UW–Madison researchers key in search for neutrino emission from the brightest gamma-ray burst ever detected

This story was originally published by WIPAC

On October 9th, 2022, an unusually bright pulse of high-energy radiation whizzed past Earth, captivating astronomers around the world. The luminous emission came from a gamma-ray burst (GRB), one of the most powerful classes of explosions in the universe. Named GRB 221009A, it triggered detectors at NASA’s Gamma-ray Burst Monitor and Large Area Telescope (both on board the Fermi Gamma-ray Space Telescope), the Neil Gehrels Swift Observatory, and the Wind spacecraft as well as other telescopes that quickly turned to the GRB site to study its aftermath.

profile photo of Jessie Thwaites
Jessie Thwaites

This record-shattering GRB is one of the closest and the brightest GRB ever spotted, earning it the nickname BOAT (“brightest of all time”). This GRB is believed to come from an exploding star and likely signals the birth of a black hole.

In a new study by the IceCube Collaboration, published today in The Astrophysical Journal Letters, UW–Madison researchers presented results of one of five searches for neutrino emission from GRB 221009A that leveraged the full detector range, covering nine orders of magnitude in energy. Because no significant emission was found across samples spanning 10 MeV to 10 PeV, the results are the most stringent constraints on neutrino emission from GRBs.

As some of the most energetic sources in the universe, GRBs have long been considered a possible astrophysical source of neutrinos—tiny “ghostlike” particles that travel through space and large amounts of matter unhindered. These high-energy neutrinos are of particular interest to the National Science Foundation-supported IceCube Neutrino Observatory, a gigaton-scale neutrino detector at the South Pole.

IceCube is run by the international IceCube Collaboration, which comprises over 350 scientists from 58 institutions around the world. The Wisconsin IceCube Particle Astrophysics Center (WIPAC), a research center at UW–Madison, is the lead institution for the IceCube project.

Previously, IceCube has performed searches for neutrino emission from GRBs, but thus far, a correlation has not been found between high-energy neutrinos and GRBs. The recent observation of GRB 221009A presented IceCube with the best opportunity yet to search for neutrino emission by GRBs.

profile photo of Justin Vandenbroucke
Justin Vandenbroucke

“Not only was this GRB the brightest ever detected in gamma rays, it also occurred in a region of the sky where IceCube is very sensitive,” says UW–Madison physics professor Justin Vandenbroucke, who helped lead the analysis.

For the study, collaborators carried out five complementary IceCube analyses that encompassed the full energy range of the detector. Each analysis targeted a specific energy range, with the idea of covering as wide an energy range as possible. UW–Madison physics PhD student Jessie Thwaites was one of the main analyzers.

Thwaites performed a “fast response” analysis based on real-time data from the South Pole to search for high-energy (0.10 teraelectronvolts to 10 petaelectronvolts) neutrinos from the direction of the GRB. They chose two time windows: one three-hour window covering all of the triggers reported in real time, and one covering two days. Their analysis, which set strong constraints on neutrino emission from GRBs, was quickly reported to the community, within hours of the GRB being detected by the gamma-ray satellites.

“In the high energies, our upper limits are very constraining—they are below the observations from gamma-ray telescopes,” says Thwaites. “These upper limits, combined with the observations from many electromagnetic telescopes, give us more information about GRBs as potential particle accelerators.”

Because this GRB is so bright, and because it has been so well studied, IceCube is able to place constraining upper limits on neutrino emission models proposed for this specific GRB. These constraints will enable better understanding of how GRBs work.

The collaborators are already developing new methods to improve searches for neutrinos from GRBs and other transient astrophysical sources. In addition, future upgrades and proposed extensions of IceCube, including the IceCube Upgrade project and IceCube-Gen2, could be the key to finding high-energy neutrino emission from GRBs or other transients.

According to Vandenbroucke, “This GRB illustrates the capabilities of IceCube for real-time follow-up of astrophysical transients. IceCube views the entire sky, all the time, over a factor of a billion in energy range. There is likely a burst of neutrinos already flying towards us from some other cosmic source, and we are ready for it.”

+ info “Limits on Neutrino Emission from GRB 221009A from MeV to PeV using the IceCube Neutrino Observatory,” The IceCube Collaboration: R. Abbasi et al. Published in The Astrophysical Journal Letters. arxiv.org/abs/2302.05459

IceCube analysis indicates there are many high-energy astrophysical neutrino sources

This story was originally published by WIPAC

Back in 2013, the IceCube Neutrino Observatory—a cubic-kilometer neutrino detector embedded in Antarctic ice—announced the first observation of high-energy (above 100 TeV) neutrinos originating from outside our solar system, spawning a new age in astronomy. Four years later, on September 22, 2017, a high-energy neutrino event was detected coincident with a gamma-ray flare from a cosmic particle accelerator, a blazar known as TXS 0506+056. The coincident observation provided the first evidence for an extragalactic source of high-energy neutrinos.

The identification of this source was possible thanks to IceCube’s real-time high-energy neutrino alert program, which notifies the community of directions and energies of individual neutrinos that are most likely to have come from astrophysical sources. These alerts trigger follow-up observations of electromagnetic waves from radio up to gamma-ray, aimed at pinpointing a possible astrophysical source of high-energy neutrinos. However, the sources of the vast majority of the measured diffuse flux of astrophysical neutrinos still remain a mystery, as do how many of those sources exist. Another mystery is whether the neutrino sources are steady or variable over time and, if variable, whether they vary over long or short time scales.

In a paper recently submitted to The Astrophysical Journal, the IceCube Collaboration presents a follow-up search that looked for additional, lower-energy events in the direction of the high-energy alert events. The analysis looked at low- and high-energy events from 2011-2020 and was conducted to search for the coincidence in different time scales from 1,000 seconds up to one decade. Although the researchers did not find an excess of low-energy events across the searched time scales, they were able to constrain the abundance of astrophysical neutrino sources in the universe.

a map of celestial coordinates with ovoid lines shown as a heatmap of locations where neutrino candidate events likely originated
Map of high-energy neutrino candidates (“alert events”) detected by IceCube. The map is in celestial coordinates, with the Galactic plane indicated by a line and the Galactic center by a dot. Two contours are shown for each event, for 50% and 90% confidence in the localization on the sky. The color scale shows the “signalness” of each event, which quantifies the likelihood that each event is an astrophysical neutrino rather than a background event from Earth’s atmosphere. Credit: IceCube Collaboration

This research also delves into the question of whether the astrophysical neutrino flux measured by IceCube is produced by a large number of weak sources or a small number of strong sources. To distinguish between the two possibilities, the researchers developed a statistical method that used two different sets of neutrinos: 1) alert events that have a high probability of being from an astrophysical source and 2) the gamma-ray follow-up (GFU) sample, where only about one to five out of 1,000 events per day are astrophysical.

“If there are a lot of GFU events in the direction of the alerts, that’s a sign that neutrino sources are producing a lot of detectable neutrinos, which would mean there are only a few, bright sources,” explained recent UW–Madison PhD student Alex Pizzuto, a lead on the analysis who is now a software engineer at Google. “If you don’t see a lot of GFU events in the direction of alerts, this is an indication of the opposite, that there are many, dim sources that are responsible for the flux of neutrinos that IceCube detects.”

a graph with power of each individual source on the y-axis and number density of astrophysical neutrino sources on the x-axis. there is a clear indirect relationship, with the lines starting in the upper left and moving toward the lower right of the graph. three "lines" are shown: an upper blue band that says "diffuse," a middle black lines that says "upper limit; this analysis" and a blue-green band that has +/-1 sigma sensitivity
Constraints on the luminosity (power) of each individual source as a function of the number density of astrophysical neutrino sources (horizontal axis). Previous IceCube measurements of the total astrophysical neutrino flux indicate that the true combination of the two quantities must lie within the diagonal band marked “diffuse.” The results of the new analysis are shown as an upper limit, compared to the sensitivity, which shows the range of results expected from background alone (no additional signal neutrinos associated with the directions of alert events). The upper limit is above the sensitivity because there is a statistical excess in the result (p = 0.018). Credit: IceCube Collaboration

They interpreted the results using a simulation tool called FIRESONG, which looks at populations of neutrino sources and calculates the flux from each of these sources. The simulation was then used to determine if the simulated sources might be responsible for producing a neutrino event.

“We did not find a clear excess of low-energy events associated with the high-energy alert events on any of the three time scales we analyzed,” said Justin Vandenbroucke, a physics professor at UW–Madison and colead of the analysis. “This implies that there are many astrophysical neutrino sources because, if there were few, we would detect additional events accompanying the high-energy alerts.”

Future analyses will take advantage of larger IceCube data sets and higher quality data from improved calibration methods. With the completion of the larger next-generation telescope, IceCube-Gen2, researchers will be able to detect even more dim neutrino sources. Even knowing the abundance of sources could provide important constraints on the identity of the sources.

“The future is very exciting as this analysis shows that planned improvements might reveal more astrophysical sources and populations,” said Abhishek Desai, postdoctoral fellow at UW–Madison and co-lead of the analysis. “This will be due to better event localization, which is already being studied and should be optimized in the near future.”

+ info “Constraints on populations of neutrino sources from searches in the directions of IceCube neutrino alerts,” The IceCube Collaboration: R. Abbasi et al. Submitted to The Astrophysical Journal. arxiv.org/abs/2210.04930.

Decades of work at UW–Madison underpin discovery of corona protecting Milky Way’s neighboring galaxies

a domed observatory with the night sky as a backdrop. the long exposure makes the stars look like they're rotating, with long blurry tails

This story was originally posted by UW–Madison News

Two dwarf galaxies circling our Milky Way, the Large and Small Magellanic Clouds, are losing a trail of gaseous debris called the Magellanic Stream. New research shows that a shield of warm gas is protecting the Magellanic Clouds from losing even more debris — a conclusion that caps decades of investigation, theorizing and meticulous data-hunting by astronomers working and training at the University of Wisconsin–Madison.

The findings, published recently in the journal Nature, come courtesy of quasars at the center of 28 distant galaxies. These extremely bright parts of galaxies shine through the gas that forms a buffer, or corona, that protects the Magellanic Clouds from the pull of the Milky Way’s gravity.

“We use a quasar as a light bulb,” says Bart Wakker, senior scientist in UW–Madison’s Astronomy Department. “If there is gas at a certain place between us and the quasar, the gas will produce an absorption line that tells us the composition of the clouds, their velocity and the amount of material in the clouds. And, by looking at different ions, we can study the temperature and density of the clouds.”

The temperature, location and composition — silicon, carbon and oxygen — of the gases that shadow the passing light of the quasars are consistent with the gaseous corona theorized in another study published in 2020 by UW–Madison physics graduate student Scott Lucchini, Astronomy professors Elena D’Onghia and Ellen Zweibel and UW–Madison alumni Andrew Fox and Chad Bustard, among others.

That work explained the expected properties of the Magellanic Stream by including the effects of dark matter: “The existing models of the formation of the Magellanic Stream are outdated because they can’t account for its mass,” Lucchini said in 2020.

“Our first Nature paper showed the theoretical developments, predicting the size, location and movement of the corona’s gases,” says Fox, now an astronomer at the Space Telescope Science Institute and, with Lucchini, a co-author of both studies.

The new discovery is a collaboration with a team that includes its own stream of former UW–Madison researchers pulled out into the world through the 1990s and 2000s — former graduate students Dhanesh Krishnarao, who is leading the work and is now a professor at Colorado College, David French, now scientist at the Space Telescope Science Institute, and Christopher Howk, now a professor at the University of Notre Dame — and former UW–Madison postdoctoral researcher Nicolas Lehner, also a Notre Dame professor.

UW–Madison research leading to the new discovery dates back at least to an inkling of hot gases seen in a study of stars in the Magellanic Cloud published in 1980 by the late astronomy professor Blair Savage and his then-postdoc Klaas de Boer.

“All that fell into place to allow us to look for data from the Hubble Space Telescope and a satellite called the Far Ultraviolet Spectroscopic Explorer, FUSE — which UW also played an important role in developing,” Wakker says. “We could reinterpret that old data, collected for many different reasons, in a new way to find what we needed to confirm the existence of a warm corona around the Magellanic Clouds.”

“We solved the big questions. There are always details to work out, and people to convince,” D’Onghia says. “But this is a real Wisconsin achievement. There aren’t many times where you can work together to predict something new and then also have the ability to spot it, to collect the compelling evidence that it exists.”

Read more about the research on NASA’s website.

Search for neutrino emission associated with LIGO/Virgo gravitational waves

Gravitational waves (GWs) are a signature for some of the most energetic phenomena in the universe, which cause ripples in space-time that travel at the speed of light. These events, spurred by massive accelerating objects, act as cosmic messengers that carry with them clues to their origins. They are also probable sources for highly energetic neutrinos, nearly massless cosmic messengers hurtling through space unimpeded. Because neutrinos rarely interact with surrounding matter, they can reveal phenomena that are otherwise unobserved with electromagnetic waves. These high-energy neutrinos are detected by the IceCube Neutrino Observatory, a cubic-kilometer detector enveloped in Antarctic ice at the South Pole.

Both GWs and neutrinos are recently introduced messengers in astronomy and have yet to be detected by the same source. Such a major discovery would not only shed light on the sources of cosmic rays but would also help in understanding the most energetic processes in the universe. By coordinating traditional observations (from radio to gamma rays) with these new messengers, researchers can gain deeper insights into astrophysical sources that were unobtainable before.

Previously, the IceCube Collaboration looked for joint emission of GWs and high-energy neutrinos with data collected by IceCube, the Laser Interferometer Gravitational-Wave Observatory (LIGO), and the Virgo gravitational wave detector. These results were from GWs observed during the first two observing runs (O1 and O2) of LIGO and Virgo. IceCube researchers from the University of Wisconsin–Madison and Columbia University conducted an updated analysis of GWs from the third observing run (O3) of the LIGO/Virgo detectors. The increased number of GWs improved the researchers’ overall analysis. Their findings were recently submitted to The Astrophysical Journal.

Read the full story by WIPAC

NASA Sounding Rocket Mission Seeks Source of X-rays Emanating From Inner Galaxy

This post was originally published by NASA

To human eyes, the night sky between the stars appears dark, the void of space. But X-ray telescopes capture a profoundly different view. Like a distant firework show, our images of the X-ray sky reveal a universe blooming with activity. They hint at yet unknown cosmic eruptions coming from somewhere deeper into our galaxy.

To help find the source of these mysterious X-rays, University of Wisconsin—Madison astronomer Dan McCammon and his team are launching the X-ray Quantum Calorimeter or XQC instrument. XQC will make its seventh trip to space aboard a NASA suborbital rocket. This time, XQC will observe a patch of X-ray light with 50 times better energy resolution than ever before, key to revealing its source. The launch window opens at Equatorial Launch Australia’s Arnhem Space Centre in Northern Territory, Australia, on June 26, 2022.

Because Earth’s atmosphere absorbs X-rays, our first views of cosmic X-rays awaited the space age. In June 1962, physicists Bruno Rossi and Ricardo Giacconi launched the first X-ray detector into space. The flight revealed the first sources of X-rays beyond our Sun: Scorpius X-1, a binary star system some 9,000 light-years away, as well as a diffuse glow spread across the sky. The discovery founded the field of X-ray astronomy and later won Giacconi a share of the 2002 Nobel Prize in physics.

a heatmap of the night sky that is mostly blue but has a few blobs of green and warmer colors like orange and red. One of the blobs is circled, indicating the area that McCammon's team is focusing on
This image shows a “map” of the night sky in soft X-ray light in galactic coordinates, with the Sun positioned at the center. The horizontal line across the middle of the image runs along the plane of our disk-shaped galaxy. University of Wisconsin, Madison astronomer Dan McCammon and the XQC team will be observing the bright blob in the center of the image, circled with a dotted line. This is the southern part of a roughly circular blob around the center of the galaxy, cut in half by cold absorbing gas in the plane of the galaxy.
Credits: Snowden et al., 1997

Scientists have now mapped the X-ray sky in ever-finer detail with the help of other NASA X-ray missions. Still, there are several bright patches whose sources are unknown. For the upcoming flight, McCammon and his team will target a patch of X-ray light only partly visible from the Northern Hemisphere.

“It covers a big part of the galaxy, but we needed to be in the Southern Hemisphere to see that part of the sky,” McCammon said. “We’ve been waiting a long time for this expedition to Australia.”

Scientists believe the X-ray patch comes from diffuse, hot gas heated by supernovae, the brilliant eruptions of dying stars. The XQC mission is investigating two possible sources, illustrated in the graphic below.

One possibility is that the X-rays come from gas heated by “Type Ia” supernovae, the death throes of massive stars that live tens to hundreds of millions of years. The inner part of our galaxy has a high enough concentration of this type of supernova to heat the X-ray patch McCammon is investigating.

The other possible source is “Type II” supernovae. The stars behind Type II supernova are even more massive, burn brighter and hotter, and live just a few million years before going supernova. They occur in active star-forming regions, like those in one of our galaxy’s inner spiral arms.

To distinguish these possibilities, XQC will analyze the X-ray light, looking for traces of oxygen and iron. More oxygen points to Type II supernovae, while less oxygen suggests Type 1a supernovae. The physics behind it is complex but ultimately stems from how long the stars burned before erupting. The smaller stars behind Type 1a supernovae burn for longer, leaving less oxygen behind than Type II supernovae.

Of course, the flight is likely to capture much more information as well. “This is an exploration with a new capability – we want to see what we can see,” McCammon said. “Every time we look at the X-ray sky with a new capability, it turns out to be more complicated that we supposed.”

After the flight, the team plans to recover the instrument. It will retire to Oak Ridge National Labs in Tennessee where it will aid in laboratory experiments.

This flight will be XQC’s final trip to space, but the very first from the new Arnhem Space Centre rocket range in East Arnhem, Australia. XQC is part of a three-rocket campaign launching from the range in June and July 2022, NASA’s first time launching from Australia since 1995.

Massive bubbles at center of Milky Way caused by supermassive black hole

depiction of a blueish circle and its reflection below seen in distant space with a Milky Way image in the background
The enormous clouds of material known as the eRosita and Fermi bubbles extend above and below the galactic plane of the Milky Way. NASA/KAREN YANG/MATEUSZ RUSZKOWSKI/ELLEN ZWEIBEL

New research reveals the origins of enormous bubbles of material emanating from the center of the Milky Way.

The related structures — known as the eRosita and Fermi bubbles and the microwave haze — are the result of a powerful jet of activity from the supermassive black hole at the center of the galaxy. The study, published March 7 in Nature Astronomy, also shows the jet began spewing out material about 2.6 million years ago, and lasted about 100,000 years.

profile photo of Ellen Zweibel
Ellen Zweibel

The work was led by Karen Yang of National Tsing Hua University in Taiwan with University of Wisconsin–Madison astronomer Ellen Zweibel and Mateusz Ruszkowski at the University of Michigan.

The black hole origin of these huge bubbles rules out an alternative model that the expansion of the material was driven by exploding stars. Such a nuclear starburst would last about 10 million years, according to Zweibel, a professor of astronomy and physics at UW–Madison.

“On the other hand, our active black hole model accurately predicts the relative sizes of the eRosita X-ray bubbles and the Fermi gamma ray bubbles, provided the energy injection time is about one percent of that, or one-tenth of a million years,” Zweibel says. “Injecting energy over 10 million years would produce bubbles with a completely different appearance. While both the black hole and stellar explosion models were in reasonably good agreement with the gamma ray data, it’s the discovery of the X-ray bubbles, and the opportunity to compare the X-ray and gamma ray bubbles, which provide the crucial, previously missing piece.”

The enormous structures are nearly 36,000 light-years tall, one-third the diameter of the Milky Way. The eRostia and Fermi bubbles were named for the telescopes that discovered them in 2020 and 2010, respectively.

Read more about the discovery at the University of Michigan’s website and from the study’s lead author.

Magellanic Stream arcing over Milky Way may be five times closer than previously thought

Our galaxy is not alone. Swirling around the Milky Way are several smaller, dwarf galaxies — the biggest of which are the Small and Large Magellanic Clouds, visible in the night sky of the Southern Hemisphere.

profile photo of Scott Lucchini
Scott Lucchini

During their dance around the Milky Way over billions of years, the Magellanic Clouds’ gravity has ripped from each of them an enormous arc of gas — the Magellanic Stream. The stream helps tell the history of how the Milky Way and its closest galaxies came to be and what their future looks like.

New astronomical models developed by scientists at the University of Wisconsin–Madison and the Space Telescope Science Institute recreate the birth of the Magellanic Stream over the last 3.5 billion years. Using the latest data on the structure of the gas, the researchers discovered that the stream may be five times closer to Earth than previously thought.

The findings suggest that the stream may collide with the Milky Way far sooner than expected, helping fuel new star formation in our galaxy.

“The Magellanic Stream origin has been a big mystery for the last 50 years. We proposed a new solution with our models,” says Scott Lucchini, a graduate student in physics in Elena D’Onghia’s group at UW–Madison and lead author of the paper. “The surprising part was that the models brought the stream much closer to the Milky Way.”

Lucchini, D’Onghia, and Space Telescope Science Institute scientist Andrew Fox published their findings in The Astrophysical Journal Letters on Nov. 8.

Read the full story

a starscape showing the milky way in the distance and a rendering of the gases surrounding the large magellenic cloud
The Large and Small Magellanic Clouds as they would appear if the gas around them was visible to the naked eye. | Credits: Scott Lucchini (simulation), Colin Legg (background)

Francis Halzen named Vilas Research Professor

Francis Halzen

UW–Madison physics professor Francis Halzen has been named a Vilas Research Professor. Created “for the advancement of learning,” Vilas Research Professorships are granted to faculty with proven research ability and unusual qualifications and promise. The recipients of the award have contributed significantly to the research mission of the university and are recognized both nationally and internationally.

Halzen, the Gregory Breit and Hilldale Professor of Physics, joined the UW­­–Madison faculty in 1972. He has made pioneering contributions to particle physics and neutrino astrophysics, and he continues to be the driving force of the international IceCube Collaboration.

Early in his career, Halzen cofounded the internationally recognized phenomenology research institute in the UW–Madison Department of Physics to promote research at the interface of theory and experiment in particle physics. This institute is recognized for this research and for its leadership in the training of postdocs and graduate students in particle physics phenomenology.

The IceCube Neutrino Observatory is the culmination of an idea first conceived in the 1960s, and one in which Halzen has played an integral role in its design, implementation, and data acquisition and analysis for the past three decades. After initial experiments confirmed that the Antarctic ice was ultratransparent and established the observation of atmospheric neutrinos, IceCube was ready to become a reality. From 2004 to 2011, the South Pole observatory was constructed — the largest project ever assigned to a university and one led by Halzen.

After two years of taking data with the full detector, the IceCube Neutrino Observatory opened a new window onto the universe with its discovery of highly energetic neutrinos of extragalactic origin. This discovery heralded the beginning of the exploration of the universe with neutrino telescopes. The IceCube observation of cosmic neutrinos was named the 2013 Physics World Breakthrough of the Year.

Nationally and internationally renowned for this work, Halzen was awarded a 2014 American Ingenuity Award, a 2015 Balzan Prize, a 2018 Bruno Pontecorvo Prize, a 2019 Yodh Prize, and a 2021 Bruno Rossi Prize.

With the Vilas Research Professorship, Halzen is also recognized for his commitment to education and service in the department, university, and international science communities. He has taught everything from physics for nonscience majors to advanced particle physics and special topics courses at UW–Madison. He has actively participated on several departmental and university committees as well as advisory, review, and funding panels. His input is highly sought by committees and agencies that assess future priorities of particle and astroparticle physics research.

“Francis Halzen has had a prolific, internationally recognized research career, has shown excellence as an educator who is able to effectively communicate cutting-edge science on all levels, and has made tireless and valued contributions in service of the department,” says Sridhara Dasu, Physics Department chair. “He is one of the most creative and influential physicists of the last half century and worthy of the prestigious Vilas Research Professorship.”

Vilas awards are supported by the estate of professor, U.S. senator and UW Regent William F. Vilas (1840-1908). The Vilas Research Professorship provides five years of flexible funding — two-thirds of which is provided by the Office of the Provost through the generosity of the Vilas trustees and one-third provided by the school or college whose dean nominated the winner.

Halzen joins department colleagues Profs. Vernon Barger and Sau Lan Wu as recipients of this prestigious UW–Madison professorship.

Highest-energy Cosmic Rays Detected in Star Clusters

For decades, researchers assumed the cosmic rays that regularly bombard Earth from the far reaches of the galaxy are born when stars go supernova — when they grow too massive to support the fusion occurring at their cores and explode.

Those gigantic explosions do indeed propel atomic particles at the speed of light great distances. However, new research suggests even supernovae — capable of devouring entire solar systems — are not strong enough to imbue particles with the sustained energies needed to reach petaelectronvolts (PeVs), the amount of kinetic energy attained by very high-energy cosmic rays.

And yet cosmic rays have been observed striking Earth’s atmosphere at exactly those velocities, their passage marked, for example, by the detection tanks at the High-Altitude Water Cherenkov (HAWC) observatory near Puebla, Mexico. Instead of supernovae, the researchers — including UW–Madison’s Ke Fang — posit that star clusters like the Cygnus Cocoon serve as PeVatrons — PeV accelerators — capable of moving particles across the galaxy at such high energy rates.

Their paradigm-shifting research provides compelling evidence for star forming regions to be PeVatrons and is published in two recent papers in Nature Astronomy and Astrophysical Journal Letters.

For the full news story, please visit https://www.mtu.edu/news/stories/2021/march/not-so-fast-supernova-highestenergy-cosmic-rays-detected-in-star-clusters.html.

 

Welcome, Professor Ke Fang!

By Madeleine O’Keefe, WIPAC

When you think of scientific meccas throughout the world, Madison, Wisconsin might not be the first place that comes to mind. But for astroparticle physicist Ke Fang, Madison is the place to be. That’s because it’s home to the Wisconsin IceCube Particle Astrophysics Center (WIPAC): the “leader of particle astrophysics in the world,” according to Fang. “Throughout the years, there have been all kinds of meetings and workshops that drive people in this field to Madison because it’s the center for particle astrophysics,” she says.

Ke Fang

Originally from Huangshan, China, Fang earned a B.S. in physics from the University of Science and Technology of China. Afterward, Fang moved to the United States for graduate school and earned her PhD in astrophysics from the University of Chicago in 2015. Following that, she went to the University of Maryland and the Goddard Space Flight Center for a Joint Space-Science Institute fellowship. Most recently, Fang was a NASA Einstein Fellow at Stanford University in California.

Now, Fang has joined WIPAC and the UW–Madison Physics Department as an assistant professor. To welcome Fang and learn more about her, we met up on—where else?—Zoom for an interview.

 Can you summarize your research? 

I use both experiments and theory to understand extreme activities of our universe. We receive multiple types of messengers from the universe—all the way from optical light to gamma rays, cosmic rays, neutrinos, and gravitational waves. These messengers can be emitted by a common source, such as a binary neutron star merger. Specifically, I use theoretical models to understand how these astrophysical events produce different messengers, whether theoretical models explain the data, and how the data compare with theoretical models. I also use the HAWC Observatory, the IceCube Neutrino Observatory, and the Fermi Large Area Telescope (Fermi-LAT) to observe or to find sources directly. For example, I jointly analyze the Fermi-LAT and HAWC data to observe gamma-ray sources from 0.1 GeV to 100 TeV—across six orders of magnitude. Studies using multiple messengers and wavelengths are rewarding because they help us get a full picture of what these astrophysical sources look like.

How did you get into your field of research?

When I started graduate school, high-energy astrophysics was rather new; it’s a field that has quickly grown in the past decade or so. High-energy astrophysics traditionally refers to astrophysics with X-ray observations, because X-rays are higher in energy compared to the optical band that astronomers traditionally use. But in the last few years, high-energy astrophysics has had another burst of delving into even higher energies. When we move up in energy, by millions or billions, we see many new sources that were previously not observable in the X-ray band, or different aspects of sources that were previously seen at lower energies. And there are so many unknowns in this field; we can see surprising things at the highest energies, and many of those observations are discoveries. I think that’s really intriguing.

 What attracted you to UW–Madison and WIPAC? 

I think it’s pretty fair to say that WIPAC—with IceCube, CTA, HAWC, Fermi-LAT, ARA, and IceCube-Gen2—is now the leader of particle astrophysics in the world. I think there’s a close match between my expertise and what is currently being done at WIPAC, and I’m excited about joining the department and joining these explorations of higher and higher energy neutrinos and gamma rays.

What’s one thing you hope students who take a class with you will come away with?

The content you learn from a class is limited, but the contexts where you could apply the knowledge are unlimited.

 What is your favorite particle?

Neutrino. If I have to pick one, neutrino is the one that I have in my heart.

What hobbies/other interests do you have?

 Cooking! I like to explore different things. I come from China, so Chinese cuisine is what I started from when I just moved to the United States. But after all these years, I’m getting more exposed to different types of cuisines and starting to explore more, like with Thai and Italian. When I go to nice restaurants, I try to remember the name of the dish and find the recipe online.