Wisconsin Quantum Institute

<< Fall 2022 Spring 2023 Summer 2023 >>
Subscribe your calendar or receive email announcements of events
Discovering and Engineering Two-Dimensional Magnetism and Superconductivity
Date: Tuesday, February 14th
Time: 10:00 am - 6:00 pm
Place: 5310 Chamberlin
Speaker: Tiancheng Song, Princeton
Abstract: Understanding and manipulating macroscopic quantum phenomena such as superconductivity and magnetism are crucial for future quantum science and technology. Two-dimensional (2D) materials and their van der Waals (vdW) heterostructures offer a promising platform to achieve this goal due to their exceptionally broad tunability. In this talk, I will highlight the potential of such a platform through two outstanding examples: 2D magnetism and 2D superconductivity. In the first part, I will talk about a series of emergent phenomena enabled by the vdW nature of 2D magnets, including (1) giant tunneling magnetoresistance enhanced by spin-filtering effects; (2) control of interlayer magnetism by tuning layer stacking; (3) novel moiré magnetism by twisting two layers of 2D magnets. In the second part, I will introduce a new probe to detect superconducting fluctuations down to millikelvin temperatures based on thermoelectric measurements of a monolayer nanoflake. I will discuss surprisingly unusual vortex Nernst signals, which reveal an unconventional superconducting quantum criticality in an electrically tunable 2D superconductor. Finally, I will conclude by highlighting unique opportunities for discovering and engineering new quantum materials and electronic phases in two dimensions.
Host: Victor Brar
Add this event to your calendar