Physics ∩ ML Seminars

<< Fall 2021 Spring 2022 Summer 2022 >>
Subscribe your calendar or receive email announcements of events
Renormalization Group Flow as Optimal Transport
Date: Wednesday, May 4th
Time: 11:00 am - 12:15 pm
Place: Online Seminar: Please sign up for our mailing list at for zoom link. We will also livestream the talk in Chamberlin 5280.
Speaker: Semon Rezchikov, Harvard University
Abstract: In this talk, I will describe how the renormalization group (RG), a fundamental aspect of statistical in quantum field theory, can be cast as a variational problem using ideas from optimal transport. I will review the renormalization group as well as optimal transport for non-specialists. The latter subject is naturally connected to methods in machine learning. This variational formulation of RG, beyond having theoretical interest, can be used to design neural networks which compute the renormalization group flow of conventional field theories. The renormalization group has been fundamental in the design of the numerical algorithms for finding ground states and computing physical quantities of 1+1 dimensional field theories which have been successful thus far. I will discuss the prospects for using this formulation of RG to merge modern techniques from machine learning with ideas involving renormalization, in order to tackle fundamental problems in the study in field theories of dimension greater than 1+1.
Host: Gary Shiu
Add this event to your calendar