Lecture 13

Goals:
• Chapter 10
 ❖ Understand the relationship between motion and energy
 ❖ Define Potential Energy in a Hooke’s Law spring
 ❖ Develop and exploit conservation of energy principle in problem solving
• Chapter 11
 ❖ Understand the relationship between force, displacement and work

Assignments:
• HW6, due tomorrow, HW7 due Wednesday, Mar. 10
• For Thursday, Read all of Chapter 11

Newton’s Laws rearranged

From motion in the y-dir, \(F_y = m a_y \) and let accel. be constant

- \(y(t) = y_0 + v_{y0} \Delta t + \frac{1}{2} a_y \Delta t^2 \rightarrow \Delta y = y(t) - y_0 = v_{y0} \Delta t + \frac{1}{2} a_y \Delta t^2 \)

- \(v_y(t) = v_{y0} + a_y \Delta t \rightarrow \Delta t = (v_y - v_{y0}) / a_y \)

and eliminating \(\Delta t \) yields

- \(a_y \Delta y = \frac{1}{2} (v_y^2 - v_{y0}^2) / a_y \)

- \(-mg \Delta y = \frac{1}{2} m (v_y^2 - v_{y0}^2) \)
Energy

\[-mg \Delta y = \frac{1}{2} \, m \left(v_y^2 - v_{y0}^2 \right)\]

\[-mg \left(y_f - y_i \right) = \frac{1}{2} \, m \left(v_{yf}^2 - v_{yi}^2 \right)\]

A relationship between

\textit{y-displacement} and change in the \textit{y-speed} squared

Rearranging to give initial on the left and final on the right

\[\frac{1}{2} \, m \, v_{yi}^2 + mgy_i = \frac{1}{2} \, m \, v_{yi}^2 + mgy_f\]

We now define \(mgy\) as the “gravitational potential energy”

Energy

- Notice that if we only consider gravity as the external force then the \(x\) and \(z\) velocities remain constant
- To \[\frac{1}{2} \, m \, v_{yi}^2 + mgy_i = \frac{1}{2} \, m \, v_{yi}^2 + mgy_f\]
- Add \[\frac{1}{2} \, m \, v_{xi}^2 + \frac{1}{2} \, m \, v_{zi}^2\] and \[\frac{1}{2} \, m \, v_{xf}^2 + \frac{1}{2} \, m \, v_{zf}^2\]

\[\frac{1}{2} \, m \, v_i^2 + mgy_i = \frac{1}{2} \, m \, v_f^2 + mgy_f\]

- where \[v_i^2 \equiv v_{xi}^2 + v_{yi}^2 + v_{zi}^2\]

\[\frac{1}{2} \, m \, v^2\] terms are defined to be kinetic energies

(A scalar quantity of motion)
Inelastic collision in 1-D: Example 1

• A block of mass M is initially at rest on a frictionless horizontal surface. A bullet of mass m is fired at the block with a muzzle velocity (speed) v. The bullet lodges in the block, and the block ends up with a speed V.

❖ What is the initial energy of the system?
❖ What is the final energy of the system?
❖ Is energy conserved?

Inelastic collision in 1-D: Example 1

What is the momentum of the bullet with speed v? $m\vec{v}$

❖ What is the initial energy of the system? $\frac{1}{2}m\vec{v} \cdot \vec{v} = \frac{1}{2}mv^2$
❖ What is the final energy of the system? $\frac{1}{2}(m+M)V^2$
❖ Is momentum conserved (yes)? $mv + M0 = (m+M)V$
❖ Is energy conserved? Examine $E_{\text{before}} - E_{\text{after}} = \frac{1}{2}mv^2 - \frac{1}{2}(m+M)V^2 = \frac{1}{2}mv^2 - \frac{1}{2}(mv) \cdot \frac{m}{m+M} v = \frac{1}{2}mv^2 \left(1 - \frac{m}{m+M}\right)$

Physics 207: Lecture 13, Pg 5
Kinetic & Potential energies

- Kinetic energy, $K = \frac{1}{2}mv^2$, is defined to be the large scale collective motion of one or a set of masses.

- Potential energy, U, is defined to be the “hidden” energy in an object which, in principle, can be converted back to kinetic energy.

- Mechanical energy, E_{Mech}, is defined to be the sum of U and K.

Energy

- If only “conservative” forces are present, the total mechanical energy (sum of potential, U, and kinetic energies, K) of a system is conserved.

For an object in a gravitational “field”

$$\frac{1}{2}m v_{yi}^2 + mgy_i = \frac{1}{2}m v_{yi}^2 + mgy_f$$

$$K \equiv \frac{1}{2}mv^2 \quad U \equiv mgy$$

$$E_{\text{mech}} = K + U$$

$$E_{\text{mech}} = K + U = \text{constant}$$

- K and U may change, but $E_{\text{mech}} = K + U$ remains a fixed value.

E_{mech} is called “mechanical energy”
Example of a conservative system:
The simple pendulum.

- Suppose we release a mass \(m\) from rest a distance \(h_f\) above its lowest possible point.
 - What is the maximum speed of the mass and where does this happen?
 - To what height \(h_2\) does it rise on the other side?

![Diagram of simple pendulum](Physics_207_Lecture_13_Pg_9.png)

Example: The simple pendulum.

- What is the maximum speed of the mass and where does this happen?
 - \(E = K + U = \text{constant}\) and so \(K\) is maximum when \(U\) is a minimum.
Example: The simple pendulum.

- What is the maximum speed of the mass and where does this happen?

 \[E = K + U = \text{constant} \]

 and so \(K \) is maximum when \(U \) is a minimum

 \[E = mgh_1 \text{ at top} \]

 \[E = mgh_1 = \frac{1}{2} mv^2 \text{ at bottom of the swing} \]

Example: The simple pendulum.

To what height \(h_2 \) does it rise on the other side?

\[E = K + U = \text{constant} \]

and so when \(U \) is maximum again (when \(K = 0 \)) it will be at its highest point.

\[E = mgh_1 = mgh_2 \quad \text{or} \quad h_1 = h_2 \]
Example
The Loop-the-Loop ... again

- To complete the loop the loop, how high do we have to let the release the car?
- Condition for completing the loop the loop: Circular motion at the top of the loop \(a_c = \frac{v^2}{R} \)
- Exploit the fact that \(E = U + K = \text{constant} \) (frictionless)

Recall that “g” is the source of the centripetal acceleration and \(N \) just goes to zero is the limiting case.
Also recall the minimum speed at the top is \(v = \sqrt{gR} \)

\[U_b = mgh \]
\[U = mg2R \]
\[h = \frac{5}{2} R \]

Example
The Loop-the-Loop ... again

- Use \(E = K + U = \text{constant} \)
- \(mgh + 0 = mg 2R + \frac{1}{2} mv^2 \)
 - \(mgh = mg 2R + \frac{1}{2} mgR = \frac{5}{2} mgR \)

\[h = \frac{5}{2} R \]
Example
Skateboard

- What speed will the skateboarder reach halfway down the hill if there is no friction and the skateboarder starts at rest?
- Assume we can treat the skateboarder as a “point”
- Assume zero of gravitational U is at bottom of the hill

\[m = 25 \text{ kg} \]

\[R = 10 \text{ m} \]

\[y = 5 \text{ m} \]

\[\theta = 30^\circ \]

\[E = K + U = \text{constant} \]

\[E_{\text{before}} = E_{\text{after}} \]

\[0 + mgR = \frac{1}{2}mv^2 + \frac{1}{2}mgR \]

\[mgR/2 = \frac{1}{2}mv^2 \]

\[gR = v^2 \rightarrow v = (gR)^{\frac{1}{2}} \]

\[v = (10 \times 10)^{\frac{1}{2}} = 10 \text{ m/s} \]
Potential Energy, Energy Transfer and Path

- A ball of mass m, initially at rest, is released and follows three different paths. All surfaces are frictionless
1. The ball is dropped
2. The ball slides down a straight incline
3. The ball slides down a curved incline

After traveling a vertical distance h, how do the three speeds compare?

(A) $1 > 2 > 3$ (B) $3 > 2 > 1$ (C) $3 = 2 = 1$ (D) Can't tell

Example Skateboard

- What is the normal force on the skateboarder?

$m = 25$ kg
Example Skateboard

- Now what is the normal force on the skate boarder?

\[
\begin{align*}
\sum F_r &= ma_r = \frac{mv^2}{R} \\
&= N - mg \cos 60^\circ \\
N &= \frac{mv^2}{R} + mg \cos 60^\circ \\
N &= \frac{25 \times 100}{10} + 25 \times 10 \times 0.87 \\
N &= 250 + 220 = 470 \text{ Newtons}
\end{align*}
\]

Elastic vs. Inelastic Collisions

- A collision is said to be *elastic* when both energy & momentum are conserved before and after the collision.

\[
K_{\text{before}} = K_{\text{after}}
\]

- Carts colliding with a perfect spring, billiard balls, etc.
Elastic vs. Inelastic Collisions

- A collision is said to be inelastic when energy is not conserved before and after the collision, but momentum is conserved.

\[K_{\text{before}} \neq K_{\text{after}} \]

- Car crashes, collisions where objects stick together, etc.

Example – Fully Elastic Collision

- Suppose I have 2 identical bumper cars.
- One is motionless and the other is approaching it with velocity \(v_i \). If they collide elastically, what is the final velocity of each car?

Identical means \(m_1 = m_2 = m \)

Initially \(v_{\text{Green}} = v_1 \) and \(v_{\text{Red}} = 0 \)

\[\text{COM} \rightarrow \quad mv_1 + 0 = mv_{1f} + mv_{2f} \rightarrow v_1 = v_{1f} + v_{2f} \]

\[\text{COE} \rightarrow \frac{1}{2} mv_1^2 = \frac{1}{2} mv_{1f}^2 + \frac{1}{2} mv_{2f}^2 \rightarrow v_1^2 = v_{1f}^2 + v_{2f}^2 \]

\[v_1^2 = (v_{1f} + v_{2f})^2 = v_{1f}^2 + 2v_{1f}v_{2f} + v_{2f}^2 \rightarrow 2v_{1f}v_{2f} = 0 \]

- Soln 1: \(v_{1f} = 0 \) and \(v_{2f} = v_1 \)
- Soln 2: \(v_{2f} = 0 \) and \(v_{1f} = v_1 \)
Variable force devices: Hooke’s Law Springs

- Springs are everywhere, (probe microscopes, DNA, an effective interaction between atoms)

- In this spring, the magnitude of the force increases as the spring is further compressed (a displacement).
- Hooke’s Law,
 \[F_s = -k \Delta s \]

\(\Delta s \) is the amount the spring is stretched or compressed from it resting position.

Hooke’s Law Spring

- For a spring we know that \(F_x = -k s \).
Exercise 2
Hooke’s Law

What is the spring constant “k”?

(A) 50 N/m (B) 100 N/m (C) 400 N/m (D) 500 N/m

ΣF = 0 = F_s - mg = k Δs - mg

mg

Use k = mg/Δs = 500 N / 1.0 m

(A) 50 N/m (B) 100 N/m (C) 400 N/m (D) 500 N/m
Force vs. Energy for a Hooke’s Law spring

- \(F = -k(x - x_{\text{equilibrium}}) \)
- \(F = ma = m \frac{dv}{dt} \)
 \[= m \left(\frac{dv}{dx} \frac{dx}{dt} \right) \]
 \[= m \frac{dv}{dx} v \]
 \[= mv \frac{dv}{dx} \]

- So \(k(x - x_{\text{equilibrium}}) \) \(dx = mv \) \(dv \)
- Let \(u = x - x_{\text{eq.}} \) & \(du = dx \)

\[
\int_{u_i}^{u_f} -ku \, du = \int_{v_i}^{v_f} mv \, dv
\]

\[-\frac{1}{2}ku^2 \bigg|_{u_i}^{u_f} = \frac{1}{2}mv^2 \bigg|_{v_i}^{v_f} \]

\[-\frac{1}{2}ku_f^2 + \frac{1}{2}ku_i^2 = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 \]

\[
\frac{1}{2}ku_i^2 + \frac{1}{2}mv_i^2 = \frac{1}{2}ku_f^2 + \frac{1}{2}mv_f^2
\]

Lecture 13

Assignment:

- HW6 due Wednesday
- For Thursday: Read all of chapter 11