $U_0(t)$. Suppose the atom starts in state g. First a $\pi/2$ pulse is applied. Then the light is turned off for a time *T*. Finally, another $\pi/2$ pulse is applied. After this "Ramsey" sequence, what is the probability of finding the atom in state *e*? Plot it as a function of *T*.
- 5) Suppose now that the above happens to a set of atoms for differing times *T*. This might arise, for example, because the atoms move through a light-free region of space with differing velocities. Suppose the distribution of times is Gaussian, with mean \overline{T} and standard deviation σ_T . Find the transition probability as a function of time. Plot your result for $(\omega_0 \omega)\overline{T} = 200\pi$, and $\sigma_T\overline{T} = 4$. How might you use this phenomenon to measure $(\omega_0 \omega)$ very precisely?