BEGIN:VCALENDAR
VERSION:2.0
CALSCALE:GREGORIAN
PRODID:UW-Physics-TWaP
BEGIN:VEVENT
SEQUENCE:0
UID:UW-Physics-Event-3277
DTSTART:20140403T150000Z
DURATION:PT1H0M0S
DTSTAMP:20200217T215501Z
LAST-MODIFIED:20140324T160314Z
LOCATION:Chamberlin 5310
SUMMARY:Measuring topological transitions in superconducting qubits\, R. G. Herb Condensed Matter Seminar\, Michael Kolodrubetz\, Boston University
DESCRIPTION:The field of topological insulators sprung from the realization that in the presence of spin-orbit coupling\, non-interacting electrons can have a band structure that non-trivially wraps the first Brillouin zone. From the gauge-invariant Berry curvature that locally defines the geometry of this wrapping\, one can define an integer topological invariant – the Chern number – from which all other invariants derive. We investigate the Berry curvature and Chern number of an even simpler case: single and double spin-1/2 systems (qubits) in a rotating magnetic field. We show that these simple systems undergo topological transitions of their Chern number\, which for the case of the single qubit can be directly mapped to the topological transitions of the Haldane model of graphene. Furthermore\, we experimentally demonstrate such a topological transition in a single superconducting qubit\, measuring the Berry curvature as a leading order correction to linear response. We then generalize the methods to two-qubit systems\, where we experimentally measure the topological phase diagram and demonstrate interaction-driven topological transitions.
URL:https://wp.physics.wisc.edu/twap/?id=3277
END:VEVENT
END:VCALENDAR