MidTerm Exam 3 Friday, 4/24 10:30 class

Material:
T+L Ch 7 (Hydrogenation - quantum theory) (also T+H Ch 36)
Ch 11 (Nuclear physics) (also T+H Ch 40)
T+M Ch 25 (Currents + DC circuits - R ± RC)
26 (Magnetic Force)
27 (Magnetic Fields)

HW 8-12 (but no induction)

Review: Wed & Thurs (disc). Office hrs this week: M, T 4-6. Other times via appointment.

3rd to Inductance.

Self-Inductance: defined as: \(\Phi_m = L I \)

\(N \)-turn coils: \(2 = \text{equations} \)

\(\Phi_m = N \int B \cdot dA, \ L = \frac{\Phi_m}{I} \)

\(\frac{d}{dt} \): voltage drop across coil (inductor). Emf induced opposes change in \(\Phi_m \).

\(\frac{d}{dt} \): Circuit: changing \(I(t) \) \(\rightarrow \) change in \(B \) produced by \(I \), changing \(\Phi_m \)

Induced emf: opposes original emf carrying change \(I(t) \)

Induction: opposes change in current

(Compare resistor: opposes current itself)

Mutual Inductance: can get the effect of two coil circuits:

\[\Phi_{m12} = \text{flux of} \ B_1 \text{ through Circuit 2} = M_{12} I_1 \]

\[\Phi_{m21} = " \text{flux of} \ B_2 \text{ through Circuit 1} = M_{21} I_2 \]

\(\Phi_m \) shows: \(M_{12} = M_{21} \)
Both types: solenoids

\[L = \frac{N}{A} \int n \cdot n \cdot n \cdot A \cdot \frac{dI}{dt} \]

Natural inductance:

\[H_{12} = H_{21} = \frac{\mu_0 \mu_0}{\mu_0 \mu_0} n \cdot m \cdot l \cdot \pi r_1^2 \]

Show \(H_{12} = M_{12} \).

Core/solenoid with large self-inductance \(\rightarrow \) inductor \(L \)

\[\frac{1}{3} \frac{d}{dt} \]

Useful circuit element: acts to oppose change in current

RL circuit (DC)

Kirchhoff:

\[E - IR - L \frac{dI}{dt} = 0 \]

Energy:

\[EI = I^2 R + L \frac{dI}{dt} \]

\[LI \frac{dI}{dt} = dU_m \]

\[dU_m = LI dI \Rightarrow U_m = \frac{1}{2} LI^2 \]

Power supplied by battery = Power delivered to resistor + Power delivered to inductor

\[dU_m = \frac{L}{2} \frac{dI}{dt} \]

Energy stored in magnetic field:

- example: solenoid

\[U_m = \frac{1}{2} LI^2 = \frac{1}{2} \mu_0 n^2 A I^2 = \frac{1}{2} (\mu_0 n I)^2 A l = \frac{B^2}{2} A l \]

\[\text{define } \frac{U_m}{A l} = \text{magnetic energy density } \Rightarrow \frac{U_m}{A l} = \frac{B^2}{2} \]

\[\frac{U_m}{A l} = \frac{B^2}{2} \]
Magnetic energy density: \(U_m = \frac{B^2}{2\mu_0} \) for all space.

Electric energy density: \(U_e = \frac{1}{2} \varepsilon_0 E^2 \)

Think of energy as being stored in the fields.

Total magnetic energy: \(U_m = \frac{1}{2\mu_0} \int B^2 \, dV \)

Total electric energy: \(U_e = \frac{1}{2} \varepsilon_0 \int E^2 \, dV \)

For circuits:

Open circuit: inductor

Assume self-inductance of rest of circuit is negligible.

Rate of inductor: opposite charge change in the current in that current.

\[E - ER - L \frac{dI}{dt} = 0 \]

\[\frac{E}{R} - I = \frac{L}{R} \frac{dI}{dt} \]

At \(t = 0 \):

\[\frac{dI}{dt} = \frac{R}{L} I \]

Current building in circuit:

\[y = \frac{E}{R} - I : \quad \frac{dy}{dt} = -\frac{R}{L} y \]

\[y = y_0 e^{-\frac{R}{L} t} \]

\[I(t) = \frac{E}{R} e^{-\frac{R}{L} t} \]

Initial condition: \(I(0) = \frac{E}{R} (1 - e^{-\frac{R}{L} t}) \)

\[I = \text{time constant} = L/R \]
The circuit is an RC circuit. The charge on the capacitor is given by:

\[q = \frac{1}{R C} \int i \, dt \]

Current through the resistor:

\[i(t) = \frac{V}{R} \]

From Kirchhoff's voltage law:

\[v(t) = R i(t) \]

When the battery is disconnected, the charge on the capacitor remains constant:

\[q(t) = q(0) = \frac{V}{R} \]

The voltage across the capacitor is:

\[v_c(t) = \frac{V}{Q} \int q(t) \, dt \]

Using the initial condition:

\[q(0) = \frac{V}{R} \]

The voltage across the resistor is:

\[v_R(t) = v(t) - v_c(t) \]

The current through the resistor is:

\[i(t) = \frac{d q(t)}{dt} \]

Using the initial condition:

\[q(0) = \frac{V}{R} \]

The final voltage across the capacitor is:

\[v_c(t) = \frac{V}{Q} \int q(t) \, dt \]

The final voltage across the resistor is:

\[v_R(t) = v(t) - v_c(t) \]

The current through the resistor is:

\[i(t) = \frac{d q(t)}{dt} \]

Using the initial condition:

\[q(0) = \frac{V}{R} \]
Example circuit (Ex. 28-14 - problem 28.6S)

\[E - I_1 R_1 - I_2 R_2 = 0 \]
\[E = I_1 (R_1 + R_2) = 0 \]
\[I_1 = I_2 = \frac{E}{R_1 + R_2} \]

(a) at \(t=0 \): \(I_3 = 0 \) (since before switch is closed) - apply initial

voltage drop across \(R_1 \) so \(I_1 = I_2 \)

\[\frac{E}{R_1} \]

Loop 1:

\[E = I_1 R_1 - I_2 R_2 = 0 \]

At \(t=0 \):

\[I_1 = I_2 = \frac{E}{R_1 + R_2} \]

potential drop across inductor: \(L \frac{dI_2}{dt} = I_2 R_2 \)

(b) at long time (\(t \to \infty \))

long time: \(\frac{dI}{dt} = 0 \) and inductor \(L \) acts as short circuit

\[\Rightarrow I_2 = 0 \]

Effect circuit:

\[E - I_1 R_1 - I_3 R_2 = 0 \]

\[E = I_1 = I_3 \text{ and } I_2 = 0 \]

(c) Now reopen the switch.

\(I_1 \) "instantaneously" is zero, \(I_3 = \frac{E}{R_1} \) still.

\[I_2 \]

\[I_3 \]

\[I_2 = -\frac{E}{R_1} = -I_3 \]

\[R_2 \]

\[L \]

voltage drop across \(R_2 \) = \(I_2 R_2 = \frac{E R_2}{R_1} \)

Current decreasing with time:

\[I(t) \to 0 \text{ as time increases} \]
Quick aside: LC circuit.

\[-\frac{dQ}{dt} + \frac{Q}{L} = 0 \]
\[-L \frac{d^2Q}{dt^2} - \frac{Q}{C} = 0 \]

\[\Rightarrow \frac{d^2Q}{dt^2} = -\frac{1}{LC} Q = -\omega^2 Q \]

oscillatory charge flow!

ideally strict (no resistance) \(\rightarrow\) oscillator persist indefinitely.

Energy: suppose start out with capacitor charged fully at \(t=0\).

\[U_{\text{max}} = \frac{Q^2}{2C} \]

\[U(t) = U_{\text{max}} \cos(\omega t + \delta) \]

current starts to pass: capacitor discharges, E field decreases; \(\text{Vcap decrease}\)

but current flows, so \(U_{\text{ind}} = \frac{1}{2} L I^2\) gains.

fully discharged \(\rightarrow U_{\text{top}} = U_{\text{ind}}\)

then current continues (decreasing magnitude) + becomes charged again (plates at opp polarity) \(\rightarrow U_{\text{top}} = U_{\text{cap}}\) etc.

energy oscillates b/w \(L+e\).

natural frequency: \[\omega = \frac{1}{\sqrt{LC}} \]

Real solns: include resistance (damping) \(\rightarrow\) damped harmonic oscillator

AC circuit: source of (sinusoidal or otherwise alternating) emf:

forced damped harmonic oscillator \(\rightarrow\) resonance. (Ch 29)