Ke Fang named Sloan Fellow

This story is adapted from one published by University Communications

profile photo of Ke Fang
Ke Fang

Ke Fang, assistant professor of Physics and WIPAC investigator, is among 126 scientists across the United States and Canada selected as Sloan Research Fellows.

The fellowships, awarded annually since 1955, honor exceptional scientists whose creativity, innovation and research accomplishments make them stand out as future leaders in their fields.

Using data from the Ice Cube Observatory and Fermi Large Area Telescope along with numerical simulations, Fang studies the origin of subatomic particles — like neutrinos — that reach Earth from across the universe.

“Sloan Research Fellowships are extraordinarily competitive awards involving the nominations of the most inventive and impactful early-career scientists across the U.S. and Canada,” says Adam F. Falk, president of the Alfred P. Sloan Foundation. “We look forward to seeing how fellows take leading roles shaping the research agenda within their respective fields.”

Founded in 1934, the Sloan Foundation is a not-for-profit institution dedicated to improving the welfare of all through the advancement of scientific knowledge.

Sloan Fellows are chosen in seven fields — chemistry, computer science, Earth system science, economics, mathematics, neuroscience and physics — based on nomination and consideration by fellow scientists. The 2024 cohort comes from 53 institutions and a field that included more than 1,000 nominees. Winners receive a two-year, $75,000 fellowship that can be used flexibly to advance their research.

Among current and former Sloan Fellows, 57 have won a Nobel Prize, 71 have been awarded the National Medal of Science, 17 have won the Fields Medal in mathematics and 23 have won the John Bates Clark Medal in economics.

Xiangyao Yu, assistant professor of computer sciences at UW–Madison, was also named a Sloan Fellow.

 

The largest magnetic fields in galaxy clusters have been revealed for the first time

By Alex Lazarian, Yue Hu, and Ka Wai Ho

Galaxy clusters, immense assemblies of galaxies, gas, and elusive dark matter, form the cornerstone of our Universe’s grandest structure — the cosmic web. These clusters are not just gravitational anchors, but dynamic realms profoundly influenced by magnetism. The magnetic fields within these clusters are pivotal, shaping the evolution of these cosmic giants. They orchestrate the flow of matter and energy, directing accretion and thermal flows, and are vital in accelerating and confining high-energy charged particles/cosmic rays.

However, mapping the magnetic fields on the scale of galaxy clusters posed a formidable challenge. The vast distances and complex interactions with magnetized and turbulent plasmas diminish the polarization signal, a traditionally used informant of magnetic fields. Here, the groundbreaking technique — synchrotron intensity gradients (SIG) — developed by a team of UW–Madison astronomers and physicists led by astronomy professor Alexandre Lazarian, marks a turning point. They shifted the focus from polarization to the spatial variations in synchrotron intensity. This innovative approach peels back layers of cosmic mystery, offering a new way to observe and comprehend the all-important magnetic tapestry on scale of millions of light years.

A landmark study published in Nature Communications has employed the SIG technique to unveil the enigmatic magnetic fields within five colossal galaxy clusters, including the monumental El Gordo cluster, observed with the Very Large Array (VLA) and MeerKAT telescope. This colossal cluster, formed 6.5 billion years ago, represents a significant portion of cosmic history, dating back to nearly half the current age of the universe. The findings in El Gordo, characterized by the largest magnetic fields observed, provide crucial insights into the structure and evolution of galaxy clusters.

a 3-panel picture. The left half is a blue swirly image titled "El Gordo galaxy cluster" and labeled "radius: 6M light years." A tiny square inset of this left picture is enlarged in the top right, titled "fishhook galaxy", which is a hook-shaped orange swirl of gas-like substance. the bottom right panel is the Milky Way for comparison, with a radius of 52,850 light years
Left: Image of the El Gordo cluster observed Chandra X-ray Observatory and ground-based optical telescopes (credits: NASA/ESA/CSA). Magnetic field visualized by streamlines are superimposed on the image. Right: images of the Fishhook galaxy (top) and Milky Way (bottom).

The research is a fruitful collaboration between the UW–Madison team and their Italian colleagues, including Gianfranco Brunetti, Annalisa Bonafede, and Chiara Stuardi from the Instituto do Radioastronomia (Bologna, Italy) and the University of Bologna. Brunetti, a renowned expert in the high-energy physics of galaxy clusters, is enthusiastic about the potential that the SIG technique holds for exploring magnetic field structures on even larger scales, such as the Megahalos recently discovered by him and his colleagues.

Echoing this excitement is the study’s lead researcher, physics graduate student Yue Hu.

“This research marks a significant milestone in astrophysics,” Hu says. “Utilizing the SIG method, we’ve observed and begun to comprehend the nature of magnetic fields in galaxy clusters for the first time. This breakthrough heralds new possibilities in our quest to unravel the mysteries of the universe.”

This study lays the groundwork for future explorations. With the SIG method’s proven effectiveness, scientists are optimistic about its application to even larger cosmic structures that have been detected recently with the Square Kilometre Array (SKA), promising deeper insights into the mysteries of the Universe magnetism and its effects on the evolution of the Universe Large Scale Structure.

Earth-sized planet discovered in ‘our solar backyard’

A team of astronomers have discovered a planet closer and younger than any other Earth-sized world yet identified. It’s a remarkably hot world whose proximity to our own planet and to a star like our sun mark it as a unique opportunity to study how planets evolve.

The new planet was described in a new study published this week by The Astronomical JournalMelinda Soares-Furtado, a NASA Hubble Fellow at the University of Wisconsin–Madison who will begin work as an astronomy and physics professor at the university in the fall, and recent UW–Madison graduate Benjamin Capistrant, now a graduate student at the University of Florida, co-led the study with co-authors from around the world.

“It’s a useful planet because it may be like an early Earth,” says Soares-Furtado.

Read the full story

graphic shows a sun, HD 63433, and three planets near it, represented in yellow, green, and red. Each planet lists its Earth-radii value and orbital period
Young, hot, Earth-sized planet HD 63433d sits close to its star in the constellation Ursa Major, while two neighboring, mini-Neptune-sized planets — identified in 2020 — orbit farther out. Illustration: Alyssa Jankowski

Physics PhD student Stephen McKay named ALMA ambassador

profile photo of Stephen McKay
Stephen McKay

Congrats to physics graduate student Stephen McKay on being named an ALMA ambassador!

ALMA, or the Atacama Large Millimeter/submillimeter Array, is the largest radio telescope in the world. It can detect light radiated by clouds of dust grains in some of the earliest and most distant galaxies in the Universe. Researchers can submit proposals to ALMA that direct data collection to observe astronomical targets at a wide range of wavelengths, in order to accomplish many cutting-edge science goals. However, ALMA receives many more proposals than there is time to operate the telescope.

That’s where McKay’s ambassadorship comes in.

“Lots of groups at UW–Madison and other places will propose to get data from these telescope arrays,” McKay says. “In February, I’ll attend a training (through the ambassador program) where they will teach me tips and tricks for writing proposals. Then in early spring, I’ll run a proposal workshop here for anyone who wants to learn how to strengthen a proposal.”

a series of dish antenna telescopes is gently illuminated under the night sky with the milky way galaxy visible above
In the Chajnantor Plateau, amazing picture of the antennas under the Milkyway. Credit: Sergio Otarola- ALMA (ESO/NAOJ/NRAO)

McKay is no stranger to proposing and using ALMA data. A third-year graduate student in astronomy professor Amy Barger’s research group, he expects nearly all his publications will be based on ALMA data. His research focuses on old, distant galaxies and measuring and inferring physical properties about them: How massive are they? What is their rate of star formation? What processes trigger the rapid star-formation in these systems?

“The galaxies that I mainly study are faint or hard to detect in optical wavelengths or even near-infrared wavelengths. Until about maybe 25 years ago, we didn’t know a lot of these galaxies existed because they just weren’t visible in the typical telescope images we had,” McKay says. “The portion of the observed electromagnetic spectrum where these galaxies are brightest ranges from 500 microns to nearly one millimeter, which overlaps heavily with ALMA’s spectral coverage.”

Two years ago, McKay attended an ALMA workshop to learn more about how ALMA and similar radio arrays operate. With this ALMA ambassadorship, he will now help run the workshops and offer advice on crafting stronger proposals. The ALMA Ambassador Program is run through the National Radio Astronomy Observatory’s North American ALMA Science Center (NAASC). It provides training and an up to $10,000 research grant to early-career researchers interested in expanding their ALMA/interferometry expertise and sharing that knowledge with their home institutions.

“This program is helpful for me because I will learn more in terms of how to actually do my own research, but then I can also pass along what I learn with the rest of the astronomical community,” McKay says.

Welcome, Professor Vladimir Zhdankin!

profile photo of Vladimir Zhdankin
Vladimir Zhdankin (credit: Flatiron Institute)

Theoretical plasma astrophysicist Vladimir Zhdankin ‘11, PhD ’15, returns to UW–Madison as an assistant professor of physics on January 1, 2024. As a student, Zhdankin worked with Prof. Stas Boldyrev on solar wind turbulence and basic magnetohydrodynamic turbulence, which are relevant for near-Earth types of space plasmas. After graduating, Zhdankin began studying plasma astrophysics of more extreme environments. He first completed a postdoc at CU-Boulder, then a NASA Einstein Fellowship at Princeton University. He joins the department from the Flatiron Institute in New York, where he is currently a Flatiron Research Fellow.

Please give an overview of your research. 

These days, most of my interest is in the field of plasma astrophysics — the application of plasma physics to astrophysical problems. Much of the matter in the universe is in a plasma state, such as stars, the matter around black holes, and the interstellar medium in the galaxy. I’m interested in understanding the plasma processes in those types of systems. My focus is particularly on really high energy systems, like plasmas around black holes or neutron stars, which are dense objects where you could get extreme plasmas where relativistic effects are important. The particles are traveling at very close to the speed of light, and there’s natural particle acceleration occurring in these systems. They also radiate intensely, you could see them from halfway across the universe. There’s a need to know the basic plasma physics in these conditions if you want to interpret observations of those systems. A lot of my work involves doing plasma simulations of turbulence in these extreme parameter regimes.

What are one or two research projects you’ll focus on the most first?

One of them is on making reduced models of plasmas by using non-equilibrium statistical mechanical ideas. Statistical mechanics is one of the core subjects of physics, but it doesn’t really seem to apply to plasmas very often. This is because a lot of plasmas are in this regime that’s called collisionless plasma, where they are knocked out of thermal equilibrium, and then they always exist in a non-thermal state. That’s not what standard statistical mechanics is applicable to. This is one of the problems that I’m studying, whether there is some theoretical framework to study these non-equilibrium plasmas, to understand basic things like: what does it mean for entropy to be produced in these types of plasmas? The important application of this work is to explain how are particles accelerated to really high energies in plasmas. The particle acceleration process is important for explaining cosmic rays which are bombarding the Earth, and then also explaining the highest energy radiation which we see from those systems.

Another thing I’m thinking about these days is plasmas near black holes. In the center of the Milky Way, for example, there’s a supermassive black hole called Sagittarius A*, which was recently imaged a year or two ago by the Event Horizon Telescope. It’s a very famous picture. What you see is the shape of the black hole and then all the plasma in the vicinity, which is in the accretion disk. I’m trying to understand the properties of that turbulent plasma and how to model the type of radiation coming out of the system. And then also whether we should expect neutrinos to be coming out, because you would need to get very high energy protons in order to produce neutrinos. And it’s still an open question of whether or not that happens in these systems.

What attracted you to UW–Madison?

It’s just a perfect match in many ways. It really feels like a place where I’m confident that I could succeed and accomplish my goals, be an effective mentor, and build a successful group. It has all the resources I need, it has the community I need as a plasma physicist to interact with. I think it has a lot to offer to me and likewise, I have a lot to offer to the department there. I’m also really looking forward to the farmers’ market and cheese and things like that. You know, just the culture there.

What is your favorite element and/or elementary particle?

I like the muon. It is just a heavy version of the electron, I don’t remember, something like 100 times more massive or so. It’s funny that such particles exist and this is like the simplest example of one of those fundamental particles which we aren’t really familiar with, it’s just…out there. You could imagine situations where you just replace electron with a muon and then you get slightly different physics out of it.

What hobbies and interests do you have?

They change all the time. But some things I’ve always done: I like running, skiing, bouldering indoors, disk golf, racquet sports, and hiking. (Cross country or downhill skiing?) It’s honestly hard to choose which one I prefer more. In Wisconsin, definitely cross country. If I’m in real mountains, the Alps or the Rockies, then downhill is just an amazing experience.

Federal physics advisory panel — including Profs. Bose and Cranmer — announces particle physics recommendations

Earlier this year, physics professors Tulika Bose and Kyle Cranmer were selected to serve on the Particle Physics Project Prioritization Panel, or P5, a group of High Energy Physics experts that advises the Department of Energy Office of Science and the National Science Foundation’s Division of Physics on high energy and particle physics matters.

P5 announced their recommendations in a draft report published Dec. 7 — and UW–Madison physicists are featured in many of the projects.

One recommendation is to move forward with a planned expansion of the IceCube Neutrino Observatory, an international scientific collaboration operated by the UW–Madison at the South Pole. Other recommendations include support for a separate neutrino experiment based in Illinois (the Deep Underground Neutrino Experiment, or DUNE); continuing investment in the Large Hadron Collider in Switzerland and the Rubin Observatory in Chile; and expanding involvement in the Cherenkov Telescope Array (CTA), a ground-based very-high-energy gamma ray observatory. UW–Madison physicists have leading roles in all of these research efforts.

Additional recommendations include the development of a next generation of ground-based telescopes to observe the cosmic microwave background and a direct dark matter detector experiment, among others.

Read the full story

Ke Fang, Ellen Zweibel earn Simons Foundation funding to study electrodynamics in extreme environments

Much of what we understand about fundamental physics is based on experiments done in the convenient “lab” of earth. But our planet is just one location, with its own relatively mild electromagnetic field. Do forces and energies work the same on earth as they do in all corners of the universe?

profile photo of Ellen Zweibel
Ellen Zweibel
profile photo of Ke Fang
Ke Fang

“It’s never guaranteed, as we see many theories break down at extreme environments,” says University of Wisconsin­–Madison physics professor Ke Fang. “For example, a neutron star offers a magnetic field that is trillions of times stronger than on the Earth, and magnetars offer a field that is hundreds of trillions of time stronger. They are natural places to test many fundamental physics theories.”

Fang and UW–Madison astronomy and physics professor Ellen Zweibel are part of a new research collaboration announced August 21 by the Simons Foundation. The Simons Collaboration on Extreme Electrodynamics of Compact Sources (SCEECS) will study how electrodynamics — the interaction of electric currents and magnetic fields — behave in extreme environments in the distant universe using a combination of theory, simulation, and observation.

SCEECS has six main research questions, three centered on understanding electrodynamics in neutron stars and three centered in black holes. Each question pairs at least one senior-level investigator with an early-career co-investigator. Zweibel serves as the lead investigator on her black hole question, and she is paired with Richard Anantua at UT-San Antonio. Fang is co-investigator on a neutron star question, and she is paired with Anatoly Spitkovsky at Princeton.

a wispy, circular set of colorful lines emanate from a center point, indicating the electromagnetic field shooting out of a neutron star
“Particle in cell” simulation of the magnetic field and electric current associated with a spinning and strongly magnetized neutron star (adapted from Philippov and Kramer 2023) | From SCEECS

The neutron star “labs” that Fang is using are amongst the most dense stars in the universe — as small as 10 kilometers in diameter and with densities a million billion times that of water. High energy particles streaming from neutron stars are detectable on Earth, but they tend to be significantly altered by the time they make it here.

“How do those particles survive, in the sense that these extreme energy particles would interact with the surrounding media and produce secondary particles, and how do these interactions play a role in converting what you see on Earth?” Fang’s research asks. “There are also several major questions revealed by recent observations, such as extended TeV gamma-ray halos around neutron stars that are completely new phenomena. We would like to go from first principle physics to understand these phenomena.”

Zweibel’s research will use the extreme environment of spinning black holes, where the electromagnetic field has recently been identified as a major factor in accretion flows, or the movement of gases into the dense center. Her question asks how these accretion flows contribute to magnetizing black holes to form relativistic jets, or powerful emissions of radiation and high-energy particles.

a small black point at the center of the image is flanked by two brown-ish blobs made of flowing lines, like magma flowing down a volcano. Grey parabolic lines also shoot out the top and bottom.
Simulation of the magnetic field threading the black hole and confined by orbiting gas (adapted from Ripperda et al. 2022) | From SCEECS

“Accretion disks, their magnetic fields, and their magnetized jets are found throughout the Universe. They play essential roles in star formation, in the evolution of double, or binary stars, and in many other astrophysical settings,” Zweibel says. “The magnetized accretion disks surrounding black holes are by far the most extreme, and test our theories to the limits. Remarkably, we can circle back to laboratory plasma experiments, including some right here at UW, to study magnetized disks and jets as well.”

SCEECS is housed at Stanford University and includes researchers from 14 other US and international universities. UW­–Madison and Columbia University are the only universities that have more than one investigator in the collaboration. Most of the funding will be used to support investigators, postdoctoral fellows, and graduate students.

The collaboration plans to host an in-person kick-off in October at Stanford with regular virtual meetings throughout the year. Those meetings will be a place where everyone involved in the research, including students, postdocs, and faculty, can provide updates and seek feedback. Larger-scale collaborations such as this one are nothing new to physicists, but those groups are almost always made up of experimental physicists.

“It’s rare for theorists to be in a larger collaboration because we’re usually working alone or in a small group,” Fang says. “This program is exciting because it collects leading theorists in the field from many different institutions and provides a network for us to collaborate with each other.”

The Simons Foundation’s mission is to advance the frontiers of research in mathematics and the basic sciences. The Foundation makes grants in four areas, including Mathematics and Physical Sciences, through which this collaboration is supported.

UW–Madison researchers key in search for neutrino emission from the brightest gamma-ray burst ever detected

This story was originally published by WIPAC

On October 9th, 2022, an unusually bright pulse of high-energy radiation whizzed past Earth, captivating astronomers around the world. The luminous emission came from a gamma-ray burst (GRB), one of the most powerful classes of explosions in the universe. Named GRB 221009A, it triggered detectors at NASA’s Gamma-ray Burst Monitor and Large Area Telescope (both on board the Fermi Gamma-ray Space Telescope), the Neil Gehrels Swift Observatory, and the Wind spacecraft as well as other telescopes that quickly turned to the GRB site to study its aftermath.

profile photo of Jessie Thwaites
Jessie Thwaites

This record-shattering GRB is one of the closest and the brightest GRB ever spotted, earning it the nickname BOAT (“brightest of all time”). This GRB is believed to come from an exploding star and likely signals the birth of a black hole.

In a new study by the IceCube Collaboration, published today in The Astrophysical Journal Letters, UW–Madison researchers presented results of one of five searches for neutrino emission from GRB 221009A that leveraged the full detector range, covering nine orders of magnitude in energy. Because no significant emission was found across samples spanning 10 MeV to 10 PeV, the results are the most stringent constraints on neutrino emission from GRBs.

As some of the most energetic sources in the universe, GRBs have long been considered a possible astrophysical source of neutrinos—tiny “ghostlike” particles that travel through space and large amounts of matter unhindered. These high-energy neutrinos are of particular interest to the National Science Foundation-supported IceCube Neutrino Observatory, a gigaton-scale neutrino detector at the South Pole.

IceCube is run by the international IceCube Collaboration, which comprises over 350 scientists from 58 institutions around the world. The Wisconsin IceCube Particle Astrophysics Center (WIPAC), a research center at UW–Madison, is the lead institution for the IceCube project.

Previously, IceCube has performed searches for neutrino emission from GRBs, but thus far, a correlation has not been found between high-energy neutrinos and GRBs. The recent observation of GRB 221009A presented IceCube with the best opportunity yet to search for neutrino emission by GRBs.

profile photo of Justin Vandenbroucke
Justin Vandenbroucke

“Not only was this GRB the brightest ever detected in gamma rays, it also occurred in a region of the sky where IceCube is very sensitive,” says UW–Madison physics professor Justin Vandenbroucke, who helped lead the analysis.

For the study, collaborators carried out five complementary IceCube analyses that encompassed the full energy range of the detector. Each analysis targeted a specific energy range, with the idea of covering as wide an energy range as possible. UW–Madison physics PhD student Jessie Thwaites was one of the main analyzers.

Thwaites performed a “fast response” analysis based on real-time data from the South Pole to search for high-energy (0.10 teraelectronvolts to 10 petaelectronvolts) neutrinos from the direction of the GRB. They chose two time windows: one three-hour window covering all of the triggers reported in real time, and one covering two days. Their analysis, which set strong constraints on neutrino emission from GRBs, was quickly reported to the community, within hours of the GRB being detected by the gamma-ray satellites.

“In the high energies, our upper limits are very constraining—they are below the observations from gamma-ray telescopes,” says Thwaites. “These upper limits, combined with the observations from many electromagnetic telescopes, give us more information about GRBs as potential particle accelerators.”

Because this GRB is so bright, and because it has been so well studied, IceCube is able to place constraining upper limits on neutrino emission models proposed for this specific GRB. These constraints will enable better understanding of how GRBs work.

The collaborators are already developing new methods to improve searches for neutrinos from GRBs and other transient astrophysical sources. In addition, future upgrades and proposed extensions of IceCube, including the IceCube Upgrade project and IceCube-Gen2, could be the key to finding high-energy neutrino emission from GRBs or other transients.

According to Vandenbroucke, “This GRB illustrates the capabilities of IceCube for real-time follow-up of astrophysical transients. IceCube views the entire sky, all the time, over a factor of a billion in energy range. There is likely a burst of neutrinos already flying towards us from some other cosmic source, and we are ready for it.”

+ info “Limits on Neutrino Emission from GRB 221009A from MeV to PeV using the IceCube Neutrino Observatory,” The IceCube Collaboration: R. Abbasi et al. Published in The Astrophysical Journal Letters. arxiv.org/abs/2302.05459

IceCube analysis indicates there are many high-energy astrophysical neutrino sources

This story was originally published by WIPAC

Back in 2013, the IceCube Neutrino Observatory—a cubic-kilometer neutrino detector embedded in Antarctic ice—announced the first observation of high-energy (above 100 TeV) neutrinos originating from outside our solar system, spawning a new age in astronomy. Four years later, on September 22, 2017, a high-energy neutrino event was detected coincident with a gamma-ray flare from a cosmic particle accelerator, a blazar known as TXS 0506+056. The coincident observation provided the first evidence for an extragalactic source of high-energy neutrinos.

The identification of this source was possible thanks to IceCube’s real-time high-energy neutrino alert program, which notifies the community of directions and energies of individual neutrinos that are most likely to have come from astrophysical sources. These alerts trigger follow-up observations of electromagnetic waves from radio up to gamma-ray, aimed at pinpointing a possible astrophysical source of high-energy neutrinos. However, the sources of the vast majority of the measured diffuse flux of astrophysical neutrinos still remain a mystery, as do how many of those sources exist. Another mystery is whether the neutrino sources are steady or variable over time and, if variable, whether they vary over long or short time scales.

In a paper recently submitted to The Astrophysical Journal, the IceCube Collaboration presents a follow-up search that looked for additional, lower-energy events in the direction of the high-energy alert events. The analysis looked at low- and high-energy events from 2011-2020 and was conducted to search for the coincidence in different time scales from 1,000 seconds up to one decade. Although the researchers did not find an excess of low-energy events across the searched time scales, they were able to constrain the abundance of astrophysical neutrino sources in the universe.

a map of celestial coordinates with ovoid lines shown as a heatmap of locations where neutrino candidate events likely originated
Map of high-energy neutrino candidates (“alert events”) detected by IceCube. The map is in celestial coordinates, with the Galactic plane indicated by a line and the Galactic center by a dot. Two contours are shown for each event, for 50% and 90% confidence in the localization on the sky. The color scale shows the “signalness” of each event, which quantifies the likelihood that each event is an astrophysical neutrino rather than a background event from Earth’s atmosphere. Credit: IceCube Collaboration

This research also delves into the question of whether the astrophysical neutrino flux measured by IceCube is produced by a large number of weak sources or a small number of strong sources. To distinguish between the two possibilities, the researchers developed a statistical method that used two different sets of neutrinos: 1) alert events that have a high probability of being from an astrophysical source and 2) the gamma-ray follow-up (GFU) sample, where only about one to five out of 1,000 events per day are astrophysical.

“If there are a lot of GFU events in the direction of the alerts, that’s a sign that neutrino sources are producing a lot of detectable neutrinos, which would mean there are only a few, bright sources,” explained recent UW–Madison PhD student Alex Pizzuto, a lead on the analysis who is now a software engineer at Google. “If you don’t see a lot of GFU events in the direction of alerts, this is an indication of the opposite, that there are many, dim sources that are responsible for the flux of neutrinos that IceCube detects.”

a graph with power of each individual source on the y-axis and number density of astrophysical neutrino sources on the x-axis. there is a clear indirect relationship, with the lines starting in the upper left and moving toward the lower right of the graph. three "lines" are shown: an upper blue band that says "diffuse," a middle black lines that says "upper limit; this analysis" and a blue-green band that has +/-1 sigma sensitivity
Constraints on the luminosity (power) of each individual source as a function of the number density of astrophysical neutrino sources (horizontal axis). Previous IceCube measurements of the total astrophysical neutrino flux indicate that the true combination of the two quantities must lie within the diagonal band marked “diffuse.” The results of the new analysis are shown as an upper limit, compared to the sensitivity, which shows the range of results expected from background alone (no additional signal neutrinos associated with the directions of alert events). The upper limit is above the sensitivity because there is a statistical excess in the result (p = 0.018). Credit: IceCube Collaboration

They interpreted the results using a simulation tool called FIRESONG, which looks at populations of neutrino sources and calculates the flux from each of these sources. The simulation was then used to determine if the simulated sources might be responsible for producing a neutrino event.

“We did not find a clear excess of low-energy events associated with the high-energy alert events on any of the three time scales we analyzed,” said Justin Vandenbroucke, a physics professor at UW–Madison and colead of the analysis. “This implies that there are many astrophysical neutrino sources because, if there were few, we would detect additional events accompanying the high-energy alerts.”

Future analyses will take advantage of larger IceCube data sets and higher quality data from improved calibration methods. With the completion of the larger next-generation telescope, IceCube-Gen2, researchers will be able to detect even more dim neutrino sources. Even knowing the abundance of sources could provide important constraints on the identity of the sources.

“The future is very exciting as this analysis shows that planned improvements might reveal more astrophysical sources and populations,” said Abhishek Desai, postdoctoral fellow at UW–Madison and co-lead of the analysis. “This will be due to better event localization, which is already being studied and should be optimized in the near future.”

+ info “Constraints on populations of neutrino sources from searches in the directions of IceCube neutrino alerts,” The IceCube Collaboration: R. Abbasi et al. Submitted to The Astrophysical Journal. arxiv.org/abs/2210.04930.

Decades of work at UW–Madison underpin discovery of corona protecting Milky Way’s neighboring galaxies

a domed observatory with the night sky as a backdrop. the long exposure makes the stars look like they're rotating, with long blurry tails

This story was originally posted by UW–Madison News

Two dwarf galaxies circling our Milky Way, the Large and Small Magellanic Clouds, are losing a trail of gaseous debris called the Magellanic Stream. New research shows that a shield of warm gas is protecting the Magellanic Clouds from losing even more debris — a conclusion that caps decades of investigation, theorizing and meticulous data-hunting by astronomers working and training at the University of Wisconsin–Madison.

The findings, published recently in the journal Nature, come courtesy of quasars at the center of 28 distant galaxies. These extremely bright parts of galaxies shine through the gas that forms a buffer, or corona, that protects the Magellanic Clouds from the pull of the Milky Way’s gravity.

“We use a quasar as a light bulb,” says Bart Wakker, senior scientist in UW–Madison’s Astronomy Department. “If there is gas at a certain place between us and the quasar, the gas will produce an absorption line that tells us the composition of the clouds, their velocity and the amount of material in the clouds. And, by looking at different ions, we can study the temperature and density of the clouds.”

The temperature, location and composition — silicon, carbon and oxygen — of the gases that shadow the passing light of the quasars are consistent with the gaseous corona theorized in another study published in 2020 by UW–Madison physics graduate student Scott Lucchini, Astronomy professors Elena D’Onghia and Ellen Zweibel and UW–Madison alumni Andrew Fox and Chad Bustard, among others.

That work explained the expected properties of the Magellanic Stream by including the effects of dark matter: “The existing models of the formation of the Magellanic Stream are outdated because they can’t account for its mass,” Lucchini said in 2020.

“Our first Nature paper showed the theoretical developments, predicting the size, location and movement of the corona’s gases,” says Fox, now an astronomer at the Space Telescope Science Institute and, with Lucchini, a co-author of both studies.

The new discovery is a collaboration with a team that includes its own stream of former UW–Madison researchers pulled out into the world through the 1990s and 2000s — former graduate students Dhanesh Krishnarao, who is leading the work and is now a professor at Colorado College, David French, now scientist at the Space Telescope Science Institute, and Christopher Howk, now a professor at the University of Notre Dame — and former UW–Madison postdoctoral researcher Nicolas Lehner, also a Notre Dame professor.

UW–Madison research leading to the new discovery dates back at least to an inkling of hot gases seen in a study of stars in the Magellanic Cloud published in 1980 by the late astronomy professor Blair Savage and his then-postdoc Klaas de Boer.

“All that fell into place to allow us to look for data from the Hubble Space Telescope and a satellite called the Far Ultraviolet Spectroscopic Explorer, FUSE — which UW also played an important role in developing,” Wakker says. “We could reinterpret that old data, collected for many different reasons, in a new way to find what we needed to confirm the existence of a warm corona around the Magellanic Clouds.”

“We solved the big questions. There are always details to work out, and people to convince,” D’Onghia says. “But this is a real Wisconsin achievement. There aren’t many times where you can work together to predict something new and then also have the ability to spot it, to collect the compelling evidence that it exists.”

Read more about the research on NASA’s website.