This Week at Physics

 
<< March 2019 >>
 
 >>
 >>
 >>
 >>
 >>
 >>
Sun Mon Tue Wed Thu Fri Sat
   1   2 
 3   4   5   6   7   8   9 
 10   11   12   13   14   15   16 
 17   18   19   20   21   22   23 
 24   25   26   27   28   29   30 
 31   
 
Add an Event

Physics Department Colloquia

<< Fall 2018 Spring 2019 Fall 2019 >>
Subscribe your calendar or receive email announcements of events

Events During the Week of March 24th through March 31st, 2019

Monday, March 25th, 2019

No events scheduled

Tuesday, March 26th, 2019

No events scheduled

Wednesday, March 27th, 2019

No events scheduled

Thursday, March 28th, 2019

No events scheduled

Friday, March 29th, 2019

Ferromagnetic Josephson Junctions for Cryogenic Memory
Time: 3:30 pm
Place: 2241 Chamberlin Hall
Speaker: Norman O. Birge, Michigan State University
Abstract: Large-scale computing facilities and data centers are using electrical power at an ever increasing rate. Projections suggest that a future “exoscale” computer will require the power output of a typical nuclear power plant – clearly an untenable situation. One approach to addressing this problem is to build a computer out of all superconducting elements, which dissipate very little power. Such a computer would have to be cooled to cryogenic temperatures, so it must be extremely energy-efficient to justify the added complexity and cost associated with cooling. Superconducting logic circuits based on manipulating single flux quanta have existed for 30 years; what has been missing is a high-density, fast, and energy-efficient cryogenic memory. One approach is to use Josephson junctions containing ferromagnetic (F) materials as the memory element for such a memory. The basic building block is a Josephson junction containing two ferromagnetic layers whose magnetization directions can be switched between being parallel or antiparallel to each other, as in a conventional spin valve. We have demonstrated successful switching of such a junction between the “0” phase state and the “π” phase state, from measurements of two junctions in a SQUID geometry. An alternative approach is to use a Josephson junction containing three ferromagnetic layers, which is designed to carry spin-triplet supercurrent. We have also realized controllable 0 - π switching in such a spin-triplet junction. At the end of the talk I’ll mention what needs to be done to turn these results into a real superconducting computer.
Host: Alex Levchenko
Video: https://vod.physics.wisc.edu/media/2019_03_29.m4v
Add this event to your calendar
©2013 Board of Regents of the University of Wisconsin System