<< November 2018 >>
Sun Mon Tue Wed Thu Fri Sat
   1   2   3 
 4   5   6   7   8   9   10 
 11   12   13   14   15   16   17 
 18   19   20   21   22   23   24 
 25   26   27   28   29   30   
Add an Event

This Week at Physics

<< Spring 2018 Fall 2018 Spring 2019 >>
Subscribe to receive email announcements of events

Events on Friday, November 16th, 2018

Theory Seminar (High Energy/Cosmology)
Dynamical field range and mass hierarchies
Time: 2:00 pm
Place: 5280 Chamberlin Hall
Speaker: Aitor Landete, University of Wisconsin-Madison
Abstract: Several swampland conjectures suggest that there is a critical field range beyond which the effective field theory description breaks down in quantum gravity. In this talk we will review applications of these conjectures to axion monodromy models. We argue that the field range of interest is the field space distance traced by the physical trajectory that solves the equations of motion. A sufficiently large mass hierarchy can delay the breakdown of the effective field theory and allow simple techniques of moduli stabilization. In absence of such hierarchy multi-field techniques should be used. We illustrate these subtleties in Type II string compactifications.
Add this event to your calendar

Physics Department Colloquium
Terahertz frequency topological switches
Time: 3:30 pm
Place: 2241 Chamberlin Hall
Speaker: Aaron Lindenberg, Standford University
Abstract: Novel characterization techniques developed over the past two decades have revolutionized our ability to visualize the microscopic, atomic-scale processes that determine the functional properties of materials. The overarching challenge here is that the relevant time-scales and length-scales for these processes are typically 10^-13 seconds (100 femtoseconds) and 10^-10 m (1 Angstrom) such that our view of how a material or device functions is often blurred out in time or in space. In this talk I will describe femtosecond-resolution crystallographic measurements probing dynamical switching responses in topological Weyl semimetals. First I will provide a brief introduction to the unique aspects of these materials. I will then show that terahertz frequency light pulses can be used to induce large amplitude interlayer shear oscillations with ~1% strain amplitudes, leading to a topologically distinct metastable phase. Separate nonlinear optical measurements show that this transition is associated with a symmetry change from a non-centrosymmetric to centrosymmetric structure and therefore corresponds to a transition to a topologically trivial phase. We further show that such shear strain serves as an ultrafast, energy-efficient means to induce more robust, well-separated Weyl points or to annihilate all Weyl points of opposite chirality. This work defines new possibilities for ultrafast manipulation of the topological properties of solids and for a topological switch operating at THz frequencies. Reference: "Time-varying shear strain as an ultrafast symmetry switch in a Weyl semimetal,” E. Sie et al., Nature (2018) (in press)
Host: Jim Lawler
Add this event to your calendar

©2013 Board of Regents of the University of Wisconsin System