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Abstract

We recast the well-known Numerov method for solving Schrödinger’s equation into a representa-

tion of the kinetic energy operator on a discrete lattice. With just a few lines of Mathematica code,

it is simple to calculate and plot accurate eigenvalues and eigenvectors for a variety of potential

problems. We illustrate the method by calculating high accuracy solutions for the |x| potential.
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I. INTRODUCTION

With modern high level programming and visualization environments such as Mathe-

matica, Matlab, and Python, it is possible and desirable to use computational methods to

illustrate and illuminate many basic physics principles with a minimum of programming

overhead. This latter point is key: if the programming is too difficult and/or time consum-

ing, the focus shifts from the physics to the programming.

A case in point is the solution of boundary value problems for the 1D Schrödinger equa-

tion. One typically starts at one boundary with an assumed value for the energy, then

integrates to the other boundary where the boundary conditions are tested. A new guess is

generated, and the process is repeated until the desired level of accuracy is obtained.1 Using

the Numerov method, the numerical integration can be done with relatively high accuracy

even with large step sizes.1–3 Though straightforward, this process is tedious to program to

solve for a large number of eigenstates.

An alternative approach that gives a large number of eigenstates simultaneously is to

expand the wave function in a set of orthogonal basis states that satisfy the appropriate

boundary conditions. By truncating the basis set, the Hamiltonian can be diagonalized with

built-in matrix routines. The resulting eigenvectors can be used to generate a superposition

of the basis states to represent the spatial wave function.

A particularly attractive hybrid approach is to discretize the wave function on a (linear)

lattice. This is equivalent to expanding in a basis set of Dirac δ functions centered at the

lattice points. The eigenvectors are then simply lists of the values of the various eigenfunc-

tions at the lattice points. This allows straightforward visualization of the eigenfunctions,

as demonstrated recently on time-dependent problems.4

In the discretized approach, the potential energy operator is simply a diagonal matrix of

the potential energy evaluated at each lattice point. The kinetic energy operator, being a

differential operator, is more difficult to realize. The purpose of this paper is to show how

the Numerov method can be used to represent the kinetic energy operator on the lattice

in a straightforward manner, allowing for high accuracy solutions to be obtained with very

straightforward programs using matrix diagonalization.
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II. MATRIX NUMEROV REPRESENTATION OF THE HAMILTONIAN

The Numerov method is a specialized integration formula for numerically integrating

differential equations of the form

ψ′′(x) = f(x)ψ(x). (1)

For the time-independent 1-D Schrodinger equation, f(x) = −2m(E − V (x))/~2. On a

lattice of points xi evenly spaced by a distance d, the integration formula is

ψi+1 =
ψi−1 (12− d2fi−1)− 2ψi (5d2fi + 12)

d2fi+1 − 12
+O(d6), (2)

where, for example, ψi = ψ(xi). This can be rearranged into the form

− ~2

2m

(ψi−1 − 2ψi + ψi+1)

d2
+
Vi−1ψi−1 + 10Viψi + Vi+1ψi+1

12
= E

(ψi−1 + 10ψi + ψi+1)

12
. (3)

Now, if we represent ψ as the column vector (. . . ψi−1, ψi, ψi+1 . . .), and define matrices

A = (I−1 − 2I0 + I1)/d2, B = (I−1 + 10I0 + I1)/12, V = diag(. . . Vi−1, Vi, Vi+1 . . .), where

Ip is a matrix of 1s along the pth diagonal, and zeros elsewhere, this becomes the matrix

equation

− ~2

2m
Aψ +BV ψ = EBψ. (4)

Multiplying by B−1, we get

− ~2

2m
B−1Aψ + V ψ = Eψ. (5)

Clearly, the first term is the Numerov representation of the kinetic energy operator.

On an N -point grid, the boundary conditions are implemented by taking N × N sub

matrices of A and B. This corresponds to the condition ψ0 = ψN+1 = 0; effectively we

have placed the potential of interest inside an infinite-walled box. Alternatively, one can use

periodic boundary conditions, with A1,N = AN,1 = 1/d2, and B1,N = BN,1 = 1/12.

We choose the grid in the following manner, valid for finding bound state solutions to

attractive potentials. It is easy to extend the following advice to other cases. Suppose we

wish to find all the states with E < Em above the potential minimum. The minimum local

deBroglie wavelength is therefore λ = h/
√

2mEm. We have found that sufficient accuracy is

generally obtained by taking the grid spacing d corresponding to about 1 point per radian,

i.e. d = λ/2π. The number of grid points needed can be estimated by finding the outer

turning points xt, V (xt) = Em, and allowing for an extra 2λ in the classically forbidden

region. Thus N = 2(xt/d+ 4π), rounded to the nearest integer.
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III. EXAMPLE: |x| POTENTIAL

The “linear” potential V (x) = b|x| is analytically solvable5 and so is useful for com-

parison to the numerical calculations. Introducing scaled variables s = x(mb/~2)1/3 and

ε = E(m/b2~2)1/3, we get

−1

2
B−1Aψ + |s|ψ = εψ. (6)

Following the guidelines for selecting the grid, we pick a grid spacing ds = 1/
√

2εm in order

to find accurate results for states up to energy εm. The turning point is st = εm, so with the

additional two deBroglie wavelengths outside the turning point we get N = 2(4π+st/ds). A

Mathematica code for solving this problem is shown in Fig. 1. The grid used is ds = 0.158,

N = 278, and the program runs in typically 0.1 s of CPU time.

FIG. 1. Full Mathematica code for solving the potential problem V = |s|. The energy of the mth

state can be accessed by the command eval[[-m]], and the corresponding list of wave function

values at the grid points s is evec[[-m]].

A comparison of the exact and matrix Numerov results for some of the energy levels is

given in Table I. It is remarkable that such high accuracy results can be achieved with a

simple program. An even simpler program might be accomplished by using a simple 3-point

approximation to the second derivative, obtained by setting B = 1. The results are also
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shown in Table I and are of similar quality to the Numerov method for small n, but give

clearly less accurate results for large n. Figure 2 compares the Numerov and exact wave

functions for n = 50.

n = 1 2 3 4 10 20 50

Exact 0.808617 1.85576 2.57810 3.24461 6.30526 10.1822 18.9469

Numerov 0.809907 1.85574 2.57848 3.24454 6.30487 10.1806 18.9364

3-pt 0.808854 1.85286 2.57278 3.23576 6.27166 10.0938 18.6344

TABLE I. Comparison of exact and numerical results for the quantized energies (in scaled units,

see text) of the linear potential. The numerical results are calculated on an N = 278 point grid

with a spacing of 0.158 in scaled distance units.

We have used the matrix Numerov method to solve a variety of problems. These include

the harmonic oscillator, particle in a box, hydrogen atom, and the partner super potential

to the particle in a box.6 With periodic boundary conditions, we have solved the cosine

potential and the periodic square well. We have also simulated a double-well potential to

demonstrate tunneling. Among these, the hydrogen atom is the most challenging due to

its singularity at x = 0 and the rapid increase of the classical turning point with principal

quantum number. Codes for a few of these examples are available online.7

IV. CONCLUSIONS

While there are other related methods, examples being b-splines8 and the Fourier grid

representation9, that may be superior for accurate calculation of energies and wave functions

by experts, we feel that the simplicity of the matrix Numerov method introduced here

makes it ideal for classroom and course work settings as a tool for helping students grow

comfortable with the notion of the wave function and eigenvalue problems. The method,

though illustrated here for the prominent 1-D Schrödinger equation, is of course useful for any

Numerov-type problem. We have used it to solve for diffusion modes of simple geometries,

for example.

We have also experimented with variable mesh grids, which can be useful for certain

problems such as the hydrogen atom where a variable mesh grid can improve the accuracy.

However, this adds new complexities that detract from what we feel is the main advantage
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FIG. 2. The lower graph shows the analytical Airy function solution to the Schrödinger equation

for the n = 50 state of a linear potential, compared to the Numerov method eigenfunction (dots).

The upper graph shows the difference between the analytical and Numerov wave functions.

of the method: attainment of very high accuracy for minimum programming complexity and

computer time.
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