This Week at Physics

 
<< October 2017 >>
 
 >>
 >>
 >>
 >>
 >>
Sun Mon Tue Wed Thu Fri Sat
 1   2   3   4   5   6   7 
 8   9   10   11   12   13   14 
 15   16   17   18   19   20   21 
 22   23   24   25   26   27   28 
 29   30   31   
 
Add an Event Edit This Event

This Week at Physics

<< Spring 2017 Fall 2017 Spring 2018 >>
Subscribe your calendar or receive email announcements of events

Event Number 4672

  Thursday, October 26th, 2017

Astronomy Colloquium
The Plasma Physics of TeV Blazars
Time: 3:30 pm
Place: 4421 Sterling Hall, Coffee and Cookies at 3:30 PM. Talk begins at 3:45 PM
Speaker: Phil Chang, UW - Milwaukee
Abstract: Constraints on the primordial intergalactic magnetic field from the non-observation of inverse Compton cascades around extragalactic very high energy sources, i.e., the TeV blazars, assume that inverse Compton scattering is the dominant physical mechanism by which dilute ultrarelativistic pair beams lose their energy. Over the last few years, we have considered the effect of plasma instabilities on these ultrarelativistic beams. We argue that the linear growth rate of these instabilities, and in particular the oblique instability, are so fast that these instabilites may dominate the cooling of these pair beams leading to an order of magnitude or more suppression in the inverse Compton cascade. We review the relevant physics of these
plasma instabilities and discuss the linear instability of these pair beams. We also discuss recent work on the various nonlinear aspects of this instability and the effect of density gradients on the instability. We highlight the effect of this instability on the constraints of the intergalactic magnetic field, arguing that these constraints are precluded in the presences of these instabilities. We also discuss the implication of these instabilities on the population of TeV blazars, and the intergalactic gamma ray background. Finally, we close with a discussion on the effect of these extra blazar heating on cosmological structure formation, in particular, the<br>
temperature-overdensity profile and the Lyman-alpha forest.<br><br>
<br><br>
Add this event to your calendar
©2013 Board of Regents of the University of Wisconsin System