Jimena González named Three Minute Thesis® finalist

Congrats to Jimena González, a physics graduate student with WIPAC, who is one of nine finalists for UW–Madison’s Three Minute Thesis® competition! Watch Jimena’s video on YouTube, and check out all nine finalists’ videos at the UW–Madison 3MT® website. The videos are only available through November 29. The finals will be held on February 3, 2021.

a still from a YouTube video of Jimena giving a presentation
Jimena González presents a virtual 3MT

Vandenbroucke group plays instrumental role in proving viability of innovative gamma-ray telescope

Scientists in the Cherenkov Telescope Array (CTA) consortium have detected gamma rays from the Crab Nebula using the prototype Schwarzschild-Couder Telescope (pSCT), proving the viability of the novel telescope design for use in gamma-ray astrophysics. The announcement was made today by Justin Vandenbroucke, associate professor at the University of Wisconsin–Madison, on behalf of the CTA Consortium at the virtual 236th meeting of the American Astronomical Society (AAS).

“The Crab Nebula is the brightest steady source of TeV, or very high-energy, gamma rays in the sky, so detecting it is an excellent way of proving the pSCT technology,” says Vandenbroucke, who is also affiliated with the Wisconsin IceCube Particle Astrophysics Center (WIPAC) at UW–Madison. “Very high-energy gamma rays are the highest energy photons in the universe and can unveil the physics of extreme objects, including black holes and possibly dark matter.”

Vandenbroucke is coleader of a team made up of WIPAC scientists and other collaborators that developed and operate a critical part of the telescope: its high-speed camera. Vandenbroucke has worked on the design, construction, and integration of the camera since 2009.

Read the full story on the WIPAC website. The WIPAC story was adapted from a CTA press release.

Keith Bechtol, Rob Morgan win UW’s Cool Science Image contest

pieced-together photos of space with a helix nebula the most visible

pieced-together photos of space with a helix nebula the most visibleCongrats to Prof. Keith Bechtol and graduate student Rob Morgan for their winning entry in the UW–Madison Cool Science Images contest! Their winning entry — one of 12 selected out of 101 entries — earns them a large-format print which initially will be displayed in a gallery at the McPherson Eye Research Institute’s gallery in the WIMR building.

This snapshot of the sky contains thousands of distant galaxies, each containing billions of stars. Bechtol and Morgan were looking for the flash of the explosion of a single star, the potential source of a sub-atomic particle called a neutrino, spotted zipping through the Earth by the IceCube Neutrino Observatory at the South Pole. The distant galaxies, swirling billions of light years away, are all the harder to see because of nearby objects, like the pictured Helix Nebula. The image was captured with a Dark Energy Camera and Victor M. Blanco telescope.

To learn more about the Cool Science Images contest and to view the other winning images, please visit https://news.wisc.edu/the-winners-cool-science-images-2020/.


Profs Eriksson, McDermott, Vandenbroucke awarded UW2020s

image of research station at south pole plus a purely decorative image on the bottom half

Twelve projects have been chosen for Round 6 of the UW2020: WARF Discovery Initiative, including three from faculty in the Department of Physics (Mark Eriksson, Robert McDermott, and Justin Vandenbroucke). These projects were among 92 proposals submitted from across campus. The initiative is funded by the Office of the Vice Chancellor for Research and Graduate Education and the Wisconsin Alumni Research Foundation.

The projects were reviewed by faculty across the university. The UW2020 Council, a group of 17 faculty from all divisions of the university, evaluated the merits of each project based on the reviews and their potential for making significant contributions to their field of study.

The goal of UW2020 is to stimulate and support cutting-edge, highly innovative and groundbreaking research at UW–Madison and to support acquisition of shared instruments or equipment that will foster significant advances in research.

Acquisition of a cryogen-free Physical Properties Measurement System (PPMS) for characterization of quantum materials and devices

The project addresses a barrier for UW–Madison researchers in measuring electronic, magnetic, and thermal properties of quantum materials at low temperatures, namely the increasing high costs of cryogens (liquid helium) and lack of a convenient means to perform these measurements in a shared facility. Low-temperature electronic, magnetic, and thermal properties of materials are crucial for fundamental materials discovery and for applications in quantum information, nonvolatile memory, and energy conversion devices.

This project will acquire a cryogen-free Physical Properties Measurement System (PPMS) and house it as a shared-user facility instrument within the Wisconsin Centers for Nanotechnology (CNT). This instrument would be open for all UW–Madison users.

Currently, these measurements depend on external collaborations or low-temperature setups in PI labs which either consume large amounts of cryogens or require time-consuming reconfigurations from experiment to experiment. Having a cryogen-free PPMS would allow researchers to spend less time and money in setting up experiments, potentially freeing up resources for scientific investigations that include new superconducting and topological material discoveries and characterizations of materials for advanced microelectronics and magnetic memory systems.

Jason Kawasaki, assistant professor of materials science and engineering

Jerry Hunter, director of the Wisconsin Centers for Nanotechnology

Paul Voyles, professor of materials science and engineering and MRSEC Director

Song Jin, professor of chemistry

Mark Eriksson, professor of physics

Thomas Kuech, professor of chemical and biological engineering

Daniel Rhodes, assistant professor of materials science and engineering

Chang-Beom Eom, professor of materials science and engineering

Paul Evans, professor of materials science and engineering

Michael Arnold, professor of materials science and engineering

Dakotah Thompson, assistant professor of mechanical engineering

Cracking the structure of ice: establishing a cryogenic electron backscatter diffraction and Raman capability at UW–Madison

The structure and physical properties of ice determine the behavior of glaciers, ice sheets, and polar ice caps (both terrestrial and extraterrestrial). Moreover, ice is of interest because of its unique light transmission properties, which are currently being harnessed by one of the world’s largest astrophysical experiments through the UW–led IceCube collaboration.

This project will develop the capability to perform scanning electron microscopy (SEM) of water and CO2 ice in the UW–Madison Geoscience Department, focusing on electron backscatter diffraction (EBSD) analysis for ice microstructure and Raman spectroscopy for ice composition. EBSD of ice is an extremely rare analytical capability worldwide.

Having this highly specialized type of analysis capability for ice will enable advances in glaciology, climate science, physics, materials science and planetary science. This technology can accelerate research on glacial sliding and ice deformation, and inform long-standing questions about the transformation of air bubbles to clathrates in glacial ice and their potential as archives of Earth’s past atmosphere. In addition, understanding the structure of ice is critical, for example, to accurate measurement of cosmic ray interactions in the IceCube Neutrino Observatory.

As the only lab in the U.S. offering combined ice EBSD analysis and ice Raman analysis, UW–Madison will establish itself as a nexus for cryosphere research, attracting many collaborations from outside UW–Madison.

Chloe Bonamici, assistant professor of geoscience

Lucas Zoet, assistant professor of geoscience

Shaun Marcott, associate professor of geoscience

Justin Vandenbroucke, associate professor of physics/WIPAC

John Fournelle, senior scientist of geoscience

Pavana Prabhakar, assistant professor of civil and environmental engineering

Richard Hartel, professor of food engineering

Hiroki Sone, assistant professor of geological engineering

Interdisciplinary engineering of quantum information systems

This project represents a synergistic effort toward engineering practical quantum information systems (QIS). The research unites the experimental superconducting and semiconducting qubit teams on campus with advanced materials characterization and microwave engineering expertise to uncover the underlying sources of decoherence that limit qubit performance and develop next-generation quantum devices for scalable quantum computing and quantum sensing. This effort will build new interdisciplinary connections that nourish the quantum ecosystem at UW–Madison, cutting across departmental and disciplinary lines.

The potential of QIS has been recognized recently by the $1.4 billion federal National Quantum Initiative, and the newly formed Wisconsin Quantum Institute at UW is home to world-leading efforts in the physics of QIS. This project is a next step in expanding these directions to incorporate the engineering effort necessary to develop practical systems capable of solving real-world problems.

Robert McDermott, professor of physics

Mark Eriksson, professor of physics

Susan Hagness, professor of electrical and computer engineering

Paul Voyles, professor of materials science and engineering

Kangwook Lee, professor of electrical and computer engineering