Abstract: Dark Matter particles can be captured in the core of the Sun or the Earth, or in the Galactic center, by interacting with the nuclei in the medium. The capture rate depends on the composition of the medium, dark matter mass and its local density. If the captured dark matter annihilate or decay into the Standard Model particles, there is a possibility of producing neutrinos which can be detected via muon tracks or showers. I will present theoretical predictions for the indirect detection of the dark matter particles via neutrino signals due to their annihilations in the core of the Sun/Earth and in the Galactic center. I will discuss how measurements of muons and/or showers by IceCube and KM3NeT may be able to distinguish between different dark matter models, such as gravitino, Kaluza-Klein particle or leptophilic dark matter.