Events

Physics Department Colloquia

<< Summer 2024 Fall 2024 Spring 2025 >>
Subscribe your calendar or receive email announcements of events

Events During the Week of September 15th through September 22nd, 2024

Monday, September 16th, 2024

No events scheduled

Tuesday, September 17th, 2024

No events scheduled

Wednesday, September 18th, 2024

No events scheduled

Thursday, September 19th, 2024

No events scheduled

Friday, September 20th, 2024

Exploring Magnetic Reconnection With Phase Space Measurements
Time: 3:30 pm - 4:30 pm
Place: Chamberlin 2241
Speaker: Earl Scime, West Virginia University
Abstract: One of the “Grand Challenges” of plasma physics is to understand the processes whereby energy stored in the magnetic fields of a plasma is converted into kinetic energy of the ions and electrons in the plasma. We see that this energy conversion happens in stars, in planetary magnetospheres, and in fusion plasmas. Over the past few decades, there has been considerable progress in developing theoretical models of magnetic reconnection, the process responsible for the energy conversion. Measurements from spacecraft and in laboratory experiments have also contributed to our understanding of magnetic reconnection in collisional and collisionless plasmas. Recently, a variant of magnetic reconnection in which ions do not participate and the physics is dominated by electron dynamics has been identified in space measurements – “electron-only reconnection.” I will review the experimental evidence for electron-only reconnection in space and the state of our computational and theoretical understanding of this process. I will also describe recent studies of electron-only reconnection in the PHAse Space MApping (PHASMA) experiment at West Virginia University. In PHASMA, two magnetic flux ropes are driven together to initiate the reconnection process and advanced, non-perturbative diagnostics provide direct measurements of the electron and ion velocity distribution functions at the kinetic scale (at scales smaller than the gyro motion of the charged particles around the magnetic field). We find that, consistent with theoretical predictions, the majority of incoming magnetic energy appears as electron thermal energy and that Ohmic processes are unlikely to be responsible for the measured increase in electron enthalpy. The electron velocity distribution function measurements include non-Maxwellian features, including beams that jet out from the X-point in both outflow directions. We observe that the electron beam speed scales with the local electron Alfvén speed and that the spatial distribution of the electron heating matches theoretical predictions. Measurements of the three-dimensional electron velocity distribution function (a unique capability of the PHASMA facility) confirm that the most likely mechanism for the electron heating is the parallel electric field created in the reconnection process.
Host: John Sarff
Add this event to your calendar