Photoinduced reaction mechanisms in molecular systems probed with elemental specificity via ultrafast X-ray spectroscopy

Monday, April 22nd, 2019
Speaker: Nils Huse Hamburg University
Understanding the interplay of structural, electronic and spin degrees of freedom is paramount for mechanistic insights into how matter transforms upon external stimuli such as light. The elemental specificity of X-ray spectroscopy provides unique complimentary information to vibrational and electronic spectroscopy or non-resonant scattering techniques when studying reaction mechanisms in chemical and materials science. This can be especially useful for metal atoms and their nearest neighbors in transition-metal complexes [1,2] or so-called heteroatoms in functional groups of organic molecules [3,4] where specific atomic sites are of particular importance for the physical and chemical properties of molecular or solid state systems. I will introduce basic concepts of X-ray absorption spectroscopy and RIXS, the X-ray analogue to resonant Raman scattering, as methods to probe electronic structure on ultrafast time scales before presenting two examples of photo-induced reactions to show how X-ray spectroscopy of ligand- and heteroatoms can (i) unravel the role of ligand-field states in transition-metal complexes and (ii) identify transient excited states and new species in sulfur-containing molecules.

[1] B. Van Kuiken et al., J. Phys. Chem. Lett. 7, 465 (2016)
[2] A. A. Cordones et al., Nat. Comm. 9, 1989 (2018)
[3] M. Ochmann et al., J. Am. Chem. Soc. 139, 4789 (2017)
[4] M. Ochmann et al., J. Am. Chem. Soc. 140, 6554 (2018)
Host: 
Matt Herndon
S M T W T F S
 
1
 
2
 
3
 
4
 
5
 
6
 
7
 
8
 
9
 
10
 
11
 
12
 
13
 
14
 
15
 
16
 
17
 
18
 
19
 
20
 
21
 
22
 
23
 
24
 
25
 
26
 
27
 
28
 
29
 
30
 
31
 
 
 
 
Room and Building: 
2103 Chamberlin Hall
Time:
3:30 pm to 4:30 pm

 

Available Downloads:

©2013 Board of Regents of the University of Wisconsin System