Lecture 15

Goals:

• Chapter 11
 - Employ the dot product
 - Employ conservative and non-conservative forces
 - Use the concept of power (i.e., energy per time)
• Chapter 12
 - Extend the particle model to rigid-bodies
 - Understand the equilibrium of an extended object.
 - Understand rigid object rotation about a fixed axis.
 - Employ “conservation of angular momentum” concept

Assignment:
• HW7 due March 10th
• For Thursday: Read Chapter 12, Sections 7-11
do not concern yourself with the integration process in regards to “center of mass” or “moment of inertia”

Scalar Product (or Dot Product)

\[\mathbf{A} \cdot \mathbf{B} \equiv | \mathbf{A} | | \mathbf{B} | \cos \theta \]

• Useful for finding parallel components
 \[\mathbf{A} \cdot \mathbf{i} = A_x \]
 \[\mathbf{i} \cdot \mathbf{j} = 1 \]
 \[\mathbf{i} \cdot \mathbf{j} = 0 \]

• Calculation can be made in terms of components.
 \[\mathbf{A} \cdot \mathbf{B} = (A_x)(B_x) + (A_y)(B_y) + (A_z)(B_z) \]

Calculation also in terms of magnitudes and relative angles.
 \[\mathbf{A} \cdot \mathbf{B} \equiv | \mathbf{A} | | \mathbf{B} | \cos \theta \]

You choose the way that works best for you!

Physics 207: Lecture 15, Pg 1

Page 1
Scalar Product (or Dot Product)

Compare:
\[\mathbf{A} \cdot \mathbf{B} = (A_x)(B_x) + (A_y)(B_y) + (A_z)(B_z) \]

Redefine \(\mathbf{A} \rightarrow \mathbf{F} \) (force), \(\mathbf{B} \rightarrow \Delta \mathbf{r} \) (displacement)

Notice:
\[\mathbf{F} \cdot \Delta \mathbf{r} = (F_x)(\Delta x) + (F_y)(\Delta z) \]

So here
\[\mathbf{F} \cdot \Delta \mathbf{r} = W \]

More generally a Force acting over a Distance does Work

Work in terms of the dot product

Ingredients: Force (\(\mathbf{F} \)), displacement (\(\Delta \mathbf{r} \))

Work, \(W \), of a constant force \(\mathbf{F} \) acts through a displacement \(\Delta \mathbf{r} \):

\[W = |\mathbf{F}| \cos \theta |\Delta \mathbf{r}| = \mathbf{F} \cdot \Delta \mathbf{r} \]

Looks just like a Dot Product!

If the path is curved \(dW = \mathbf{F} \cdot d\mathbf{r} \) at each point and

\[W = \int_{\vec{r}_i}^{\vec{r}_f} \mathbf{F} \cdot d\mathbf{r} \]
Remember that a real trajectory implies forces acting on an object

\[
\mathbf{a} = a_\parallel + a_\perp
\]

\[
\mathbf{F} = F_{\text{tang}} + F_{\text{radial}}
\]

Two possible options:
- Change in the magnitude of \(\mathbf{v}\)
- Change in the direction of \(\mathbf{a}\)

Only tangential forces yield work!
- The distance over which \(F_{\text{Tang}}\) is applied: Work

Energy and Work

Work, \(W\), is the process of energy transfer in which a force component parallel to the path acts over a distance; individually it effects a change in energy of the “system”.

1. K or Kinetic Energy
2. U or Potential Energy (Conservative)

and if there are losses (e.g., friction, non-conservative)

3. \(E_{\text{Th}}\) Thermal Energy

Positive \(W\) if energy transferred to a system
A child slides down a playground slide at constant speed. The energy transformation is

A. $U \rightarrow K$
B. $U \rightarrow E_{Th}$
C. $K \rightarrow U$
D. $K \rightarrow E_{Th}$
E. There is no transformation because energy is conserved.

Exercise

Work in the presence of friction and non-contact forces

- A box is pulled up a rough ($\mu > 0$) incline by a rope-pulley-weight arrangement as shown below.
 - How many forces (including non-contact ones) are doing work on the box?
 - Of these which are positive and which are negative?
 - State the system (here, just the box)
 - Use a Free Body Diagram
 - Compare force and path

A. 2
B. 3
C. 4
D. 5
Work and Varying Forces (1D)

- Consider a varying force $F(x)$

\[\text{Area} = F \cdot \Delta x \]

F is increasing

Here \(W = F \cdot \Delta r \)

becomes \(dW = F \cdot dx \)

\[W = \int_{x_i}^{x_f} F(x) \, dx \]

\[\text{Work has units of energy and is a scalar!} \]

Example: Hooke’s Law Spring \((x_i \text{ equilibrium})\)

- How much will the spring compress (i.e. \(\Delta x = x_f - x_i \)) to bring the box to a stop (i.e., \(v = 0 \)) if the object is moving initially at a constant velocity \((v_i)\) on frictionless surface as shown below with \(x_i = x_{eq} \), the equilibrium position of the spring?

\[W_{\text{box}} = \int_{x_i}^{x_f} F(x) \, dx \]

\[W_{\text{box}} = \int_{x_i}^{x_f} -k(x - x_{eq}) \, dx \]

\[W_{\text{box}} = -\frac{1}{2} k(x_f - x_i)^2 |_{x_i}^{x_f} \]

\[W_{\text{box}} = -\frac{1}{2} k(x_f - x_i)^2 + \frac{1}{2} k0^2 = \Delta K \]

\[\frac{1}{2} k \Delta x^2 = \frac{1}{2} m0^2 - \frac{1}{2} m v_i^2 \]
Work signs

Notice that the spring force is opposite the displacement

For the mass m, work is negative

For the spring, work is positive

They are opposite, and equal (spring is conservative)

Conservative Forces & Potential Energy

- For any conservative force F we can define a potential energy function U in the following way:

$$W = \int F \cdot dr \equiv -\Delta U$$

The work done by a conservative force is equal and opposite to the change in the potential energy function.
Conservative Forces and Potential Energy

- So we can also describe work and changes in potential energy (for conservative forces)
 \[\Delta U = -W \]

- Recalling (if 1D)
 \[W = F_x \Delta x \]

- Combining these two,
 \[\Delta U = -F_x \Delta x \]

- Letting small quantities go to infinitesimals,
 \[dU = -F_x dx \]

- Or,
 \[F_x = -\frac{dU}{dx} \]

Exercise

Work Done by Gravity

- An frictionless track is at an angle of 30° with respect to the horizontal. A cart (mass 1 kg) is released from rest. It slides 1 meter downwards along the track bounces and then slides upwards to its original position.

- How much total work is done by gravity on the cart when it reaches its original position? (g = 10 m/s^2)

 \[h = 1 \text{ m} \sin 30° = 0.5 \text{ m} \]

 (A) 5 J (B) 10 J (C) 20 J (D) 0 J
Home Exercise: Work & Friction

- Two blocks having mass \(m_1 \) and \(m_2 \) where \(m_1 > m_2 \). They are sliding on a frictionless floor and have the same kinetic energy when they encounter a long rough stretch (i.e. \(\mu > 0 \)) which slows them down to a stop.

- Which one will go farther before stopping?
- **Hint:** How much work does friction do on each block?

 (A) \(m_1 \)
 (B) \(m_2 \)
 (C) They will go the same distance

Exercise: Work & Friction

- \(W = F d = -\mu N d = -\mu mg d = \Delta K = 0 - \frac{1}{2} mv^2 \)

- \(-\mu m_1g d_1 = -\mu m_2g d_2 \rightarrow d_1 / d_2 = m_2 / m_1 \)

 (A) \(m_1 \)
 (B) \(m_2 \)
 (C) They will go the same distance
Home Exercise
Work/Energy for Non-Conservative Forces

● The air track is once again at an angle of 30° with respect to horizontal. The cart (with mass 1 kg) is released 1 meter from the bottom and hits the bumper at a speed, v_1. This time the vacuum/air generator breaks half-way through and the air stops. The cart only bounces up half as high as where it started.

● How much work did friction do on the cart? ($g=10 \text{ m/s}^2$)

\[
W = F \Delta x \text{ is not easy to do…}
\]

Work done is equal to the change in the energy of the system (U and/or K). $E_{\text{final}} - E_{\text{initial}}$ and is < 0. ($E = U+K$)

Use $W = U_{\text{final}} - U_{\text{initial}} = mg (h_f - h_i) = -mg \sin 30° \times 0.5 \text{ m}$

$W = -2.5 \text{ N m} = -2.5 \text{ J}$ or (D)

(A) 2.5 J (B) 5 J (C) 10 J (D) −2.5 J (E) −5 J (F) −10 J
A Non-Conservative Force

Since \(\text{path}_2 \) distance > \(\text{path}_1 \) distance the puck will be traveling slower at the end of \(\text{path}_2 \).

Work done by a non-conservative force irreversibly removes energy out of the "system".

Here \(W_{\text{NC}} = E_{\text{final}} - E_{\text{initial}} < 0 \) \(\rightarrow \) and reflects \(E_{\text{thermal}} \)

Work & Power:

- Two cars go up a hill, a Corvette and a ordinary Chevy Malibu. Both cars have the same mass.
- Assuming identical friction, both engines do the same amount of work to get up the hill.
- Are the cars essentially the same?
- NO. The Corvette can get up the hill quicker
- It has a more powerful engine.
Work & Power:

- Power is the rate at which work is done.

<table>
<thead>
<tr>
<th>Average Power:</th>
<th>Instantaneous Power:</th>
<th>Units (SI) are Watts (W):</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P = \frac{W}{\Delta t}$</td>
<td>$P = \frac{dW}{dt}$</td>
<td>$1 \text{ W} = 1 \text{ J} / \text{ s}$</td>
</tr>
</tbody>
</table>

Example:

- A person, mass 80.0 kg, runs up 2 floors (8.0 m). If they climb it in 5.0 sec, what is the average power used?
 - $P_{\text{avg}} = \frac{F \cdot h}{\Delta t} = \frac{mgh}{\Delta t} = \frac{80.0 \times 9.80 \times 8.0}{5.0} \text{ W}$
 - $P = 1250 \text{ W}$

Work & Power:

- Power is also, $\overline{P} = \frac{W}{\Delta t} = \frac{\int F \, dx}{\Delta t} \rightarrow P = F_x \, v_x$

- If force constant, $W = F \, \Delta x = F \left(v_0 \, \Delta t + \frac{1}{2} a \, \Delta t^2 \right)$
 and $P = \frac{W}{\Delta t} = F \left(v_0 + a \Delta t \right)$
Exercise

Work & Power

- Starting from rest, a car drives up a hill at constant acceleration and then quickly stops at the top.

(Hint: What does constant acceleration imply?)

- The instantaneous power delivered by the engine during this drive looks like which of the following,

 A. Top
 B. Middle
 C. Bottom

Chap. 12: Rotational Dynamics

- Up until now rotation has been only in terms of circular motion with $a_c = \frac{v^2}{R}$ and $|a_T| = \frac{d|v|}{dt}$
- Rotation is common in the world around us.
- Many ideas developed for translational motion are transferable.
Rotational Variables

- Rotation about a fixed axis:
 - Consider a disk rotating about an axis through its center:

- Recall:
 \[
 \omega = \frac{d\theta}{dt} = \frac{2\pi}{T} \quad \text{(rad/s)} = \frac{v_{\text{Tangential}}}{R}
 \]
 (Analogous to the linear case \(v = \frac{dx}{dt} \))

Rotational Variables...

At a point a distance \(R \) away from the axis of rotation, the tangential motion:

- \(x \, (\text{arc}) = \theta \, R \)
- \(v_T \, (\text{tangential}) = \omega \, R \)
- \(a_T = \alpha \, R \)

\(\alpha = \text{constant} \) (angular acceleration in rad/s\(^2\))
\(\omega = \omega_0 + \alpha \Delta t \) (angular velocity in rad/s)
\(\theta = \theta_0 + \omega_0 \Delta t + \frac{1}{2} \alpha \Delta t^2 \) (angular position in rad)
Overview (with comparison to 1-D kinematics)

<table>
<thead>
<tr>
<th>Angular</th>
<th>Linear</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha = \text{constant})</td>
<td>(a = \text{constant})</td>
</tr>
<tr>
<td>(\omega = \omega_0 + \alpha \Delta t)</td>
<td>(v = v_0 + a \Delta t)</td>
</tr>
<tr>
<td>(\theta = \theta_0 + \omega_0 \Delta t + \frac{1}{2} \alpha \Delta t^2)</td>
<td>(x = x_0 + v_0 \Delta t + \frac{1}{2} a \Delta t^2)</td>
</tr>
</tbody>
</table>

And for a point at a distance \(R \) from the rotation axis:

\[
x = R \theta \\
v = \omega R \\
a_T = \alpha R
\]

Here \(a_T \) refers to tangential acceleration

Lecture 15

Assignment:
- HW7 due March 10\(^{th}\)
- For Thursday: Read Chapter 12, Sections 7-11

 Do not concern yourself with the integration process in regards to “center of mass” or “moment of inertia”